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1. Introduction. Let us consider a classical analytic pseudo-differential operator P
of order p on an open set 2 in RY with the symbol

p(x,8) ~ pu(x,8) + pu_1(z,&) + ...,

where p,_;(z,§) is positively homogeneous of degree p — j with respect to {. We assume
that the characteristic set ¥ = p;l(O) of P is a symplectic real analytic submanifold
of T*(2)\0 of codimension 2d and that p, vanishes exactly at the order m on X. As
in Grusin [4], Sjéstrand [11] and Métivier [8], we also assume that p,_; vanishes at the
order m — 2j on ¥ for j < m/2.

C* and analytic hypoellipticity of this class of operators has been extensively studied
by many mathematicians (see e.g., [1], [2], [4], [8], [9], [11], [13] and others). Among them
Métivier [8] has proved analytic hypoellipticity of P by constructing a left parametrix
when P is subelliptic with loss of m/2 derivatives.

In this note, we study hypoellipticity and local solvability of P at a point where
the above subellipticity condition is not satisfied. We shall then construct a system of
analytic pseudo-differential operators on RY~¢ to which we can reduce the study of
analytic hypoellipticity and local solvability of P.

Typical examples of the operators are

(1.1) P =D?+22D3 — (1+2a})Dy, in R?
with k € N,
(1.2) P=D?+22(D?+ D32) - (1 —22)D3 —¢, inR?
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with ¢ € C. We can show that the operators (1.1) and (1.2) are analytic hypoelliptic and
locally solvable for all k and all ¢ respectively.

2. Notation and statement of the main result

2.1. Notation. Let © be an open set in RY. We denote by z* = (x,¢) a point in
T*()\0. For a distribution u € D'(2), W F4(u) is the analytic wave front set of u. We
introduce the presheaf Cé of micro-distributions on Q as follows: With each open set
w C T*(2)\0 we associate the space

Cl(w) =D'(Q)/{u e D'(Q); WFa(u) Nw = 0}.
We shall also use the notation:
Aq(#) = {u € D/(Q): 5" ¢ WFaw)},
ChH(E") = lim Ch(w) = D'(Q)/An(#")
wo*
for z* € T*(Q)\0, for the space of distributions on  which are micro-analytic at #* and
for the space of germs at #* of micro-distributions on Q respectively.

Let Q x I' be a conic neighborhood of a point (Z,6) in RY x (R"\0). Let u € R
and h be the reciprocal of a positive integer. A formal sum 27 a;(x,6) will be called
a polyhomogeneous analytic symbol on Q x T' of degree u and step h if a;(z,0) is a
holomorphic function on € x I, positively homogeneous of degree u — jh with respect to
f and satisfying the estimate

Jaj(a,0)] < CTHI(GN" g™ "
for all (x,0) € Q x T with C independent of j, where Qis a complex neighborhood of

Q in CV and T is a conic complex neighborhood of T in C"\0. Then we shall write

doisoai(x,0) € a—Sg}’lg(Q x T).

Let us also recall the definition of analytic symbols of type (p,d) introduced by
Métivier [8]: For p € (0,1], § € [0,1) and a conic set @ x I' € RY x (R™\0), the
space a-S, 5(£2 x I') of analytic symbols on € x I" of degree u and type (p,d) is the set of

C* functions a(z,0) on  x I for which there are C > 0 and R > 0 such that
10505 a(x, )] < 1P L4 10 (Jal + o '=°101°)1 (817 16) 7!
for all multi-indices «, 8 and all (z,0) € Q x I" such that R|8| < |f]. Moreover, a symbol
a € a-S} 5(2 x T) is said to be equivalent to 0 (a ~ 0) in Qp x 'y C 2 x I if there is a
constant € > 0 such that
|05 a(x,0)] < (1/e)lIt el
for all multi-indices o and all (x,0) € Qy x I'.

Each polyhomogeneous symbol has a realization in a—SﬁO(Q x I') as follows: Let
{x;(0)}32y be a sequence in C°°(R™) such that x;(0) = 0 for |0] < j, x;(0) = 1 for
6] > 2;j and there is a constant C' > 0 for which we have |95y, (0)| < Cl°l for all j,
such that |o| < j. If 377% ja; € a-Sgl’IZ(Q x T') then, for A > 0 large enough,

(2.1) a(e,0) =) xj41(0/Na;(x,6)

J=0
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isin a-SY'((2xT). (See e.g. Treves [14, Chap. V] or Métivier [M, Section III].) Any symbol
a € a-S} (2 x ') which is equivalent to the symbol (2.1) will be called a realization of
> i a; and we shall then write a ~ 3777 a;. Also, we let o, (a)(z, 0) = ap(z, ) denote
the principal symbol of a.
If * = (%,2) €O xT c THRM\0 and a(x,&) € a-S)) 5(2 x T'), then we define the
operator
op(a)s. : CH(&") = C4(&")

via the distribution kernel

(22) A ) = o) (20 [ 0 P%a(e,)g(6)de o).

RN
where ¢ € C5°(Q2), ¢(x) = 1 in a neighborhood of % and g(¢) € C*(RY) is a cut-off
function introduced in Lemma 3.1 of Métivier [8] such that supp(g) C T, g(§) =1in a
conic neighborhood of ¢ for |£] > 2 and there are C' > 0, p’ € (0,1) for which we have

(2.3) 08g()] < ClMY(|al/[g])P1e]

for all «, £ such that |a| < [¢].

The operator op(a)s. is well defined; that is, independent of the choice of the cut-off
functions ¢ and g in (2.2). Moreover, when a(z,§) is a realization of a formal sym-
bol 3777 a;(x,€), op(a)g. is also independent of the choice of the realization. Then
a(x, D) = op(a) which stands for | |s. ¢, op(a)g. is called an analytic pseudo-differen-
tial operator on Q x I' with the symbol a(z,&) (or 372 a;(z,€)).

2.2. Statement of the result. Let ¥ be a symplectic submanifold of codimension 2d in
a conic set w C T*(RY)\0. We consider a classical analytic pseudo-differential operator
P of order p whose symbol p(x, &) ~ Z;io Pu—j(z,€) defined on w is such that p,_; is
homogeneous of degree p — j, and vanishes to order m — 25 on ¥ for j < m/2.

After transforming P by a suitable elliptic Fourier integral operator, we may suppose
3 is given by the equation

xlz.:xdzo; 61:":€d20

Henceforth, we write t; = x;, 7, = & for ¢ = 1,...,d and y; = xgyq, 7; = Eqqq for
i=1,...,n(=N —d) and set

T RN\ 3 (y,m) = (0,5,0,7) € T*(RV)\0.
In this coordinate, ¥ can be identified with +(7*(R"™)\0) in w and P has the form
(2.4) P = Z t%op(z,D)DP . cop € a—Sﬁ@mﬂHaW*Wl/zl/z(w).
laf+|Bl<m
For * = «(§") = (0,7,0,7) € L Nw, we set

od(P)g-(t,7) = D Oummyatial/z—ial/2(Cap) (#1077,
lal+18=m

G.(P)g.(t:D) = > Ou_mjoiialjz—|s)/2(cap) (@)t D
la|+|Bl<m
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and assume

(2.5) 3C >0 such that |00 (P)s.(t,7)] > C(|t| + |7])™
With this assumption o (P)g. becomes a Fredholm operator from S to &', and if

Ker(o,, (P)g.) NS = {0} (resp. Coker(c,(P)s.) NS = {0}) then P (resp. P*) is subel-
liptic with loss of m/2 derivatives. Our interest is now focusing at a point where this
subellipticity condition of P or P* is not satisfied. So we set

ki = dim(Ker(o,(P)s.) NS), k_ = dim(Coker(c,, (P)s.)NS).
The main theorem of this note is

THEOREM 2.1. Let P be an operator of the form (2.4) satisfying (2.5). Then there
exist a k— X ky-matriz of pseudo-differential operators

My, Dy) : (Cha (§7)F+ — (Cha(§7)"
and two operators
HY 2 (Cha(57)F — Chn (&) and H™": Chy (&) — (Cha(57))F-
for which we have the isomorphisms:
HT: Ker(M : (Cha (§7)F+ — (Cha (57))F)
= Ker(P : Cln (8) — Cln (87))
H™*: Coker(P : CLx (&%) — CLy (3"))
= Coker(M : (Cha (7)) — (Cha (57))5).

Remark. Grigis-Rothschild [3] have treated the case cog = cop(D,) and obtained
the same result as above. See also Kashiwara-Kawai-Oshima [7] and Stein [12].

3. Operator valued symbols
3.1. Symbol spaces. Let §" = (¢,7) € R™ x (R™\0) (|| = 1). For p > 0, we consider
a complex neighborhood of §/* of the form
wp =A{(y,n) € C" x (C™"\0); |y = §| < p,|n — i)l < p}
and let w, denote the cone generated by w,; that is,
@p ={(y,n) € C" x (C™\0); |y — 9| < p,[n/Inl =7l < p}.
Let B = B()\) be some Banach space whose norm may depend on .

DEFINITION 3.1. Let 2 € R. The space O (Wp; B) of B-valued homogeneous symbols
(also denoted by B,(,“) for short) and the space Sggf;(&p; B) of B-valued polyhomogeneous
symbols are defined by:

(1) p(y,n) € OW(@,; B) if and only if p(y,n) is a holomorphic function defined on @,
with values in B(|n|) which satisfies
Ip(y, An)lI By = Mlp(y, mllBay  for (y,m) € w,

and

def
Il ow = sup  [lp(y, M)l By < +oo.
? (%W)E“’p
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(2) X52opily,n) € Sgﬁ};(&p; B) if and only if p;(y,n) € OW=IM(G,; B) and there exists

a C > 0 such that
. wh
1pjll - < CIT (N

3.2. Banach spaces and estimates. Let us now introduce several Banach spaces fol-
lowing Métivier [8] and quote some of their properties from [8].

DEFINITION 3.2. A™(\) denotes the space of differential operators on R? of the form
At D))= > Capt"D,’,  CapeC,
ot +] 8] <m
with the norm [[A[| am) = >_, 5 |Cap| AUBI=IaD/2,
DEFINITION 3.3. M denotes the space of k_ x ki -matrices M = (m;;) € L(Ck+, C*-)
with the norm || M || px 00 = (32 |m;;|?)1/? independent of \.

Let ¢ denote a point in R?. We consider the operators
0
Tj:Tj(/\):)\iéaT, T_j:T_j()\):i)\l/%j, j=1,...,d.
J
For a sequence I = (ji,...,jx) € {£1,...,£d}F we write |I| = k and Ty = T},,..., T},
If L is an operator acting from S(R%) to S'(R?) we write
(ad Tj)(L) = [T}, L] = T;L — LT;

and because the ad T}’s commute, we write for a multi-index o = (o) j=+1

(ad T)* = [J(ad 7).

J
Also we write || L||o for the operator-norm of L from L?(R?) to L?(R%).

.....

DEFINITION 3.4. Let m be a non-negative integer. For a real R > 0, L} (\) denotes
the space of the operators for which there is a constant C' such that for all multi-indices
a € N2¢ and for all I, J with |I| + |J| < |a] +m,

1T (ad T)*(L)Ty o < ClaltRIe),
Clearly L7 (A\) becomes a Banach space and there exists C > 0 such that
(3.1) [AL| 2o, 2y < CllAfam )Ll 2 n)

for all A€ A™(X) and L € LF(N).
For an operator K from S (Ri) to S’(R?) we write K (t, s) for its distribution kernel.
We also introduce the operator K induced from K via the Fourier transform; that is,

Ki = Ku.
DEFINITION 3.5. For € > 0, B.()\) is the space of Hilbert-Schmidt operators K such
that for all j =1,...,d,
(32) 152939 K (8, )| L2 (R xra) < +00,
(3.3) les®s )/ XK (7, o)l L2 mixmray < +00,
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where ¢;(t,s) = [t;|t;| — s;j|sj||. The norm of B.(\) is the maximum for j =1,...,d of
the norms in (3.2) and (3.3).

The space B.(\) plays an important role in the construction of a relative parametrix.
The crucial points are

LEMMA 3.6 (Métivier [8], Proposition 2.8). If m > d then for all R > 0 there exist

e >0 and C such that
[Kl5.0) < CIK | m )

for all K € LE(N).

LeEMMA 3.7 (loc. cit., Proposition 2.9). For all R > 0, there exist eg > 0 and C' such
that for all e € (0, &9,

LK 5.2 < ClILl 2o, 1K 5. (1)

for all L € L%(X\) and all K € B-()).

LEMMA 3.8 (loc. cit., Proposition 2.10). There exists a constant My such that for all
O<ée' <e<landallj==+1,...,4d,

My \ 2
T ()l < (225) 1Ko

for all K € Be(\).

For the operator K of kernel K (t, s), we define its symbol k = o(K) by

k(t,7) = [ K(tt—s)e " ds.
Rd
Then
Ku(t) = k(t, Dy)u(t) = (2m)~¢ f ek (t, T)u(T) dr.
Rd
LEMMA 3.9. For all € > 0, there exists a C > 0 such that for all (o, 3) € R% x R4,

sup [07070(K)(t,7)| < C7F(|af + |8 1HID2AIED2) 15,
(t,7)eR24

for all K € B.(\).
We also introduce the space of Hermite operators. First we define its symbol space.

DEFINITION 3.10. For & > 0, H. () is the space of functions h(t) € S(R?) such that
forall j=1,...,d,

(3.4) e A(t) || 2 (ray < +00,

(3.5) €57 AR (7) | L2 rey < +o0.

The norm of H. () is the maximum for j = 1,...,d of the norms in (3.4) and (3.5).
For H = (hy,...,h;) € (H-(\)¥, define the operators H and H* by

(3.6) H:CHs ()b = Y ahi(t) € SRY),
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N k
(3.7) H*: 8'(RY) 5 u(t) — ( I hl(t)u(t)dt)l_l e Ch,
R¢ B

where h;(t) is the complex conjugate of h;(t). We denote by H¥()\) and H**()\) the spaces
of operators of the form (3.6) and (3.7) respectively. The norm in them is defined by

* k 1/2
[ 0 3y = 1 g0y = iz llhallF, )
and we write o(H) = o(H*) = (hq,..., hg).

By definition, we have

LEMMA 3.11. Let k, k' €N and e > 0. If K € B.()\), Hi, Hy € H¥()\) and Hse H* ()\)
then KHy € B.(\), HoH; € B.(\) and Hi Hs € L(C¥,C¥). Moreover,

K Hi ey < K By 1 H 3 (0 s
[ H2H |[5.(x) < [[Hal2x) [ Hll 2252
||HTH3||L(CV,C'€) < ”Hl”H’g()\)”HS”H’g/(A)‘

Also, the following lemma has been proved in Métivier [8, Lemma A.3].

LEMMA 3.12. There exists a constant My such that for all 0 < &’ < e < 1 and all
j==1,...,+d,

My \ V2
I3l < (222) " Bl
for all h € H.(X).
Finally, we set HE(\) = HE* () and HE*(A) = HEE*(A).

4. Construction of parametrix

4.1. The case cap = cap(y, Dy). Let P =37 1 5 t*cop(x, D;) DY be an operator
of the form (2.4) satisfying (2.5). Multiplying P by an elliptic factor we may assume
w = m/2. Also we suppose m > d+ 1 in the construction of a parametrix. Otherwise
we replace P by P(P*P + 1) for some integer k. Because (P*P + 1)¥ is isomorphic on
C{w (z*), this does not affect the conclusion of Theorem 2.1. Moreover, we assume in
this section

(4.1) cap(2,€) = cap(y,n) independent of ¢, 7.

Then cag(y*)*: Z;io cap,j(y*) € Sl()lfg_‘m)/ll/z(&pL where w,, is a conic complex neigh-
borhood of §* = (9,7) = ¢~ 1(2*) generated by
wp =A{(y,m) € C" x (C™0); |y — | < p,|n—ill <p}
and cqg,; is positively homogeneous of degree (Ja| — |5 — j)/2.
Now, we set

Py )= Y capily)i*D,’.
laf+[B|<m
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Then P; € O9/2)(&,; A™) and

P(y") (déf S caply )t Dy ) ZP ) € SSY2(@, A™).
locf+[B]<m.

For y* € w,, we let Py(y*) = (Po(7"))* and write PyP,(y*) = P§(y*)Fy(y*) and
PyP;(y*) = Py(y*)Pi(y*). By the assumption (2.4), P;Py(§") and PyPg(§") are Fred-
holm operators from S'(R?) to S'(R?) together with Py(§"). (Note that Py(j") =
ox(P)g-)

Let v+ C C be a positively oriented closed curve enclosing only the 0O-eigenvalue of
Py Py(§") and PyPg(§"). If p > 0 is sufficiently small then for all y* € &, and all ¢ € 7,
Py Py(y*) — ¢ and PyF;(y*) — ¢ are invertible. So we set for y* € W,,

Qo) =5 ([ R R ~ 7)),

“omi
-1
05 () =5~ [ (PsRo(y") =)',
Y
-1
0y () =5 [ (PPs(y") —¢)dc,

E5 (y) =II5 (S'(RY)).
Note that TI{ (§*) (resp. I (")) are the projections onto Ker(Py (")) (resp. Ker(Pg ("))
o~ Coker(PO( "))). Also, from the choice of p, dim(E5 (y*)) is constant for y* € &, hence

equal to k4.
Then we have

PROPOSITION 4.1 (Métivier [8], Proposition 2.3). There exist pg > 0 and Rg > 0 such
that

Qo(y") € 0V (@p,; LF,).
PROPOSITION 4.2. We can choose bases {h(‘;l(t;y*) 221 (resp. {hal(t;y*)}fgl) of
Ed (y*) (resp. Eg (y*)) in L*(R?) which are orthonormal if y* is real and such that
ha(t;y*) € @(0)(@;)0;]‘[50), I=1,... kg,
for some pg > 0 and gy > 0.

Proof. Tt follows from Theorem 3.9 in Chap. VII of Kato [6] that we can choose
bases {hg,(t;y )}l 1 (resp. {hg,(t;y* }l ~,) of Ef (y*) (resp. Eqy (y*)), depending holo-
morphlcally on y* € wp,, orthonormal for real y*. Then, for each fixed y*, ho ,(t;y*) are
in H,, for some €9 > 0. (See e.g. Melin [9, Lemma A.1].) =

Let {ho [ty )}f;l be chosen as above and define the operators Hy € HZ and Hy™* €
HZ" by

Hf: CF > ()2 HZ ahgy(ty”) € SRY),

HE . S'(RY) > u(t (fh dt)i € Ok
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Then we have
105 (y*) = Hy (y*)Hy “(y").
Let us also introduce a matrix
Mo(y*) = —Hy " (y*) Py (y*) Ho' (y")-
Then, by Lemma 3.11 and Lemma 3.12,
(4.2) Mo (y*) € O (@py5 M)
and we have
PROPOSITION 4.3. There is a pg > 0 such that for all y* € &,,,
Po(y*)  Hy (y7) Qo(y*)  Hy(y")\  (ldsme 0
(HJ*(y*) 0 ) (Ho*(y*) Mo(y*)> - ( 0 Idges > ’
Qo(y*)  Hy (y") Py(y*)  Hy (y") _ (ldsira) 0 )
<Ho‘*(y*) Mo(y*)> <Ho+*(y*) 0 > ( 0  Idge /-
Proof. This is an easy consequence of the resolvent equation. (See e.g. Kato [6,
1-§5.3].)
We write .
L(y*) = (H];gy)*) 8 O(y )) = ELj(y*%
where

Loy") = < Po(y*) Ho‘(y*)>7 L) = (Pj(y*) 8) for j > 1

Hi*(y*) 0 0
and construct a right parametrix E(y*) = Z;io E;(y*) of L(y*) so that
- 1 I 0
(4.3) L#E=) > —(07L)(DyE)) = (0 1) :
1=0 i+j+2|al=l

where # denotes the pseudo-differential composition of symbols in (y, 7).
By Proposition 4.3 we can take
. Qo(y") HJ(@/*))
E = AN -
olv”) (Ho (v*) Mo(y*)
Then, for j > 1, E;’s are determined recurrently by
* 1 * « * « *

(4.4) E(y)=— ) 1)@ Li(y™) (Dy E5(y))-

i+j+2]al=l
Jj<i-1

We want to show E;io E; has a meaning as a formal sum of operator valued analytic

pseudo-differential operators. For this purpose we introduce a norm for E; as follows:

DEFINITION 4.4. For ¢ > 0 and p > 0, 55(,’;,) denotes the space of operator valued
symbols on &, of the form

o ( QW)  HY(y) O (@, B.) OV (@ HE)
E(y )_ (H—*(y*) M(y*) ) € (O(H)(&pﬂ‘(;*) O(“)(a}p;./\/li)> .
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The norm of Se(f;)) is defined by
1Bl g = max{[|Ql| 5, ||H+HH:,9(~,)7 " g 005 M| gy 3
We have

LEMMA 4.5. Suppose m > d+ 1. Then there ezist €9, po and C' such that for all
0< p < po,

. j/2
(4.5 B3l < (L)
0P po—p

forj=0,1,2,...

Proof. By Proposition 4.1, Qg is in O(O)(&po;ﬁglo) for some pg > 0, Ry > 0. Then
by Lemma 3.6 there is a gy for which we have Qo € O(V)(@,,; B, ). Hence, together with
Proposition 4.2 and (4.2), Ep is in 55(3,),)0 by decreasing ¢( if necessary. Here, for later
convenience, we suppose &g is so chosen that Lemma 3.7 holds. Also we can assume the
following estimates are satisfied for a constant Cy:

(4.6) 105 Pl g rer-ir < Co™ 2 L at(a) /2,
+ al+1
(4.7) 105 Ho Ny 1o < cleal,
(48) HQ0||£”%(0) < 007 HQOHB(O) < CO,
Rg.po €000
(4.9) |Moll 00 < Co

For j > 1, we shall prove (4.5) by induction. First we note that if E; € &S; f;/ 2)
then, by Cauchy’s inequality, there is an M, which depends only on d such that for all
0<p <p<po,

o Mola\
(4.10) 15 Blgcespn < ( ,
€0,

1Bl g

We write (4.4) as
!

Bi==Y Mi(Eiy),

k=1

1
Mi(Es) = 3 —Bo(95Li) (DyEy).
2al+i=k

where

Then we have

1
MHE) = > —Qud PDyQ;
2la|+i=k
1 * Ty fe} — Na —%
+ Z 7(H3_870;H6F DyQi+QOanHO Dij );

a!
2|lal=k

1
M) = Y —Qod; PDyH
2a|4+i=k

]‘ * [0 (e - o4
+ Y. —HTOYH DYH + Qody Hy DyM;),
2lal=k
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1 —* Qo «
Mﬁl(Ej) = Z EHO 87] PZDyQ]
2|a|+i=k
+ Z MoaaH+*DaQJ+H 09 Hy DS H;™),
2|a|= K& :
1
22 _ —*x Qo arr+
MP(E) = > aH0 0% P, Dy H;
2a|+i=k
+ Z M()@a o *DyH + Hy 02 Hy DS M;).
2|a|= K< :

We shall show that there exists an M such that for all 0 < p’ < p < po,

Mk k/2
(@11 MUAEsiyporrn < M (25 ) [y

_ p/
By Lemmas 3.7 and 3.11, M}}(E;) is in O(9/27k/2)(@,,; B.,) and we have
ML (B g5
€0.p

C\C N
< Z ; QHQOHL .0 19, P||Am< lal—i/2) || Dy Q;HB( 2
2|a|+i=k )
+ > ||H+||H+ 105 Hef o100 105 Qs a7
2|al=k ol
+1Qoll e 107 Ho 3y e 1Dy H; ”H’U*p( 1/2)
2 Alal+i/2 .12 ( Molal
< Y aoaa Y (p_p, 19 gt o
2|a|+i=k
la
ol [ Mo|a
+ 30 el (3209) il
2|a|=k
Ia\
ol [ Mo|a
+ Z COC| ( ol |) HHQO*,’,D“JIM
2|a|=k
CoMo(n+ 1)k \ " CoMynk \*/?
< (ClCQCg<OO(/)) +2C8 070, ||Ej||5<—j/2)
p—p p—p 207
Mk \*/?
SM(ﬂP') 1Bl

provided M > max{(C;Cs + 2)C2,CoMo(n + 1)}, where C; is a constant appearing in
(3.1) and Cj is a constant appearing in Lemma 3.7.

M;%(E;) can be estimated in the same way by using Lemma 3.12 instead of Lem-
ma 3.7.

To estimate M3!(E;) we suppose further that

(4.12) ||H0_* —x (0) < Cy.

3¢
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(We need only replace €g by £9/2.) Then by Lemma 3.13 we have, for A € AZ?)’(“),

Mom
€0

m/2
. .
15 Al < (F2) G g 1410 < CaCilAl g
Here we set C3 = (Mym/eo)™/?. We have
||Mi1(Ej)||H*,<—;/2—k/2>
£0,p
1 _
< > SilHo Oy Fillyy e ctai-ir2) ”Dm”sigi/,”

2|al+i=k

1 o T7+* o
+2|Zkod(”M0Msia‘f33|a’7Ho HHJ;,*,S;"’””Dij”Bio’;/F)
o=

HHo Ny 107 Ho llyyen 1Dy Hy g —ei)
€0,P
; Mpla]\ '™
al+i/2 /. 0
< Y o) /(“)1/2< — ,) 191l 5372
2| +i=k p=r '
la
ol [ Mo|a
+ Y e < o J) 1Qjll g3/
2|al=k p=F o
ol { Mola la B
+ cic| ( IH e mir)
QIaZ—k RV T
CoM, 1k /2 CoMonk\ "/
< (cy02 CoMo(n + 1)k 1902 ( Zoftonk I1E; | s/
0 , 0 / Jllg
p—p p—p f0'8
M\ 2
<M< ) 1Ejll g3
p—p 206

provided M > max{(C3 + 2)CZ, CoMoy(n + 1)}.

MZ2(Ej) can be estimated in the same way and we have proved (4.11).

Now assume that (4.5) has been proved up to order j = [ — 1. Using (4.11) with
p=7p + (k/1)(po — p’') we obtain

k/2
Mk
||Mk(El7k)||5£;‘lp//2) < M(p — p’) 1Bkl g tyzenrn

ME \*? 1o —k)\"M"?
u(z25) (%)
p—p po—p
C M| — .
<,00 - P'> ¢
Therefore, B} = — 22:1 M (E;_y) satisfies

ci l/2 ! k/2
||El||g£;lp//2) < C(po — p’) 2 (O)

which implies (4.5) at order j = [, if C is large enough (C' > max{4M,4M3}).

IN

IN

M
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In the same way we can construct a left parametrix of L and find that the above E
is a two-side parametrix of L.

4.2. General case. In this section we remove the assumption (4.1) and describe needed
modifications in the construction of a relative parametrix.

Let

P= > t%ag(z,Dy)D}
| +]B]<m

be an operator of order u = m/2 of the form (2.4) satisfying (2.5), where copg(z,&) =
>0 Cap,j(@,€) is in a—Séfg‘flﬁD/z’l/Q in a conic neighborhood of z* = (0,7,0,7). As in
Section 4.1 we assume m > d + 1 from the beginning.

After taking Taylor expansion of cap; in (¢, 7) we set

Py )= D D 907 capal0,y,0.m)t" T D)

it+|v|=5 lal+]B|<m

Interchanging the order of 7~ and D;’s we can write P; in the form
Pi(y") = Y Pi,(y")D 7~
[vI<i

with

P, (y*) € @(—j/2—l'y+l/2+\7—\/2)@%;Am)_
Then P; , satisfies

(4.13) HPj,"/||A:;w(fj/2fh+\/2+M_|/2> < CoCV (G — )

for all j and v = (y4,7-)-
Proceeding just as in Section 4.1, we arrive at the construction of a parametrix £ =

Do Ej of
~; (PR Hy\,~(PF O
L= Lj= <Ho+* 0 )*Z( 0 0
7=0 J=1
so that (4.3) is satisfied. Then Ej’s must be given by (4.4). It only remains to prove
the estimate like Lemma 4.5 so that we can realize Z;‘io E; as an analytic micro-local

operator. For this purpose we define 5;“ ) as follows: For p > 0 we write in this sec-
tion BYY = OW)(@,;B,), Hy ™ = 0@, HE) and Hy ™" = 0@, HE). We let
Bé“ )2l (resp. H;*’(” @A ) denote the space of operator valued symbols for which we
can write

Q) =Y QD0 (resp. Hiy') =Y

with Q. € B§”7|7+‘/2+‘V7‘/2) (resp. H, € H;*y(#*hﬂ/?HV*\/z)).

* Y+ 4v—
|7|§1H7(y )Dt 3 )

DEFINITION 4.6. For x < 0 and p > 0, 5,2“) denotes the space of operator valued
symbol of the form

B-(,2. B)e( B ey
H M H, W .42k My
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Then we can prove the following lemma for the estimate of EF;’s.

LEMMA 4.7. There exist pg > 0 and C > 0 such that for all 0 < p < po,
+
B, = ( Q; Hj > € £/,

H M;
C@j - |’7| )(J—"fl)/2 <1>|’Y|
Po — P ’

J
., C G—=lvD/2 1 [7]
(4.15) 1H; || (/2= v /2 1/2) <C< U= M ) <> )

and such that

(4.14) Qs g=irz=tvyir2412 12 < C
P

Po — p

C‘ g/2
po — >

j i/2
. j —J S )
@17) L )

where Qj =3, |<; QD t7~ and H; ™ =2 1< H; H;>D/* 7.
The proof of this lemma is straightforward but very long and tedious. So we only

describe here how the induction works for @);.
First we note that there is a constant My such that for all 0 < p’ < p < 1/2 we have

Mo(2|a] + |8)) ) (2| +181)/2
p—r
Mo(2|a] + |8]) ) (2le|+[81)/2
p—p
This follows from Lemma 3.8, 3.12 and Cauchy’s inequality. We also assume (4.7) through
(4.9) in Section 4.1 and (4.13) are satisfied for a constant Cy > 1.
We write

(4.16) 1 - < €

||(ath)ﬂ+(adt)ﬁ_DZQHBW—\MVHW_W) < ( 1@l g+
o’ P

HDertﬂ*D;Hi||Hi,<u—m+|/2+m_\/2> < ( ||H||H3,<u>~
ol

Ql Ql +QH + QIH

where

l
=3 Y L PDsQ s,

k:12|a\+i:k
Z Z 7H+aaH+*Dan_k,
k=12|a|= k

III Z Z QOaaHO DaHl *k
k=12|a|= K< !

For Q}, we have

A=Y % e S anote)( X pocoi)

=1 2jalti=k ' 18I<i lyI<i—k



OPERATORS WITH SYMPLECTIC CHARACTERISTICS 329

Interchanging the order of D}*#°~ and D3Q_y,D;*, we know that the coefficient of
D]t~ consists of at most {3v/7n + 1(2d + 1)}* terms of the form

l
1 + — "YJ’_'
4.18 — Qo0 P,; 5((ad Dy)P1 (ad )" DOQy_ ) ———,
) ;a! o0 Fuall o) ! lkv)(%r—ﬁz)!

where 2|l +i =k, |8] <i, B + By =By, By + By +B5 =P, v+ =74 — B3 + P, and
V- =71 —Bs.
Now assume (4.14) through (4.17) have been proved up to order j =1 — 1. Then the

B;Eililﬁ\ﬂ%l)m)—norm of each term in (4.18) can be estimated by, for a p € [p', po),

1
EHQO\\B(O)Haffpi,ﬁ||A<<fz‘—m+\+w,|—2\a\>/2)
. o’ o'
!
By B po T
X [[(ad D)™ (ad )™ DyQl—kﬁYllB/()(,fkaW-MHw_I+I5fr\*\/3fl)/2) ((7+ — 52)!)

+ _
e Mo2lal 4 185 4 [g- )\ Clal+s 1187 /2

XC<C(l_k_|7|)>(l_k_’Y)/2<1>’Yl ,7/+!
po—p p) (74 —6)

18t 18- |18~

<CQC,€/2(MO(]§_|5;_|52—|_|63—)>(’€ 185 1=185 =185 1)/2

> Gl ;
p—p

- Cs (ke 18T =185 1+187 ) /2

o Uzt 5 -l 415 |>>< b I8 1185 14185/
po—p

18\ 171\ 11
X _ J—
(p—ﬂ) <ﬂ>

_ _ k—|B5|+185 |—-1871)/2
chcg/z(Mo(k—lﬂJ+|ﬂ2|—|63 >>< SR

p—r
g +_ 18— - N ptl_1a—
XC(c(l_k_|7/|+|ﬁ;—|_52—|+ﬁ3—|))(l k |’Y H“ﬁ2| |32 |+|53 |)/2(1)’Y| ‘ﬁ2| |63|
Po—p I

Here we have used the inequality

| [+ — 185 | [v+1=185 |
S = ()R e
Y+ — P2 )P \P p=r P

Taking p to satisfy
=] U= =k+ 18| =165 | + 165 |
po—p' po—p
this can be estimated by

1=1v'1)/2 ! k=185 |+185 1-185 1)/2
C&C(C<l_7/)>( 1/ <1>’Y(COMO>( 185 1+185 1=1851)/ ploﬂrjl-*-lﬂ;l.
po—rp P ¢

)
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(Note that if |35 | + |35 | = k then we can take p = p’ from the beginning.) If py and C

have been chosen as
_ |CoMy < 1
=N S se/nr1(2d 1 1)

then the sum (4.18) brings to Q! the term QI_,Y,DZH'Y/— such that

QL < Lo Q=) 1y
Ly B,(Jifzquww_n/z) =3 00— p' o)

For }I, we have
= 1
II fe} * My _
f= >0 > > HIOHT Dy Qi DI

al
ly|<i—1 k=1 2|a|=k

Hence, for pi € (¢, po),
1Rzl st 41722
P

el

1 X o

< Z Z a”ngHHJr/,(o)H@gHJ |\H_/*,<_|a\> | D; Ql_k,7||8((/—z+k—m|+m\)/2)

k=1 2|a|=k ? ? ?

il k/2 (I—k—|v])/2 [

k( Mok Cl—k-— 1

S gl ()G bDY ' 1)

1 Pk — P PO — Pk Pk

1— —k—
= o — ¢/ Po — Pi oe)

If we choose py to satisfy
I—k—hl _1-]l
PO — Pk po—p'
then the sum can be estimated by

cgc<0(l—|7)>(l”/2<1)””§' (WH)C()M())WQ

po—p' o' ¢

< IC(O(I - |’y|)>(l—|'y|)/2< 1 )’Yl
3 po—p' Jed
provided C > 36(n + 1)C§ M.

The sum in Q}H can be estimated in the same way as Q}I and we obtain (4.14) at
order j = 1.

Now we suppose that (4.14)—(4.17) have been established for all j. Then we can realize
E =37, E;j as follows: For a p < py we set

V, ={(t,y,7,n) € T*RN);|t| < p, ly =9 < p, |7/ Inll < p, |n/In| = 7| < p},
W, =u""(V,) ={(y,n) € T*R"); ly — 4| < p, In/In| =l < p}.
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By Lemma 3.9, Qi € B,([l/z*‘v*l/%h’l/z) has the symbol b; (¢, 7,y,n) of order
(=0 —|y4| + |7=1)/2 of type (1/2,1/2). The estimate (4.14) implies that
Z bl,’y(tvy77_7 77)7-"/+s“/—
I=ly|=k

converges for (t,s,y,7,1m) € R? x V, and that if we set

Q(ta $,Y,T, 77) = Z Xk+1 (77/)‘) ( Z bl,’y (ta Y, T, 77)7-7+ 877)
k=0 I—|v|=k

then, for a sufficiently large A, we have g € a—S?/2 1/2 (R? x V,), where x is the function
introduced in Section 2.1. The operator

Q = 0p(q)g. : Chin (z%) — CLn (%)
is well defined through the kernel

Qty,s,2) = 2m) N [ =000 (¢t .y, 7. m)g(7,m)drdn,
RN
where ¢ is a suitable cut-off function of Métivier (see Section 2.1).
If H; s satisfy (4.15) then we have > 72, H;(y*) € Sgillg/Q(@p;Hp_*). In fact, by
Lemma 3.12, (4.15) implies H,J(y*)D;*t7~ is in O(ﬂ/?)(fup;?{;*) and, taking p, =

p+(7/5)(po — p), we have

| H:™| (—irn < Z <M0|7 >|’Y/QC<C(]' _ |,y|)>(j|7|)/2<1>|7
g My (=372 =

1< Py —P Po — Py Py
<C< O] )j/QZ <MO)|’Y|/2
~ \po—p -\ Cp?
[vI<j
o\ j/2
§0p< Col ) .
Po—p

Let (hjqs---, hj_,k,) be a symbol of HJ_* Then h;, satisfies

08 h(t, y, )| < Cpe P 11205 + |a]) /) I F1eD/2

for (y,n) € W, with another constant C,. This implies, for a sufficiently large A,

hy (tym) = X (/AR y,m)
3=0
is in S?/2)1/2(Rd x W,) and bounded by Cpe_ptzmw. The operator H(_l)* =op(h; ") is
now defined through the kernel
Hyr (yit,2) = (2m) " [ @@= h (8,9, m)g(n)dn
Rn
and we have

WFA(H) € {(y,0,9,1,0,—n) € T*(Ry x Ry, ); 7 € supp(9)}-
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Hence, H™* =, H(;)* is analytic micro-local with respect to ¢! as desired.
In the same way we can realize H' to be analytic micro-local with respect to ¢ with
symbol in (a-S?/2 1/Q(Rd x W,))*+. Because @, is a complex neighborhood of W, we

: — 0,1/2 . 0,1/2
write H™* € op (a-Sphg/ (Wp;H,*)) and HY € op (a—Sphg/ (W, HY)) for the above
realizations of E;io H ;* and Z;’;O H;r Clearly, we can realize M as a matrix of usual
pseudo-differential operators on W,,.

Therefore we obtain
THEOREM 4.17. Let
P= > t%ag(z,Ds)D}
la|+]Bl<m
be an operator of order m/2 of the form (2.4) satisfying (2.5). If m > d + 1 then there are
p > 0 and operators H, € op(a—SO’l/z(I/Vp;’H;))7 Hf* € op(a—SO’l/z(W,J;H;,"*)), Q €

phg phg
op(a-S9 5 1 ;o (RIXV,)), HY € opla-Spinl (W 1)), H—* € op(a-Spyl * (Wi H, ™)) and
M e op(a—Sgillg/Q(Wp;Mi)) such that
( P H0>( Q H+>_(Idch(;*) 0 )
* — % - R )
HS— O H M 0 Id(Cf (;*))k+
R”
( Q H+>( P Hg) (Idcf e 0 )
= rN .
H* M Hf* 0 0 Id, . ouyko
(chn @)

Now Theorem 2.1 is an immediate consequence of this theorem.

5. Examples. In this section we shall present a few simple examples and illustrate
how our results are applied to them.

Recall that the parametrix has been constructed through (4.4). Thus we have the
following formulas for M;:

Mo(y") = — Hy " PoHy
Mi(y*) = — Hy "PiH
My(y*) = — Hy*PyHS + Hy *PiQo P HY
+i(Hy (VyPo, VyHy') + Hy "(VyHy , VyMo) + Mo(Vy Hy ",V Hy )

M;(y*) = — Hy *P;H{ + F(Po,...,Pj_1,Qo, Hy , Hy*, Mp).

Our results are well applicable to operators with double characteristics because in
that case the principal operator ox(P) is transformed into a sum of harmonic oscillators,
for which we can get a complete eigenexpansion by means of Hermite functions. So we
set for k=0,1,2,...,

Ui(t) = (2FkIVm) V2 (t — d/dt)e /2
so that
(—d?/dt® + )yu(t) = (2k + D)yu(t), (Y, v0)r2(r) = Ont-
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ExAMPLE 1. For a non-negative integer [, consider the operator
P =D} +t*°D} — (2l +1)D
at * = (0;dy) € T*(R?). Then

* 1 *
Qy") = %:l mhk(t’n)hk(taﬁ)a

*) = HE(y*) = h(t,n) and M(y*) = 0, where hy(t,n) = |n|*/*4y(t|n|'/?) for

H:u(y) = (2m)7" [ eV h(t,n)i(n)dy

gives the isomorphisms

CLT") = Ker(P: Cl.(#) — Cha (&),

CL@") = Coker(P: Cl, (#*) — CL.(8)).
In particular, f(t,y) € D'(R?) is in the range of P in a neighborhood of the origin if and
only if H* f(y) is micro-analytic at (0,dy) € T*(R).

Remark. If { = 0 then P = (D, + it,)(D; — itD,) and the range of P is equal to
the range of Dy +itD,. In this case the characterization of the range of P obtained here
is equivalent to that of D; + itD, given by Sato-Kawai-Kashiwara [10]. To see this we
note that H*H is the identity on C{t(ﬂ*) Thus H*f is micro-analytic at §" if and only
if HH* f is micro-analytic at £*. Now HH* has the kernel

00 —3/2
(2r) ! fez’(y—z)_(t2+s2)ln|/2|n|1/2dn — const. ( a4+ 2(t2 +s )—l—iO) 7
0
which is precisely the one appearing in Sato-Kawai-Kashiwara [10, Chap. III, Lemma
2.3.5].

ExAMPLE 2. Consider
P=D}+t°D. - (1+t*)D,

at #* = (0;dy) € T*(R?). Then Qo(y*) = Xy 40 sy hu(t: mhi (t,n), Hy (y*) = Hy (y*) =
ho(t,n) and we have

Mo(y*) = ... = M_1(y") =0,
My(y*) = (t )t nho(t, n),
My (y") = ... = Mo (y") =

< ( 2
Moy (y*) = Zz;&o BT |hl t,m)t Uho(tﬂm ;
where h(t,n) are the same as in Example 1.
Hence, My, # 0 if k is even, M} = 0 but My, # 0 if k is odd. In both cases we know
Z;io M; is elliptic at §"; therefore P is isomorphic on Ci’;z (z*).
EXAMPLE 3. Consider
P =D} +t*(D; + D)~ (1—4;)Dy, —c
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at #* = (0;dys) € T*(R3) for a ¢ € C. Then Qo(y*) = > 140 ﬁhl(t,n)hj‘(t,n),
Hy (y*) = Hy (y*) = ho(t,n), where hy(t,n) = [n|'*¢i(tln]'/?), | = 1,2,..., and we
have

Mo(y*) = —[(v/ni + 13 — m2) + yinel,

We note that /n? +n3 — 2 = |n2|(n?/(2n2) + O(|n1/n2|*)) near §°. Hence if ¢ #
%(2]@ + 1) then M(y, D,) is isomorphic on C{L’z (§") from the results of Métivier [8].
Otherwise, we can apply Theorem 4.17 once more to M (y, Dy) and find that the reduced
operator M(D,,) is elliptic at (0;dy2) € T*(R). Therefore, for all ¢ € C, we conclude

that P is an isomorphism on le12 ().

ExaMPLE 4. Consider
d
P = Z(Di + t?Di — Dy) + Zaij(y)titij (: PO + Pg)
i=1
at 2* = (0;dy) € T*(R). Weset A= D, 'P(D,'Py+ 1)[%/2] and apply Theorem 4.17
to A. Then H (y*) = Hy (y*) = |n|¥*T1% 4o (t|n|*/?) and we have

Here we have used the fact that PoHy (y*) = 0. Hence if Z?Zl a;;(0) # 0 then P is

O,%

isomorphic on C{{dﬂ (x*).
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