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1. Introduction. Let us consider a classical analytic pseudo-differential operator P
of order µ on an open set Ω in RN with the symbol

p(x, ξ) ∼ pµ(x, ξ) + pµ−1(x, ξ) + . . . ,

where pµ−j(x, ξ) is positively homogeneous of degree µ− j with respect to ξ. We assume
that the characteristic set Σ = p−1

µ (0) of P is a symplectic real analytic submanifold
of T ∗(Ω)\0 of codimension 2d and that pµ vanishes exactly at the order m on Σ. As
in Grus̆in [4], Sjöstrand [11] and Métivier [8], we also assume that pµ−j vanishes at the
order m− 2j on Σ for j ≤ m/2.

C∞ and analytic hypoellipticity of this class of operators has been extensively studied
by many mathematicians (see e.g., [1], [2], [4], [8], [9], [11], [13] and others). Among them
Métivier [8] has proved analytic hypoellipticity of P by constructing a left parametrix
when P is subelliptic with loss of m/2 derivatives.

In this note, we study hypoellipticity and local solvability of P at a point where
the above subellipticity condition is not satisfied. We shall then construct a system of
analytic pseudo-differential operators on RN−d to which we can reduce the study of
analytic hypoellipticity and local solvability of P .

Typical examples of the operators are

(1.1) P = D2
1 + x2

1D
2
2 − (1 + xk1)D2, in R2

with k ∈ N,

(1.2) P = D2
1 + x2

1(D2
2 +D2

3)− (1− x2
2)D3 − c, in R3
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with c ∈ C. We can show that the operators (1.1) and (1.2) are analytic hypoelliptic and
locally solvable for all k and all c respectively.

2. Notation and statement of the main result

2.1. Notation. Let Ω be an open set in RN . We denote by x∗ = (x, ξ) a point in
T ∗(Ω)\0. For a distribution u ∈ D′(Ω), WFA(u) is the analytic wave front set of u. We
introduce the presheaf CfΩ of micro-distributions on Ω as follows: With each open set
ω ⊂ T ∗(Ω)\0 we associate the space

CfΩ(ω) = D′(Ω)/{u ∈ D′(Ω);WFA(u) ∩ ω = ∅}.
We shall also use the notation:

AΩ(x◦∗) = {u ∈ D′(Ω);x◦∗ 6∈WFA(u)},
CfΩ(x◦∗) = lim

→
ω3x◦∗

CfΩ(ω) = D′(Ω)/AΩ(x◦∗)

for x◦∗ ∈ T ∗(Ω)\0, for the space of distributions on Ω which are micro-analytic at x◦∗ and
for the space of germs at x◦∗ of micro-distributions on Ω respectively.

Let Ω × Γ be a conic neighborhood of a point (x◦ , θ
◦
) in RN × (Rn\0). Let µ ∈ R

and h be the reciprocal of a positive integer. A formal sum
∑∞
j=0 aj(x, θ) will be called

a polyhomogeneous analytic symbol on Ω × Γ of degree µ and step h if aj(x, θ) is a
holomorphic function on Ω̃× Γ̃, positively homogeneous of degree µ− jh with respect to
θ and satisfying the estimate

|aj(x, θ)| ≤ Cj+1(j!)h|θ|m−jh

for all (x, θ) ∈ Ω̃ × Γ̃ with C independent of j, where Ω̃ is a complex neighborhood of
Ω in CN and Γ̃ is a conic complex neighborhood of Γ in Cn\0. Then we shall write∑∞
j=0 aj(x, θ) ∈ a-Sµ,hphg(Ω× Γ).
Let us also recall the definition of analytic symbols of type (ρ, δ) introduced by

Métivier [8]: For ρ ∈ (0, 1], δ ∈ [0, 1) and a conic set Ω × Γ ⊂ RN × (Rn\0), the
space a-Sρ,δ(Ω×Γ) of analytic symbols on Ω×Γ of degree µ and type (ρ, δ) is the set of
C∞ functions a(x, θ) on Ω× Γ for which there are C > 0 and R > 0 such that

|∂αx ∂
β
θ a(x, θ)| ≤ C |α|+|β|+1(1 + |θ|)µ(|α|+ |α|1−δ|θ|δ)|α|(|β|/|θ|)ρ|β|

for all multi-indices α, β and all (x, θ) ∈ Ω×Γ such that R|β| ≤ |θ|. Moreover, a symbol
a ∈ a-Sµρ,δ(Ω × Γ) is said to be equivalent to 0 (a ∼ 0) in Ω0 × Γ0 ⊂ Ω × Γ if there is a
constant ε > 0 such that

|∂αx a(x, θ)| ≤ (1/ε)|α|+1e−ε|θ|

for all multi-indices α and all (x, θ) ∈ Ω0 × Γ0.
Each polyhomogeneous symbol has a realization in a-Sµ1,0(Ω × Γ) as follows: Let

{χj(θ)}∞j=0 be a sequence in C∞(Rn) such that χj(θ) = 0 for |θ| ≤ j, χj(θ) = 1 for
|θ| ≥ 2j and there is a constant C > 0 for which we have |∂αθ χj(θ)| ≤ C |α| for all j, α
such that |α| ≤ j. If

∑∞
j=0 aj ∈ a-Sµ,hphg(Ω× Γ) then, for λ > 0 large enough,

(2.1) a(x, θ) =
∞∑
j=0

χj+1(θ/λ)aj(x, θ)
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is in a-Sµ1,0(Ω×Γ). (See e.g. Treves [14, Chap. V] or Métivier [M, Section III].) Any symbol
a ∈ a-Sµρ,δ(Ω × Γ) which is equivalent to the symbol (2.1) will be called a realization of∑∞
j=0 aj and we shall then write a ∼

∑∞
j=0 aj . Also, we let σµ(a)(x, θ) = a0(x, θ) denote

the principal symbol of a.
If x◦∗ = (x◦ , ξ

◦
) ∈ Ω × Γ ⊂ T ∗(RN )\0 and a(x, ξ) ∈ a-Sµρ,δ(Ω × Γ), then we define the

operator

op(a)x◦∗ : CfΩ(x◦∗)→ CfΩ(x◦∗)

via the distribution kernel

(2.2) Ax◦∗(x, y) = φ(x)
(

(2π)−N
∫

RN

ei(x−y)ξa(x, ξ)g(ξ)dξ
)
φ(y),

where φ ∈ C∞0 (Ω), φ(x) = 1 in a neighborhood of x◦ and g(ξ) ∈ C∞(RN ) is a cut-off
function introduced in Lemma 3.1 of Métivier [8] such that supp(g) ⊂ Γ, g(ξ) = 1 in a
conic neighborhood of ξ

◦
for |ξ| ≥ 2 and there are C > 0, ρ′ ∈ (0, 1) for which we have

(2.3) |∂αξ g(ξ)| ≤ C |α|+1(|α|/|ξ|)ρ
′|α|

for all α, ξ such that |α| ≤ |ξ|.
The operator op(a)x◦∗ is well defined; that is, independent of the choice of the cut-off

functions φ and g in (2.2). Moreover, when a(x, ξ) is a realization of a formal sym-
bol

∑∞
j=0 aj(x, ξ), op(a)x◦∗ is also independent of the choice of the realization. Then

a(x,Dx) = op(a) which stands for
⊔
x
◦∗∈Ω×Γ op(a)x◦∗ is called an analytic pseudo-differen-

tial operator on Ω× Γ with the symbol a(x, ξ) (or
∑∞
j=0 aj(x, ξ)).

2.2. Statement of the result. Let Σ be a symplectic submanifold of codimension 2d in
a conic set ω ⊂ T ∗(RN )\0. We consider a classical analytic pseudo-differential operator
P of order µ whose symbol p(x, ξ) ∼

∑∞
j=0 pµ−j(x, ξ) defined on ω is such that pµ−j is

homogeneous of degree µ− j, and vanishes to order m− 2j on Σ for j ≤ m/2.
After transforming P by a suitable elliptic Fourier integral operator, we may suppose

Σ is given by the equation

x1 = . . . = xd = 0; ξ1 = . . . = ξd = 0.

Henceforth, we write ti = xi, τi = ξi for i = 1, . . . , d and yi = xd+i, ηi = ξd+i for
i = 1, . . . , n(= N − d) and set

ι : T ∗(Rn)\0 3 (y, η) 7→ (0, y, 0, η) ∈ T ∗(RN )\0.

In this coordinate, Σ can be identified with ι(T ∗(Rn)\0) in ω and P has the form

(2.4) P =
∑

|α|+|β|≤m

tαcαβ(x,Dx)Dβ
t , cαβ ∈ a-Sµ−m/2+|α|/2−|β|/2,1/2

phg (ω).

For x◦∗ = ι(y◦∗) = (0, y◦, 0, η◦) ∈ Σ ∩ ω, we set

σ0
Σ

(P )x◦∗(t, τ) =
∑

|α|+|β|=m

σµ−m/2+|α|/2−|β|/2(cαβ)(x◦∗)tατβ ,

σ̂Σ(P )x◦∗(t,Dt) =
∑

|α|+|β|≤m

σµ−m/2+|α|/2−|β|/2(cαβ)(x◦∗)tαDβ
t
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and assume

(2.5) ∃C > 0 such that |σ0
Σ

(P )x◦∗(t, τ)| ≥ C(|t|+ |τ |)m.
With this assumption σ̂Σ(P )x◦∗ becomes a Fredholm operator from S ′ to S ′, and if
Ker(σ̂Σ(P )x◦∗) ∩ S = {0} (resp. Coker(σ̂Σ(P )x◦∗) ∩ S = {0}) then P (resp. P ∗) is subel-
liptic with loss of m/2 derivatives. Our interest is now focusing at a point where this
subellipticity condition of P or P ∗ is not satisfied. So we set

k+ = dim(Ker(σ̂Σ(P )x◦∗) ∩ S), k− = dim(Coker(σ̂Σ(P )x◦∗) ∩ S).

The main theorem of this note is

Theorem 2.1. Let P be an operator of the form (2.4) satisfying (2.5). Then there
exist a k− × k+-matrix of pseudo-differential operators

M(y,Dy) : (CfRn(y◦∗))k+ → (CfRn(y◦∗))k−

and two operators

H+ : (CfRn(y◦∗))k+ → Cf
RN (x◦∗) and H−∗ : Cf

RN (x◦∗)→ (CfRn(y◦∗))k−

for which we have the isomorphisms:

H+: Ker(M : (CfRn(y◦∗))k+ → (CfRn(y◦∗))k−)
∼→ Ker(P : Cf

RN (x◦∗)→ Cf
RN (x◦∗))

H−∗: Coker(P : Cf
RN (x◦∗)→ Cf

RN (x◦∗))
∼→ Coker(M : (CfRn(y◦∗))k+ → (CfRn(y◦∗))k−).

R e m a r k. Grigis-Rothschild [3] have treated the case cαβ = cαβ(Dy) and obtained
the same result as above. See also Kashiwara-Kawai-Oshima [7] and Stein [12].

3. Operator valued symbols

3.1. Symbol spaces. Let y◦∗ = (y◦, η◦) ∈ Rn × (Rn\0) (|η◦ | = 1). For ρ > 0, we consider
a complex neighborhood of y◦∗ of the form

ωρ = {(y, η) ∈ Cn × (Cn\0); |y − y◦| < ρ, |η − η◦ | < ρ}
and let ω̃ρ denote the cone generated by ωρ; that is,

ω̃ρ = {(y, η) ∈ Cn × (Cn\0); |y − y◦| < ρ, |η/|η| − η◦ | < ρ}.
Let B = B(λ) be some Banach space whose norm may depend on λ.

Definition 3.1. Let µ ∈ R. The space O(µ)(ω̃ρ;B) of B-valued homogeneous symbols
(also denoted by B(µ)

ρ for short) and the space Sµ,hphg(ω̃ρ;B) of B-valued polyhomogeneous
symbols are defined by:

(1) p(y, η) ∈ O(µ)(ω̃ρ;B) if and only if p(y, η) is a holomorphic function defined on ω̃ρ
with values in B(|η|) which satisfies

‖p(y, λη)‖B(λ) = λµ‖p(y, η)‖B(1) for (y, η) ∈ ωρ
and

‖p‖
B

(µ)
ρ

def= sup
(y,η)∈ωρ

‖p(y, η)‖B(1) < +∞.
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(2)
∑∞
j=0 pj(y, η) ∈ Sµ,hphg(ω̃ρ;B) if and only if pj(y, η) ∈ O(µ−jh)(ω̃ρ;B) and there exists

a C > 0 such that

‖pj‖B(µ−jh)
ρ

≤ Cj+1(j!)h.

3.2. Banach spaces and estimates. Let us now introduce several Banach spaces fol-
lowing Métivier [8] and quote some of their properties from [8].

Definition 3.2. Am(λ) denotes the space of differential operators on Rd of the form

A(t,Dt) =
∑

|α|+|β|≤m

Cαβt
αDt

β , Cαβ ∈ C,

with the norm ‖A‖Am(λ) =
∑
α,β |Cαβ |λ(|β|−|α|)/2.

Definition 3.3. M± denotes the space of k−×k+-matrices M = (mij)∈L(Ck+ ,Ck−)
with the norm ‖M‖M±(λ) = (

∑
|mij |2)1/2 independent of λ.

Let t denote a point in Rd. We consider the operators

Tj = Tj(λ) = λ−
1
2
∂

∂tj
, T−j = T−j(λ) = iλ1/2tj , j = 1, . . . , d.

For a sequence I = (j1, . . . , jk) ∈ {±1, . . . ,±d}k we write |I| = k and TI = Tj1 , . . . , Tjk .
If L is an operator acting from S(Rd) to S ′(Rd) we write

(adTj)(L) = [Tj , L] = TjL− LTj
and because the adTj ’s commute, we write for a multi-index α = (αj)j=±1,...,±d ∈ N2d,

(adT )α =
∏
j

(adTj)αj .

Also we write ‖L‖0 for the operator-norm of L from L2(Rd) to L2(Rd).

Definition 3.4. Let m be a non-negative integer. For a real R > 0, LmR (λ) denotes
the space of the operators for which there is a constant C such that for all multi-indices
α ∈ N2d and for all I, J with |I|+ |J | ≤ |α|+m,

‖TI(adTj)α(L)TJ‖0 ≤ C|α|!R|α|.

Clearly LmR (λ) becomes a Banach space and there exists C > 0 such that

(3.1) ‖AL‖L0
R

(λ) ≤ C‖A‖Am(λ)‖L‖Lm
R

(λ)

for all A ∈ Am(λ) and L ∈ LmR (λ).
For an operator K from S(Rd) to S ′(Rd) we write K(t, s) for its distribution kernel.

We also introduce the operator K̃ induced from K via the Fourier transform; that is,

K̃û = K̂u.

Definition 3.5. For ε > 0, Bε(λ) is the space of Hilbert-Schmidt operators K such
that for all j = 1, . . . , d,

‖eελφj(t,s)K(t, s)‖L2(Rd×Rd) < +∞,(3.2)

‖eεφj(τ,σ)/λK̃(τ, σ)‖L2(Rd×Rd) < +∞,(3.3)
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where φj(t, s) = |tj |tj | − sj |sj ||. The norm of Bε(λ) is the maximum for j = 1, . . . , d of
the norms in (3.2) and (3.3).

The space Bε(λ) plays an important role in the construction of a relative parametrix.
The crucial points are

Lemma 3.6 (Métivier [8], Proposition 2.8). If m > d then for all R > 0 there exist
ε > 0 and C such that

‖K‖Bε(λ) ≤ C‖K‖Lm
R

(λ)

for all K ∈ LmR (λ).

Lemma 3.7 (loc. cit., Proposition 2.9). For all R > 0, there exist ε0 > 0 and C such
that for all ε ∈ (0, ε0],

‖LK‖Bε(λ) ≤ C‖L‖L0
R

(λ)‖K‖Bε(λ)

for all L ∈ L0
R(λ) and all K ∈ Bε(λ).

Lemma 3.8 (loc. cit., Proposition 2.10). There exists a constant M0 such that for all
0 < ε′ < ε ≤ 1 and all j = ±1, . . . ,±d,

‖(adTj)(K)‖Bε′ (λ) ≤
(

M0

ε− ε′

)1/2

‖K‖Bε(λ)

for all K ∈ Bε(λ).

For the operator K of kernel K(t, s), we define its symbol k = σ(K) by

k(t, τ) =
∫

Rd

K(t, t− s)e−isτds.

Then

Ku(t) = k(t,Dt)u(t) = (2π)−d
∫

Rd

eitτk(t, τ)û(τ) dτ.

Lemma 3.9. For all ε > 0, there exists a C > 0 such that for all (α, β) ∈ Rd ×Rd,

sup
(t,τ)∈R2d

|∂αt ∂βτ σ(K)(t, τ)| ≤ Cj+1(|α|+ |β|)(|α|+|β|)/2λ(|α|−|β|)/2‖K‖Bε(λ)

for all K ∈ Bε(λ).

We also introduce the space of Hermite operators. First we define its symbol space.

Definition 3.10. For ε > 0, Hε(λ) is the space of functions h(t) ∈ S(Rd) such that
for all j = 1, . . . , d,

‖eλεt
2
jh(t)‖L2(Rd) < +∞,(3.4)

‖eετ
2
j /λĥ(τ)‖L2(Rd) < +∞.(3.5)

The norm of Hε(λ) is the maximum for j = 1, . . . , d of the norms in (3.4) and (3.5).

For H = (h1, . . . , hk) ∈ (Hε(λ))k, define the operators H and H∗ by

H : Ck 3 (zl)kl=1 7→
∑k

l=1
zlhl(t) ∈ S(Rd),(3.6)
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H∗ : S ′(Rd) 3 u(t) 7→
( ∫

Rd

hl(t)u(t)dt
)k
l=1
∈ Ck,(3.7)

where hl(t) is the complex conjugate of hl(t). We denote by Hkε (λ) and Hk∗ε (λ) the spaces
of operators of the form (3.6) and (3.7) respectively. The norm in them is defined by

‖H‖Hkε (λ) = ‖H∗‖Hk∗ε (λ) =
(∑k

l=1‖hl‖2Hε(λ)

)1/2
and we write σ(H) = σ(H∗) = (h1, . . . , hk).

By definition, we have

Lemma 3.11. Let k, k′∈N and ε > 0. If K ∈ Bε(λ), H1, H2 ∈ Hkε (λ) and H3∈Hk
′

ε (λ)
then KH1 ∈ Bε(λ), H2H

∗
1 ∈ Bε(λ) and H∗1H3 ∈ L(Ck′ ,Ck). Moreover ,

‖KH1‖Hkε (λ) ≤ ‖K‖Bε(λ)‖H1‖Hkε (λ),

‖H2H
∗
1‖Bε(λ) ≤ ‖H2‖Hkε (λ)‖H1‖Hkε (λ),

‖H∗1H3‖L(Ck′ ,Ck) ≤ ‖H1‖Hkε (λ)‖H3‖Hk′ε (λ).

Also, the following lemma has been proved in Métivier [8, Lemma A.3].

Lemma 3.12. There exists a constant M0 such that for all 0 < ε′ < ε ≤ 1 and all
j = ±1, . . . ,±d,

‖Tj(h)‖Hε′ (λ) ≤
(

M0

ε− ε′

)1/2

‖h‖Hε(λ)

for all h ∈ Hε(λ).

Finally, we set H±ε (λ) = Hk±ε (λ) and H±∗ε (λ) = Hk±∗ε (λ).

4. Construction of parametrix

4.1. The case cαβ = cαβ(y,Dy). Let P =
∑
|α|+|β|≤m t

αcαβ(x,Dx)Dβ
t be an operator

of the form (2.4) satisfying (2.5). Multiplying P by an elliptic factor we may assume
µ = m/2. Also we suppose m ≥ d+ 1 in the construction of a parametrix. Otherwise
we replace P by P (P ∗P + 1)k for some integer k. Because (P ∗P + 1)k is isomorphic on
Cf
RN (x◦∗), this does not affect the conclusion of Theorem 2.1. Moreover, we assume in

this section

(4.1) cαβ(x, ξ) = cαβ(y, η) independent of t, τ.

Then cαβ(y∗) =
∑∞
j=0 cαβ,j(y

∗) ∈ S(|α|−|β|)/2,1/2
phg (ω̃ρ), where ω̃ρ is a conic complex neigh-

borhood of y◦∗ = (y◦, η◦) = ι−1(x◦∗) generated by

ωρ = {(y, η) ∈ Cn × (Cn\0); |y − y◦| < ρ, |η − η◦ | < ρ}

and cαβ,j is positively homogeneous of degree (|α| − |β| − j)/2.
Now, we set

Pj(y∗) =
∑

|α|+|β|≤m

cαβ,j(y∗)tαDt
β .



322 T. SAKURAI

Then Pj ∈ O(−j/2)(ω̃ρ;Am) and

P (y∗)
(

def=
∑

|α|+|β|≤m

cαβ(y∗)tαDt
β
)

=
∞∑
j=0

Pj(y∗) ∈ S0,1/2
phg (ω̃ρ;Am).

For y∗ ∈ ω̃ρ, we let P ∗0 (y∗) = (P0(y∗))∗ and write P ∗0 P0(y∗) = P ∗0 (y∗)P0(y∗) and
P0P

∗
0 (y∗) = P0(y∗)P ∗0 (y∗). By the assumption (2.4), P ∗0 P0(y◦∗) and P0P

∗
0 (y◦∗) are Fred-

holm operators from S ′(Rd) to S ′(Rd) together with P0(y◦∗). (Note that P0(y◦∗) =
σ̂Σ(P )y◦∗ .)

Let γ ⊂ C be a positively oriented closed curve enclosing only the 0-eigenvalue of
P ∗0 P0(y◦∗) and P0P

∗
0 (y◦∗). If ρ > 0 is sufficiently small then for all y∗ ∈ ω̃ρ and all ζ ∈ γ,

P ∗0 P0(y∗)− ζ and P0P
∗
0 (y∗)− ζ are invertible. So we set for y∗ ∈ ω̃ρ,

Q0(y∗) =
1

2πi

( ∫
γ

ζ−1(P ∗0 P0(y∗)− ζ)−1dζ
)
P ∗0 (y∗),

Π+
0 (y∗) =

−1
2πi

∫
γ

(P ∗0 P0(y∗)− ζ)−1dζ,

Π−0 (y∗) =
−1
2πi

∫
γ

(P0P
∗
0 (y∗)− ζ)−1dζ,

E±0 (y∗) =Π±0 (S ′(Rd)).

Note that Π+
0 (y◦∗) (resp. Π−0 (y◦∗)) are the projections onto Ker(P0(y◦∗)) (resp. Ker(P ∗0 (y◦∗))

' Coker(P0(y◦∗))). Also, from the choice of ρ, dim(E±0 (y∗)) is constant for y∗ ∈ ω̃ρ, hence
equal to k±.

Then we have

Proposition 4.1 (Métivier [8], Proposition 2.3). There exist ρ0 > 0 and R0 > 0 such
that

Q0(y∗) ∈ O(0)(ω̃ρ0 ;LmR0
).

Proposition 4.2. We can choose bases {h+
0,l(t; y

∗)}k+
l=1 (resp. {h−0,l(t; y∗)}

k−
l=1) of

E+
0 (y∗) (resp. E−0 (y∗)) in L2(Rd) which are orthonormal if y∗ is real and such that

h±0,l(t; y
∗) ∈ O(0)(ω̃ρ0 ;Hε0), l = 1, . . . , k±,

for some ρ0 > 0 and ε0 > 0.

P r o o f. It follows from Theorem 3.9 in Chap. VII of Kato [6] that we can choose
bases {h+

0,l(t; y
∗)}k+

l=1 (resp. {h−0,l(t; y∗)}
k−
l=1) of E+

0 (y∗) (resp. E−0 (y∗)), depending holo-
morphically on y∗ ∈ ω̃ρ0 , orthonormal for real y∗. Then, for each fixed y∗, h±0,l(t; y

∗) are
in Hε0 for some ε0 > 0. (See e.g. Melin [9, Lemma A.1].)

Let {h±0,l(t; y∗)}
k−
l=1 be chosen as above and define the operators H±0 ∈ H±ε0 and H±∗0 ∈

H±∗ε0 by

H±0 : Ck 3 (zl)
k±
l=1 7→

∑k±

l=1
zlh
±
0,l(t; y

∗) ∈ S(Rd),

H±∗0 : S ′(Rd) 3 u(t) 7→
( ∫

Rd

h±0,l(t, y
∗)u(t)dt

)k±
l=1
∈ Ck± .
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Then we have

Π±0 (y∗) = H±0 (y∗)H±∗0 (y∗).

Let us also introduce a matrix

M0(y∗) = −H−∗0 (y∗)P0(y∗)H+
0 (y∗).

Then, by Lemma 3.11 and Lemma 3.12,

(4.2) M0(y∗) ∈ O(0)(ω̃ρ0 ;M±)

and we have

Proposition 4.3. There is a ρ0 > 0 such that for all y∗ ∈ ω̃ρ0 ,(
P0(y∗) H−0 (y∗)

H+∗
0 (y∗) 0

) (
Q0(y∗) H+

0 (y∗)

H−∗0 (y∗) M0(y∗)

)
=
(

IdS′(Rd) 0
0 IdCk+

)
,(

Q0(y∗) H+
0 (y∗)

H−∗0 (y∗) M0(y∗)

)(
P0(y∗) H−0 (y∗)

H+∗
0 (y∗) 0

)
=
(

IdS′(Rd) 0
0 IdCk−

)
.

P r o o f. This is an easy consequence of the resolvent equation. (See e.g. Kato [6,
I-§5.3].)

We write

L(y∗) =
(

P (y∗) H−0 (y∗)

H+∗
0 (y∗) 0

)
=
∞∑
j=0

Lj(y∗),

where

L0(y∗) =
(

P0(y∗) H−0 (y∗)

H+∗
0 (y∗) 0

)
, Lj(y∗) =

(
Pj(y∗) 0
0 0

)
for j ≥ 1

and construct a right parametrix E(y∗) =
∑∞
j=0Ej(y

∗) of L(y∗) so that

(4.3) L#E =
∞∑
l=0

∑
i+j+2|α|=l

1
α!

(∂αη Li)(D
α
yEj) =

(
I 0
0 I

)
,

where # denotes the pseudo-differential composition of symbols in (y, η).
By Proposition 4.3 we can take

E0(y∗) =
(
Q0(y∗) H+

0 (y∗)
H−∗0 (y∗) M0(y∗)

)
.

Then, for j ≥ 1, El’s are determined recurrently by

(4.4) El(y∗) = −
∑

i+j+2|α|=l
j≤l−1

1
α!
E0(y∗)(∂αη Li(y

∗))(Dα
yEj(y

∗)).

We want to show
∑∞
j=0Ej has a meaning as a formal sum of operator valued analytic

pseudo-differential operators. For this purpose we introduce a norm for Ej as follows:

Definition 4.4. For ε > 0 and ρ > 0, E(µ)
ε,ρ denotes the space of operator valued

symbols on ω̃ρ of the form

E(y∗) =
(

Q(y∗) H+(y∗)
H−∗(y∗) M(y∗)

)
∈
(
O(µ)(ω̃ρ;Bε) O(µ)(ω̃ρ;H+

ε )
O(µ)(ω̃ρ;H−∗ε ) O(µ)(ω̃ρ;M±)

)
.
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The norm of E(µ)
ε,ρ is defined by

‖E‖E(µ)
ε,ρ

= max{‖Q‖B(µ)
ε,ρ
, ‖H+‖H+,(µ)

ε,ρ
, ‖H−∗‖H−∗,(µ)

ε,ρ
, ‖M‖M±,(µ)

ρ
}.

We have

Lemma 4.5. Suppose m ≥ d+ 1. Then there exist ε0, ρ0 and C such that for all
0 < ρ < ρ0,

(4.5) ‖Ej‖E(−j/2)
ε0,ρ

≤ C
(

Cj

ρ0 − ρ

)j/2
for j = 0, 1, 2, . . .

P r o o f. By Proposition 4.1, Q0 is in O(0)(ω̃ρ0 ;LmR0
) for some ρ0 > 0, R0 > 0. Then

by Lemma 3.6 there is a ε0 for which we have Q0 ∈ O(0)(ω̃ρ0 ;Bε0). Hence, together with
Proposition 4.2 and (4.2), E0 is in E(0)

ε0,ρ0 by decreasing ε0 if necessary. Here, for later
convenience, we suppose ε0 is so chosen that Lemma 3.7 holds. Also we can assume the
following estimates are satisfied for a constant C0:

(4.6) ‖∂αη Pi‖Am,(−|α|−i/2)
ρ0

≤ C |α|+i/2+1
0 α!(i!)1/2,

(4.7) ‖∂αηH±0 ‖H±,(−|α|)ε0,ρ0
≤ C |α|+1

0 α!,

(4.8) ‖Q0‖Lm,(0)
R0,ρ0

≤ C0, ‖Q0‖B(0)
ε0,ρ0

≤ C0,

(4.9) ‖M0‖M±,(0)
ρ0

≤ C0.

For j ≥ 1, we shall prove (4.5) by induction. First we note that if Ej ∈ E(−j/2)
ε0,ρ

then, by Cauchy’s inequality, there is an M0 which depends only on d such that for all
0 < ρ′ < ρ < ρ0,

(4.10) ‖Dα
yEj‖E(−j/2)

ε0,ρ′
≤
(
M0|α|
ρ− ρ′

)|α|
‖Ej‖E(−j/2)

ε0,ρ
.

We write (4.4) as

El = −
l∑

k=1

Mk(El−k),

where
Mk(Ej) =

∑
2|α|+i=k

1
α!
E0

(
∂αη Li

)(
Dα
yEj

)
.

Then we have

M11
k (Ej) =

∑
2|α|+i=k

1
α!
Q0∂

α
η PiD

α
yQj

+
∑

2|α|=k

1
α!

(H+
0 ∂

α
ηH

+∗
0 Dα

yQj +Q0∂
α
ηH
−
0 D

α
yH
−∗
j ),

M12
k (Ej) =

∑
2|α|+i=k

1
α!
Q0∂

α
η PiD

α
yH

+
j

+
∑

2|α|=k

1
α!

(H+
0 ∂

α
ηH

+∗
0 Dα

yH
+
j +Q0∂

α
ηH
−
0 D

α
yMj),
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M21
k (Ej) =

∑
2|α|+i=k

1
α!
H−∗0 ∂αη PiD

α
yQj

+
∑

2|α|=k

1
α!

(M0∂
α
ηH

+∗
0 Dα

yQj +H−∗0 ∂αηH
−
0 D

α
yH
−∗
j ),

M22
k (Ej) =

∑
2|α|+i=k

1
α!
H−∗0 ∂αη PiD

α
yH

+
j

+
∑

2|α|=k

1
α!

(M0∂
α
ηH

+∗
0 DyH

+
j +H−∗0 ∂αηH

−
0 D

α
yMj).

We shall show that there exists an M such that for all 0 < ρ′ < ρ < ρ0,

(4.11) ‖Mk(Ej)‖E(−j/2−k/2)
ε0,ρ′

≤M
(

Mk

ρ− ρ′

)k/2
‖Ej‖E(−j/2)

ε0,ρ
.

By Lemmas 3.7 and 3.11, M11
k (Ej) is in O(−j/2−k/2)(ω̃ρ′ ;Bε0) and we have

‖M11
k (Ej)‖B(−j/2−k/2)

ε0,ρ′

≤
∑

2|α|+i=k

C1C2

α!
‖Q0‖Lm,(0)

R0,ρ0

‖∂αη Pi‖Am,(−|α|−i/2)
ρ0

‖Dα
yQj‖B(−j/2)

ε0,ρ′

+
∑

2|α|=k

1
α!

(‖H+
0 ‖H+,(0)

ε0,ρ0
‖∂αηH+∗

0 ‖H+∗,(−|α|)
ε0,ρ0

‖Dα
yQj‖B(−j/2)

ε0,ρ′

+ ‖Q0‖B(0)
ε0,ρ0
‖∂αηH−0 ‖H−,(−|α|)ε0,ρ0

‖Dα
yH
−∗
j ‖H−∗,(−1/2)

ε0,ρ′
)

≤
∑

2|α|+i=k

C1C2C
2
0C
|α|+i/2
0 (i!)1/2

(
M0|α|
ρ− ρ′

)|α|
‖Qj‖B(−j/2)

ε0,ρ

+
∑

2|α|=k

C2
0C
|α|
0

(
M0|α|
ρ− ρ′

)|α|
‖Qj‖B(−j/2)

ε0,ρ

+
∑

2|α|=k

C2
0C
|α|
0

(
M0|α|
ρ− ρ′

)|α|
‖H−∗j ‖H−∗,(−j/2)

ε0,ρ

≤
(
C1C2C

2
0

(
C0M0(n+ 1)k

ρ− ρ′

)k/2
+ 2C2

0

(
C0M0nk

ρ− ρ′

)k/2)
‖Ej‖E(−j/2)

ε0,ρ

≤M
(

Mk

ρ− ρ′

)k/2
‖Ej‖E(−j/2)

ε0,ρ
,

provided M ≥ max{(C1C2 + 2)C2
0 , C0M0(n + 1)}, where C1 is a constant appearing in

(3.1) and C2 is a constant appearing in Lemma 3.7.
M12

k (Ej) can be estimated in the same way by using Lemma 3.12 instead of Lem-
ma 3.7.

To estimate M21
k (Ej) we suppose further that

(4.12) ‖H−∗0 ‖H−∗,(0)
2ε0,ρ0

≤ C0.
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(We need only replace ε0 by ε0/2.) Then by Lemma 3.13 we have, for A ∈ Am,(µ)
ρ0 ,

‖H−∗0 A‖H−∗,(µ)
ε0,ρ0

≤
(
M0m

ε0

)m/2
‖H−∗0 ‖H(0)

2ε0

‖A‖Am,(µ)
ρ

≤ C3C0‖A‖Am,(µ)
ρ

.

Here we set C3 = (M0m/ε0)m/2. We have

‖M21
k (Ej)‖H∗,(−j/2−k/2)

ε0,ρ′

≤
∑

2|α|+i=k

1
α!
‖H−∗0 ∂αη Pi‖H−∗,(−|α|−i/2)

ε0,ρ0
‖Dα

yQj‖B(−j/2)
ε0,ρ′

+
∑

2|α|=k

1
α!

(‖M0‖M±,(0)
ε0,ρ0
‖∂αηH+∗

0 ‖H+∗,(−|α|)
ε0,ρ0

‖Dα
yQj‖B(−j/2)

ε0,ρ′

+ ‖H−∗0 ‖H−∗,(j)ε0,ρ0
‖∂αηH−0 ‖H−,(−|α|)ε0,ρ0

‖Dα
yH
−∗
j ‖H−∗,(−j/2)

ε0,ρ′
)

≤
∑

2|α|+i=k

C3C
2
0C
|α|+i/2
0 (i!)1/2

(
M0|α|
ρ− ρ′

)|α|
‖Qj‖B(−j/2)

ε0,ρ

+
∑

2|α|=k

C2
0C
|α|
0

(
M0|α|
ρ− ρ′

)|α|
‖Qj‖B(−j/2)

ε0,ρ

+
∑

2|α|=k

C2
0C
|α|
0

(
M0|α|
ρ− ρ′

)|α|
‖H−∗j ‖H−∗,(−j/2)

ε0,ρ

≤
(
C3C

2
0

(
C0M0(n+ 1)k

ρ− ρ′

)k/2
+ 2C2

0

(
C0M0nk

ρ− ρ′

)k/2)
‖Ej‖E(−j/2)

ε0.ρ

≤M
(

Mk

ρ− ρ′

)k/2
‖Ej‖E(−j/2)

ε0,ρ
,

provided M ≥ max{(C3 + 2)C2
0 , C0M0(n+ 1)}.

M22
k (Ej) can be estimated in the same way and we have proved (4.11).

Now assume that (4.5) has been proved up to order j = l − 1. Using (4.11) with
ρ = ρ′ + (k/l)(ρ0 − ρ′) we obtain

‖Mk(El−k)‖E(−l/2)
ε0,ρ′

≤M
(

Mk

ρ− ρ′

)k/2
‖El−k‖E(−l/2+k/2)

ε0,ρ

≤M
(

Mk

ρ− ρ′

)k/2
C

(
C(l − k)
ρ0 − ρ

)(l−k)/2

≤ C
(

Cl

ρ0 − ρ′

)l/2
M

(
M

C

)k/2
.

Therefore, El = −
∑l
k=1Mk(El−k) satisfies

‖El‖E(−l/2)
ε0,ρ′

≤ C
(

Cl

ρ0 − ρ′

)l/2
M

l∑
k=1

(
M

C

)k/2
,

which implies (4.5) at order j = l, if C is large enough (C ≥ max{4M, 4M3}).



OPERATORS WITH SYMPLECTIC CHARACTERISTICS 327

In the same way we can construct a left parametrix of L and find that the above E
is a two-side parametrix of L.

4.2. General case. In this section we remove the assumption (4.1) and describe needed
modifications in the construction of a relative parametrix.

Let

P =
∑

|α|+|β|≤m

tαcαβ(x,Dx)Dβ
t

be an operator of order µ = m/2 of the form (2.4) satisfying (2.5), where cαβ(x, ξ) =∑∞
j=0 cαβ,j(x, ξ) is in a-S(|α|−|β|)/2,1/2

phg in a conic neighborhood of x◦∗ = (0, y◦, 0, η◦). As in
Section 4.1 we assume m ≥ d+ 1 from the beginning.

After taking Taylor expansion of cαβ,j in (t, τ) we set

Pj(y∗) =
∑

i+|γ|=j

∑
|α|+|β|≤m

∂
γ−
t ∂γ+

τ cαβ,i(0, y, 0, η)tα+γ−D
β+γ+
t .

Interchanging the order of tγ− and Dt’s we can write Pj in the form

Pj(y∗) =
∑
|γ|≤j

Pj,γ(y∗)Dγ+
t tγ−

with

Pj,γ(y∗) ∈ O(−j/2−|γ+|/2+|γ−|/2)(ω̃ρ0 ;Am).

Then Pj,γ satisfies

(4.13) ‖Pj,γ‖Am,(−j/2−|γ+|/2+|γ−|/2)
ρ0

≤ C0C
j
0

√
(j − |γ|)!

for all j and γ = (γ+, γ−).
Proceeding just as in Section 4.1, we arrive at the construction of a parametrix E =∑∞
j=0Ej of

L =
∞∑
j=0

Lj =
(

P0 H−0
H+∗

0 0

)
+
∞∑
j=1

(
Pj 0
0 0

)
so that (4.3) is satisfied. Then Ej ’s must be given by (4.4). It only remains to prove
the estimate like Lemma 4.5 so that we can realize

∑∞
j=0Ej as an analytic micro-local

operator. For this purpose we define E(µ)
ρ as follows: For ρ > 0 we write in this sec-

tion B(µ)
ρ = O(µ)(ω̃ρ;Bρ), H±,(µ)

ρ = O(µ)(ω̃ρ;H±ρ ) and H±∗,(µ)
ρ = O(µ)(ω̃ρ;H±∗ρ ). We let

B(µ)
ρ ⊗Al (resp. H−∗,(µ)

ρ ⊗Al) denote the space of operator valued symbols for which we
can write

Q(y∗) =
∑
|γ|≤l

Qγ(y∗)Dγ+
t tγ−

(
resp. H(y∗) =

∑
|γ|≤l

Hγ(y∗)Dγ+
t tγ−

)
with Qγ ∈ B(µ−|γ+|/2+|γ−|/2)

ρ (resp. Hγ ∈ H−∗,(µ−|γ+|/2+|γ−|/2)
ρ ).

Definition 4.6. For µ ≤ 0 and ρ > 0, E(µ)
ρ denotes the space of operator valued

symbol of the form

E =
(

Q H+

H−∗ M

)
∈
(
B(µ)
ρ ⊗A2|µ| H+,(µ)

ρ

H−∗,(µ)
ρ ⊗A2|µ| M±,(µ)

ρ

)
.



328 T. SAKURAI

Then we can prove the following lemma for the estimate of Ej ’s.

Lemma 4.7. There exist ρ0 > 0 and C > 0 such that for all 0 < ρ < ρ0,

Ej =
(
Qj H+

j

H−∗j Mj

)
∈ E(−j/2)

ρ ,

and such that

‖Qj,γ‖B(−j/2−|γ+|/2+|γ−|/2)
ρ

≤ C
(
C(j − |γ|)
ρ0 − ρ

)(j−|γ|)/2(1
ρ

)|γ|
,(4.14)

‖H−∗j,γ ‖H−∗,(−j/2−|γ+|/2+|γ−|/2)
ρ

≤ C
(
C(j − |γ|)
ρ0 − ρ

)(j−|γ|)/2(1
ρ

)|γ|
,(4.15)

‖H+
j ‖H+,(−j/2)

ρ
≤ C

(
Cj

ρ0 − ρ

)j/2
,(4.16)

‖Mj‖M±,(−j/2)
ρ

≤ C
(

Cj

ρ0 − ρ

)j/2
,(4.17)

where Qj =
∑
|γ|≤j Qj,γD

γ+
t tγ− and H−∗j =

∑
|γ|≤j H

−∗
j,γD

γ+
t tγ− .

The proof of this lemma is straightforward but very long and tedious. So we only
describe here how the induction works for Qj .

First we note that there is a constant M0 such that for all 0 < ρ′ < ρ < 1/2 we have

‖(adDt)β+(ad t)β−Dα
yQ‖B(µ−|β+|/2+|β−|/2)

ρ′
≤
(
M0(2|α|+ |β|)

ρ− ρ′

)(2|α|+|β|)/2

‖Q‖B(µ)
ρ
,

‖Dβ+
t tβ−Dα

yH
±‖
H
±,(µ−|β+|/2+|β−|/2)

ρ′
≤
(
M0(2|α|+ |β|)

ρ− ρ′

)(2|α|+|β|)/2

‖H‖H±,(µ)
ρ

.

This follows from Lemma 3.8, 3.12 and Cauchy’s inequality. We also assume (4.7) through
(4.9) in Section 4.1 and (4.13) are satisfied for a constant C0 ≥ 1.

We write

Ql = QI
l +QII

l +QIII
l ,

where

QI
l =

l∑
k=1

∑
2|α|+i=k

1
α!
Q0∂

α
η PiD

α
yQl−k,

QII
l =

l∑
k=1

∑
2|α|=k

1
α!
H+

0 ∂
α
ηH

+∗
0 Dα

yQl−k,

QIII
l =

l∑
k=1

∑
2|α|=k

1
α!
Q0∂

α
ηH
−
0 D

α
yH
−∗
l−k.

For QI
l , we have

QI
l =

l∑
k=1

∑
2|α|+i=k

1
α!
Q0

( ∑
|β|≤i

∂αη Pi,βD
β+
t tβ−

)( ∑
|γ|≤l−k

Dα
yQl−k,γD

γ+
t tγ−

)
.
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Interchanging the order of Dβ+
t tβ− and Dα

yQl−k,γD
γ+
t , we know that the coefficient of

D
γ′+
t tγ

′
− consists of at most {3

√
n+ 1(2d+ 1)}k terms of the form

(4.18)
l∑

k=1

1
α!
Q0∂

α
η Pi,β((adDt)β

+
1 (ad t)β

−
1 Dα

yQl−k,γ)
γ+!

(γ+ − β−2 )!
,

where 2|α|+ i = k, |β| ≤ i, β+
1 + β+

2 = β+, β−1 + β−2 + β−3 = β−, γ+ = γ′+− β+
2 + β−2 and

γ− = γ′− − β−3 .
Now assume (4.14) through (4.17) have been proved up to order j = l − 1. Then the

B((−l−|γ′+|+|γ
′
−|)/2)

ρ′ -norm of each term in (4.18) can be estimated by, for a ρ ∈ [ρ′, ρ0),

1
α!
‖Q0‖B(0)

ρ′
‖∂αη Pi,β‖A((−i−|β+|+|β−|−2|α|)/2)

ρ′

× ‖(adDt)β
+
1 (ad t)β

−
1 Dα

yQl−k,γ‖
B

((−l+k−|γ+|+|γ−|+|β
+
1
|−|β−

1
|)/2)

ρ′

(
γ+!

(γ+ − β−2 )!

)

≤ C2
0C
|α|+ i

2
0

√
(i− |β|)!

(
M0(2|α|+ |β+

1 |+ |β
−
1 |)

ρ− ρ′

)(2|α|+|β+
1 |+|β

−
1 |)/2

× C
(
C(l − k − |γ|)

ρ0 − ρ

)(l−k−|γ|)/2(1
ρ

)|γ|
γ+!

(γ+ − β−2 )!

≤ C2
0C

k/2
0

(
M0(k − |β+

2 | − |β
−
2 | − |β

−
3 |)

ρ− ρ′

)(k−|β+
2 |−|β

−
2 |−|β

−
3 |)/2

× C
(
C(l − k − |γ′|+ |β+

2 | − |β
−
2 |+ |β

−
3 |)

ρ0 − ρ

)(l−k−|γ′|+|β+
2 |−|β

−
2 |+|β

−
3 |)/2

×
(
|β|−2
ρ− ρ′

)|β−2 |( 1
ρ′

)|γ′|−|β+
2 |−|β

−
3 |

≤ C2
0C

k/2
0

(
M0(k − |β+

2 |+ |β
−
2 | − |β

−
3 |)

ρ− ρ′

)(k−|β+
2 |+|β

−
2 |−|β

−
3 |)/2

× C
(
C(l−k−|γ′|+|β+

2 |−|β
−
2 |+|β

−
3 |)

ρ0 − ρ

)(l−k−|γ′|+|β+
2 |−|β

−
2 |+|β

−
3 |)/2( 1

ρ′

)|γ′|−|β+
2 |−|β

−
3 |

.

Here we have used the inequality

γ+!
(γ+ − β−2 )!

(
1
ρ

)|γ+|

≤
(
|β−2 |
ρ− ρ′

)|β−2 |( 1
ρ′

)|γ+|−|β−2 |

for ρ′ < ρ.

Taking ρ to satisfy

l − |γ′|
ρ0 − ρ′

=
l − |γ′| − k + |β+

2 | − |β
−
2 |+ |β

−
3 |

ρ0 − ρ
,

this can be estimated by

C2
0C

(
C(l − |γ′|)
ρ0 − ρ′

)(l−|γ′|)/2( 1
ρ′

)|γ′|(
C0M0

C

)(k−|β+
2 |+|β

−
2 |−|β

−
3 |)/2

ρ
|β+

2 |+|β
−
3 |

0 .
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(Note that if |β+
2 |+ |β

−
3 | = k then we can take ρ = ρ′ from the beginning.) If ρ0 and C

have been chosen as

ρ0 =

√
C0M0

C
≤ 1

18C2
0

√
n+ 1(2d+ 1)

then the sum (4.18) brings to QI
l the term QI

l.γ′D
γ′+
t tγ

′
− such that

‖QI
l.γ′‖

B
((−l−|γ′

+
|+|γ′−|)/2)

ρ′

≤ 1
3
C

(
C(l − |γ′|)
ρ0 − ρ′

)(l−|γ′|)/2( 1
ρ′

)|γ′|
.

For QII
l , we have

QII
l =

∑
|γ|≤l−1

l−|γ|∑
k=1

∑
2|α|=k

1
α!
H+

0 ∂
α
ηH

+∗
0 Dα

yQl−k,γD
γ+
t tγ− .

Hence, for ρk ∈ (ρ′, ρ0),

‖QII
l,γ‖B((−l−|γ+|+|γ−|)/2)

ρ′

≤
l−|γ|∑
k=1

∑
2|α|=k

1
α!
‖H+

0 ‖H+,(0)
ρ′
‖∂αηH+∗

0 ‖H−∗,(−|α|)
ρ′

‖Dα
yQl−k,γ‖B((−l+k−|γ+|+|γ−|)/2)

ρ′

≤
l−|γ|∑
k=1

(n+ 1)
k
2C2

0C
k
2
0

(
M0k

ρk − ρ′

)k/2
C

(
C(l − k − |γ|)

ρ0 − ρk

)(l−k−|γ|)/2( 1
ρk

)|γ|

≤
l−|γ|∑
k=1

C2
0C

(
(n+ 1)C0M0k

ρk − ρ′

)k/2(
C(l − k − |γ|)

ρ0 − ρk

)(l−k−|γ|)/2( 1
ρk

)|γ|
.

If we choose ρk to satisfy
l − k − |γ|
ρ0 − ρk

=
l − |γ|
ρ0 − ρ′

then the sum can be estimated by

C2
0C

(
C(l − |γ|)
ρ0 − ρ′

)(l−|γ|)/2( 1
ρ′

)|γ| l−|γ|∑
k=1

(
(n+ 1)C0M0

C

)k/2
≤ 1

3
C

(
C(l − |γ|)
ρ0 − ρ′

)(l−|γ|)/2( 1
ρ′

)|γ|
provided C ≥ 36(n+ 1)C5

0M0.
The sum in QIII

l can be estimated in the same way as QII
l and we obtain (4.14) at

order j = l.
Now we suppose that (4.14)–(4.17) have been established for all j. Then we can realize

E =
∑∞
j=0Ej as follows: For a ρ < ρ0 we set

Vρ = {(t, y, τ, η) ∈ T ∗(RN ); |t| < ρ, |y − y◦| < ρ, |τ/|η|| < ρ, |η/|η| − η◦ | < ρ},
Wρ = ι−1(Vρ) = {(y, η) ∈ T ∗(Rn); |y − y◦| < ρ, |η/|η| − η◦ | < ρ}.
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By Lemma 3.9, Ql,γ ∈ B(−l/2−|γ+|/2+|γ−|/2)
ρ has the symbol bl,γ(t, τ, y, η) of order

(−l − |γ+|+ |γ−|)/2 of type (1/2, 1/2). The estimate (4.14) implies that∑
l−|γ|=k

bl,γ(t, y, τ, η)τγ+sγ−

converges for (t, s, y, τ, η) ∈ Rd × Vρ and that if we set

q(t, s, y, τ, η) =
∞∑
k=0

χk+1(η/λ)
( ∑
l−|γ|=k

bl,γ(t, y, τ, η)τγ+sγ−
)

then, for a sufficiently large λ, we have q ∈ a-S0
1/2,1/2(Rd × Vρ), where χ is the function

introduced in Section 2.1. The operator

Q = op(q)x◦∗ : Cf
RN (x∗)→ Cf

RN (x∗)

is well defined through the kernel

Q(t, y, s, z) = (2π)−N
∫

RN

ei(t−s)τ+i(y−z)ηq(t, s, y, τ, η)g(τ, η)dτdη,

where g is a suitable cut-off function of Métivier (see Section 2.1).
If H−∗j,γ ’s satisfy (4.15) then we have

∑∞
j=0Hj(y∗) ∈ S

0,1/2
phg (ω̃ρ;H−∗ρ ). In fact, by

Lemma 3.12, (4.15) implies H−∗j,γ (y∗)Dγ+
t tγ− is in O(−j/2)(ω̃ρ;H−∗ρ ) and, taking ργ =

ρ+ (|γ|/j)(ρ0 − ρ), we have

‖H−∗j ‖H−∗,(−j/2)
ρ

≤
∑
|γ|≤j

(
M0|γ|
ργ − ρ

)|γ|/2
C

(
C(j − |γ|)
ρ0 − ργ

)(j−|γ|)/2( 1
ργ

)|γ|

≤ C
(

Cj

ρ0 − ρ

)j/2 ∑
|γ|≤j

(
M0

Cρ2

)|γ|/2

≤ Cρ
(

Cρj

ρ0 − ρ

)j/2
.

Let (h−j,1, . . . , h
−
j,k−

) be a symbol of H−∗j . Then h−j,l satisfies

|∂αt h(t, y, η)| ≤ Cρe−ρt
2|η|/2(Cρ(j + |α|)/|η|)(j+|α|)/2

for (y, η) ∈ ω̃ρ with another constant Cρ. This implies, for a sufficiently large λ,

h−l (t, y, η) =
∞∑
j=0

χj+1(η/λ)h−j,l(t, y, η)

is in S0
1/2,1/2(Rd ×Wρ) and bounded by Cρe

−ρt2|η|/2. The operator H−∗(l) = op(h−∗l ) is
now defined through the kernel

H−∗(l) (y; t, z) = (2π)−n
∫

Rn

ei(y−z)ηh−l (t, y, η)g(η)dη

and we have

WFA
(
H−∗(l)

)
⊂ {(y, 0, y, η, 0,−η) ∈ T ∗(Rny ×RN

t,z); η ∈ supp(g)}.
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Hence, H−∗ =
⊕

lH
−∗
(l) is analytic micro-local with respect to ι−1 as desired.

In the same way we can realize H+ to be analytic micro-local with respect to ι with
symbol in (a-S0

1/2,1/2(Rd ×Wρ))k+ . Because ω̃ρ is a complex neighborhood of Wρ we

write H−∗ ∈ op
(
a-S0,1/2

phg (Wρ;H−∗ρ )
)

and H+ ∈ op
(
a-S0,1/2

phg (Wρ;H+
ρ )
)

for the above
realizations of

∑∞
j=0H

−∗
j and

∑∞
j=0H

+
j . Clearly, we can realize M as a matrix of usual

pseudo-differential operators on Wρ.
Therefore we obtain

Theorem 4.17. Let

P =
∑

|α|+|β|<m

tαcαβ(x,Dx)Dβ
t

be an operator of order m/2 of the form (2.4) satisfying (2.5). If m ≥ d+ 1 then there are
ρ > 0 and operators H−0 ∈ op(a-S0,1/2

phg (Wρ;H−ρ )), H+∗
0 ∈ op(a-S0,1/2

phg (Wρ;H+∗
ρ )), Q ∈

op(a-S0
1/2,1/2(Rd×Vρ)), H+ ∈ op(a-S0,1/2

phg (Wρ;H+
ρ )), H−∗ ∈ op(a-S0,1/2

phg (Wρ;H−∗ρ )) and

M ∈ op(a-S0,1/2
phg (Wρ;M±)) such that(

P H−0

H+∗
0 0

)(
Q H+

H−∗ M

)
=
(

IdCf
RN

(x
◦∗)

0
0 Id(

Cf
Rn

(y
◦∗

)
)k+

)
,

(
Q H+

H−∗ M

)(
P H−0

H+∗
0 0

)
=
(

IdCf
RN

(x
◦∗)

0
0 Id(

Cf
Rn

(y
◦∗

)
)k−

)
.

Now Theorem 2.1 is an immediate consequence of this theorem.

5. Examples. In this section we shall present a few simple examples and illustrate
how our results are applied to them.

Recall that the parametrix has been constructed through (4.4). Thus we have the
following formulas for Mj :

M0(y∗) = −H−∗0 P0H
+
0

M1(y∗) = −H−∗0 P1H
+
0

M2(y∗) = −H−∗0 P2H
+
0 +H−∗0 P1Q0P1H

+
0

+ i(H−∗0 〈∇ηP0,∇yH+
0 〉+H−∗0 〈∇ηH

−
0 ,∇yM0〉+M0〈∇ηH−∗0 ,∇yH+

0 〉)
...

Mj(y∗) = −H−∗0 PjH
+
0 + F (P0, . . . , Pj−1, Q0, H

±
0 , H

±∗
0 ,M0).

Our results are well applicable to operators with double characteristics because in
that case the principal operator σ̂Σ(P ) is transformed into a sum of harmonic oscillators,
for which we can get a complete eigenexpansion by means of Hermite functions. So we
set for k = 0, 1, 2, . . . ,

ψk(t) = (2kk!
√
π)−1/2(t− d/dt)ke−t

2/2

so that

(−d2/dt2 + t2)ψk(t) = (2k + 1)ψk(t), (ψk, ψl)L2(R) = δkl.
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Example 1. For a non-negative integer l, consider the operator

P = D2
t + t2D2

y − (2l + 1)Dy

at x◦∗ = (0; dy) ∈ T ∗(R2). Then

Q(y∗) =
∑
k 6=l

1
2(k − l)|η|

hk(t, η)h∗k(t, η),

H±0 (y∗) = H±(y∗) = hl(t, η) and M(y∗) = 0, where hk(t, η) = |η|1/4ψk(t|η|1/2) for
k = 1, 2, . . . Hence

H : u(y) 7→ (2π)−1
∫
eiyηhl(t, η)û(η)dη

gives the isomorphisms

CfR(y◦∗) ∼→ Ker(P : CfR2(x◦∗)→ CfR2(x◦∗)),

CfR(y◦∗) ∼→ Coker(P : CfR2(x◦∗)→ CfR2(x◦∗)).

In particular, f(t, y) ∈ D′(R2) is in the range of P in a neighborhood of the origin if and
only if H∗f(y) is micro-analytic at (0, dy) ∈ T ∗(R).

R e m a r k. If l = 0 then P = (Dt + ity)(Dt − itDy) and the range of P is equal to
the range of Dt + itDy. In this case the characterization of the range of P obtained here
is equivalent to that of Dt + itDy given by Sato-Kawai-Kashiwara [10]. To see this we
note that H∗H is the identity on CfR(y◦∗). Thus H∗f is micro-analytic at y◦∗ if and only
if HH∗f is micro-analytic at x◦∗. Now HH∗ has the kernel

(2π)−1
∞∫
0

ei(y−z)−(t2+s2)|η|/2|η|1/2dη = const.
(
y − z +

i

2
(t2 + s2) + i0

)−3/2

,

which is precisely the one appearing in Sato-Kawai-Kashiwara [10, Chap. III, Lemma
2.3.5].

Example 2. Consider

P = D2
t + t2D2

y − (1 + tk)Dy

at x◦∗ = (0; dy) ∈ T ∗(R2). Then Q0(y∗) =
∑
l 6=0

1
2l|η|hl(t, η)h∗l (t, η), H+

0 (y∗) = H−0 (y∗) =
h0(t, η) and we have

M0(y∗) = . . . = Mk−1(y∗) = 0,

Mk(y∗) = −h∗0(t, η)tkηh0(t, η),

Mk+1(y∗) = . . . = M2k−1(y∗) = 0,

M2k(y∗) = −
∑
l 6=0

1
2l|η|

∣∣h∗l (t, η)tkηh0(t, η)
∣∣2,

where hl(t, η) are the same as in Example 1.
Hence, Mk 6= 0 if k is even, Mk = 0 but M2k 6= 0 if k is odd. In both cases we know∑∞
j=0Mj is elliptic at y◦∗; therefore P is isomorphic on CfR2(x◦∗).

Example 3. Consider

P = D2
t + t2(D2

y1
+D2

y2
)− (1− y2

1)Dy2 − c
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at x
◦∗ = (0; dy2) ∈ T ∗(R3) for a c ∈ C. Then Q0(y∗) =

∑
l 6=0

1
2l|η|hl(t, η)h∗l (t, η),

H+
0 (y∗) = H−0 (y∗) = h0(t, η), where hl(t, η) = |η|1/2ψl(t|η|1/2), l = 1, 2, . . ., and we

have

M0(y∗) = −[(
√
η2

1 + η2
2 − η2) + y2

1η2],

M1(y∗) = 0,

M2(y∗) = c.

We note that
√
η2

1 + η2
2 − η2 = |η2|(η2

1/(2η
2
2) + O(|η1/η2|4)) near y◦∗. Hence if c 6=

1√
2
(2k + 1) then M(y,Dy) is isomorphic on CfR2(y◦∗) from the results of Métivier [8].

Otherwise, we can apply Theorem 4.17 once more to M(y,Dy) and find that the reduced
operator M̃(Dy2) is elliptic at (0; dy2) ∈ T ∗(R). Therefore, for all c ∈ C, we conclude
that P is an isomorphism on CfR2(x◦∗).

Example 4. Consider

P =
d∑
i=1

(D2
ti + t2iD

2
y −Dy) +

∑
aij(y)titjDy (= P0 + P2)

at x◦∗ = (0; dy) ∈ T ∗(Rd+1). We set A = D−1
y P (D−1

y P0 + 1)[d/2] and apply Theorem 4.17
to A. Then H+

0 (y∗) = H−0 (y∗) = |η|d/4Πd
i=1ψ0(t|η|1/2) and we have

M0(y∗) = M1(y∗) = 0,

M2(y∗) = −H−∗0 (y∗)(D−1
y P2(D−1

y P0 + 1)[d/2])H+
0 (y∗)

= −H−∗0 (y∗)
(∑

aij(y)titj
)
H+

0 (y∗)

= −1
2

d∑
i=1

aii(y).

Here we have used the fact that P0H
+
0 (y∗) = 0. Hence if

∑d
i=1 aii(0) 6= 0 then P is

isomorphic on Cf
Rd+1(x◦∗).
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