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1. Introduction

a. Investigating ocean and atmosphere flows Nye and Thorndike [2] have studied
typical bifurcations of three dimensional vector fields depending on time. One can describe
such a field as a one-parameter family of maps from R3 to R3 or as a map from R1×R3 =
R4 to R3.

To study them the authors of [2] consider sections of stable maps from R4 to R4.
There is one family in their list of typical sections for which the set of critical values for
an isolated value of the parameter is equal to the caustic of a Lagrangian D4 map.

This leads to another problem: To study properties of Lagrangian and Legendrian
maps included in generic families of maps with a suitable number of parameters. In this
way V -versal deformations of Lagrangian Dk and Legendrian Ak maps are considered
below.

b. As a Lagrangian map is the restriction to a Lagrangian submanifold of the projec-
tion that defines a Lagrangian fiber bundle, Lagrangian maps may be locally considered
as maps from Rn to Rn. The normal form of Lagrangian stable maps is given by the
corresponding classification theorem ([1]).

Example. The normal form of Lagrangian Ak maps coincides with that of stable
Whitney maps Ak:

(1)

Ak : (Rn(x), 0)→ (Rn(y), 0),

y1 = ±(k + 1)xk1 + (k − 1)x2x
k−2
1 + . . .+ 2xk−1x1,

yi = xi, i = 2, . . . , n, k − 1 ≤ n.
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It is obvious that Lagrangian Ak maps are stable in the class of general maps.

Example. The Lagrangian D±k maps have the following normal form:

(2)

D±k : (Rn(x), 0)→ (Rn(y), 0),

y1 = x2
2 ± (k − 1)xk−2

1 + (k − 2)x3x
k−3
1 + . . .+ 2xk−1x1,

y2 = 2x1x2,

yi = xi i = 3, . . . , n, k − 1 ≤ n, k ≥ 4.

In this paper the properties of the maps (2) are described. The V -versal deformation
preserving the origin is a one parameter deformation for the maps (2). For even k the
Lagrangian D+

k maps fall into stable maps Ak (at two isolated points), the Lagrangian
D−k maps decompose only into Ak−1 , Ak−2 etc. For odd k the Lagrangian Dk maps fall
into Ak (at one isolated point).

c. A map from a Legendrian submanifold to the base of a Legendrian bundle may be
locally considered as a map from Rn to Rn+1.

Example. The normal form of Legendrian Ak maps is given by (see [1])

(3)

LAk : (Rn(y, x), 0)→ (Rn+1(q), 0),

q1 = ϕ1(y, x),

qi = xi, i = 2, . . . , n, qn+1 = ϕ2(y, x),

where

ϕ1 = (k + 1)yk + (k − 1)x2y
k−2 + . . .+ 2xk−1y,

ϕ2 = kxk+1 + (k − 2)x2x
k−1
1 + . . .+ xk−1y

2.

In the Legendrian case the following results are obtained: The V -versal deformation
of Lagrangian Ak maps preserving the origin is a k − 1-parameter deformation. The
bifurcational diagram for this family is constructed. Outside the bifurcational set the
maps of this family are stable and at isolated points they are RL-equivalent to the trivial
extension of the stable maps that has the image of a “Whitney umbrella”. Legendrian
Ak maps have infinite RL- and topological codimension.

The author is grateful to Prof. V. Zakalyukin for his considerate attention to this
work.

2. V -versal deformation of Lagrangian Dk maps

Proposition 1. The V -versal deformation D±k (t, c) of the maps (2) is given by

(4)

y1 = ϕ1(x) + tx2 + c1,

y2 = ϕ2(x) + c2,

yi = xi + ci, i = 3, . . . , n,

where

ϕ1(x) = x2
2 ± (k − 1)xk−2

1 + (k − 2)x3x
k−3
1 + . . .+ 2xk−1x1,

ϕ2(x) = 2x1x2,
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P r o o f. Direct calculations.

The main result for Lagrangian Dk series. Let Dk(t) be the family (4) with
c = 0 : D±k (t) = D±k (t, 0), and let k − 1 = n.

Theorem 1. If k is even, t 6= 0, then D+
k (t) has 2 singular points at which it is

RL-equivalent to Ak (1). These points have coordinates

x10 = ±s1|t|2/(k−2), x20 = −t/k, xi0 = six
i−2
10 , i = 3, . . . , n.

D−k (t) has no Ak points.
If k is odd , t 6= 0, then Dk(t) has one singular point at which it is RL-equivalent to

Ak. This point has coordinates

x10 = s1t
2/(k−2), x20 = −t/k, xi0 = six

i−2
10 , i = 3, . . . , n,

for some s1, s3, . . . , sn.

P r o o f. It is sufficient to prove two propositions:

A. If t 6= 0, then D±k (t) has the corresponding number of singular points with Board-
man type Σ

1...1
k .

B. D±k (t) is stable at these points.
First we find all the points of Σ

1...1
k Boardman type.

Lemma 1. Let x2
1 + x2

2 6= 0. Then for D±k (t)

Σ
1...1

i = {x ∈ Rn | B1(x) = 0, . . . Bi−1(x) = 0, Bi(x) 6= 0},

where

Bi = bi1x
k−2
1 + bi2x3x

k−3
1 + . . .+ bik−2xk−1x1 + bik−1x2 + bikx

2
2

and (bij) = B is the (k − 1)× k-matrix :
(5)

±(k − 1)(k − 2) (k − 2)(k − 3) . . . 2 −t −2
∓(k − 1)(k − 2)2 −(k − 2)(k − 3)2 . . . −2 −t −4

. . .

(− 1)k−2(k − 1)(k − 2)k−1 (− 1)k−2(k − 2)(k − 3)k−1 . . . (− 1)k−22 −t −2k−1


P r o o f. Direct calculations.

Let S = {(x1, . . . , xn) ∈ Rn | x1 = 0, x2 = 0}.

Lemma 2. S contains no points of Σ
1...10

k Boardman type, and it contains one point
of Σ

1...1
k−1 Boardman type. This point is (0 . . . 0).

Thus to find the points of Σ
1...1
k−1 Boardman type we should solve the system of equa-

tions

B1 = 0, . . . , Bk−1 = 0

where Bi are as in lemma 1. This is a system of linear algebraic equations over the



346 S. STANCHENKO

monomials xk−2
1 , x3x

k−3
1 , . . . , xk−1x1, x2, x2

2. It may be represented in the following way:

(6) (b̃ij) ·


xk−2

1

x3x
k−3
1
...

xk−1x1

x2

 = x2
2 ·


2
4
...

2k−1

 ,

where (b̃ij) is the matrix (bij) without the last column. If the linear system with
(k − 1)× (k − 1) matrix (b̃ij) is solvable, then for some values s1, . . . , sk−1,

(7) xk−1
1 = s1x

2
2, tx2 = s2x

2
2, xix

k−i
1 = six

2
2, i = 3, . . . , k − 1.

The equation tx2 = s2x
2
2 has 2 solutions: x20 = t/s2 and x20 = 0. The second solution

is non-proper by lemma 2. Then the number of solutions of the system (6) is equal to
that of the equation xk−2

1 = s1x
2
2.

If k is odd, then this equation has one real solution, and Dk(t) has one point of Σ
1...1
k−1

type. To complete the proof of proposition A we need the following algebraic lemma:

Lemma 3. Let M = (mij) be a k × n matrix (n > k) with each column a geometric
progression with ratio li, li 6= lj. Then there exists a non-singular k × k matrix C such
that C ·M is as follows:  ∗ . . .

0
. . . . . .
0 mkkqk . . . mknqn

 ,

where

qi = (1− l1/li) . . . (1− lk−1/li).

In other words we can see the elements of the last row of M after reducing it to the
triangle matrix.

P r o o f. Direct calculations.

Using Lemma 3 we may get the following results:

Corollary 1. If x0 = (x01 . . . x0k−1) is the solution of the system (6) and x02 6= 0
then

±xk−2
01 =

(−1)k−2

k − 1
·
(
t

k

)2

, x02 = − t
k
.

Corollary 2. If k is even, then Dk(t) has two points of Σ
1...1
k−1 type and for these

points

x01 =
±1

1− k

(
t

k

) 2
k−2

, x02 = − t
k
.

If k is odd , then Dk(t) has one point of Σ
1...1
k−1 type, and

x01 =
1

1− k

(
t

k

) 2
k−2

, x02 = − t
k
.
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Corollary 3. If x0 is a point of Σ
1...1
k−1 Boardman type for Dk(t), then Bk(x0) 6= 0

(i.e. x0 is a point of Σ
1...1

k Boardman type for Dk(t)).

That completes the proof of proposition A.

Corollary 4. 1) B1 . . . Bk−1 ∈m(x1 − x01, . . . , xk−1 − x0k−1).

2)
∣∣∣∣∂(B1, . . . , Bk−2)
∂(x2, . . . , xk−1)

∣∣∣∣
x=x0

6= 0.

Now to prove the stability of Dk(t) at x0 we use the following construction: Let the
germ of D : (Rn, x0)→ (Rn, y0) have the Boardman type Σ

1...10
k at x0, and η be the germ

of a smooth vector field whose direction coincides with the direction of the null-space of
the derivative of the map D. Consider the functions Bi(x) such that B1(x) is the Jacobian
of D,

B2(x) = dB1(η), . . . , Bk = dBk−1(η).

Obviously, B1(x0) = . . . = Bk−1(x0) = 0.

Proposition 2. If the differentials dB1 . . . dBk−2 are independent at x0, then the
germ D is RL-equivalent to the germ of a Whitney Ak map at x0.

By corollary 4 if Dk(t) has the Boardman type Σ
1...10

k at x0, then all the conditions
of proposition 2 are fulfilled. That completes the proof of the theorem.

3. Proof of proposition 2. This proof is based on two simple lemmas.

Lemma 4. In some coordinates u and v the germ of D may be represented by

(8)
D : (Rn(u), 0)→ (Rn(v), 0),

v1 = ϕ(u), vi = ui, i = 2, . . . , k − 1,

where

ϕ(u) = uk1 + ϕ1(u2 . . . un)uk−1
1 + . . .+ ϕk−1(u2 . . . un)u1 + ϕk

ϕ1, . . . , ϕk−1 ∈m(u), n = k − 1,

and in these coordinates η = ∂/∂u1.

Lemma 5. The following conditions are equivalent :

1) The germ of map (8) is stable at 0.
2) ∣∣∣∣∂(ϕ2, . . . , ϕk−1)

∂(u2, . . . , uk−1)

∣∣∣∣
u=0

6= 0.

3) ∣∣∣∣∂(ϕ′, . . . , ϕ(k−2))
∂(u2, . . . , uk−1)

∣∣∣∣
u=0

6= 0,

where ϕ(i) = ∂iϕ/∂ui1.

4) ∣∣∣∣∂(B1, . . . , Bk−2)
∂(x2, . . . , xk−1)

∣∣∣∣
x=x0

6= 0,
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where the basis vectors of the coordinates x2, . . . , xk−1 are transversal to the vector η

at x0.

P r o o f o f l e m m a 5. a) 1)⇔2). This follows from the theorem on stability of
expansion of genotype [1].

b) 2)⇔3). This follows from the rules of differentiation.
c) The functions B1, . . . , Bk−2 are the sequential derivatives in the direction of η of

the Jacobian B1 = |∂y/∂x|. The functions ϕ′, . . . , ϕ(k−2) are the sequential derivatives
in the direction of η of the Jacobian K = |∂y/∂x|.

Thus the ideals generated by B1, . . . , Bk−2 and by ϕ′, . . . , ϕ(k−2) coincide. The basis
vectors of the coordinates x2, . . . , xk−1 are transversal to the vector η, and the coordinates
u2, . . . , uk−1 have the same property. Then 3) and 4) are equivalent.

4. V -versal deformations of Legendrian Ak maps

Proposition 3. The V -versal deformation of the map (3) is given by

(9)

q1 = ϕ(y, x) + c1,

qi = xi + ci, i = 2, . . . , n,

qn+1 = ϕ2(λ, y) + P (λ, y) + cn+1,

where y ∈ R1, x ∈ Rn−1, λ ∈ Rk−1, c ∈ Rn+1 and

ϕ1 = (k + 1)yk + (k − 1)x2y
k−1 + . . .+ 2xk−1y,

ϕ2 = kyk+1 + (k − 2)x2y
k−1 + . . .+ xk−1y

2,

P (λ, y) = λ1y
k−1 + . . .+ λk−2y

2 + λk−1y.

Let ΣP ⊂ Rk−1(λ) be the discriminant set for the polynomial P ′(λ, y) = ∂P/∂y.

Theorem 2. If λ ∈ ΣP then the maps (9) are nonstable for each c. If λ 6∈ ΣP then
the maps (9) are stable. Their image is RL-equivalent to the trivial extension of the
“Whitney umbrella”. The preimage of the umbrellas set is a finite combination of planes
of codimension 2.

P r o o f. The Jacobi matrix is ϕ′1 ∗
0 En−2

yϕ′1 + P ′ ∗∗


where ϕ′ = ∂ϕ/∂y, P ′ = ∂P/∂y.

The vector field η = ∂/∂y coincides with the direction of the null-space of M . The
set Σ

1...1
l = Σ1l is defined by the equations

ϕ′1(y, x) = 0,
P ′(λ, y) = 0,

ϕ′′1(y, x) = 0,
P ′′(λ, y) = 0, . . .

ϕ
(l)
1 (y, x) = 0,

P (l)(λ, y) = 0.

If y0 is a root of P ′(λ, y) = 0 with multiplicity l, then Σ1l is defined by l+1 equations

y = y0, ϕ′(y0, x) = 0, . . . , ϕ(l)(y0, x) = 0.
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Thus Σ1l is a plane of codimension l + 1. According to the Boardman formula this
codimension is 2l. Then if l>1, we have nonstability. In case l=1 after some calculations,
we may see the extension of the “Whitney umbrella”.

Corollary 5. The V -versal deformation of a Legendrian A3 map is a 2-parameter
deformation. It consists of maps equivalent to the “umbrella” at not more than one point.

5. Generic deformations of Legendrian Ak maps. Now we compare V - and
RL-equivalence for deformations of Legandrian Ak maps. It is easy to prove

Proposition 4. A generic deformation of a Legendrian Ak map (k ≥ 3) is RL-
equivalent to the following deformation:

(10)

q1 = ϕ1,

qi = xi, i = 2, . . . , n,

qn+1 = ϕ2 + h(x, y),

where ϕ1 and ϕ2 are the same as in (3), and h(x, y) is an arbitrary smooth function.

As was shown in the preceding section the V -versal deformation of the Legendrian
A3 map has not more than one “umbrella” point. Another situation is for generic defor-
mations:

Let Oε be the ε-sphere in the space of all coefficients of the Taylor series of h at 0, Qδ
be the δ-sphere around the origin in R3(q) and let n = 2.

Proposition 5. For arbitrary ε > 0, δ > 0, and integer m there is a function h such
that

1) All the Taylor coefficients of h are in Oε.
2) The map (10) is equivalent to the “Whitney umbrella” at m points and all the

preimages of these points are in Qδ.

P r o o f. All the points at which the image of the map (10) is equivalent to the “um-
brella” can be defined from the system of equations

ϕ′1y = 0, h′y = 0.

We can take the polynomial h = h1 + h2y+ . . .+ hmy
m with sufficiently small coeffi-

cients.
Thus Legendrian Ak maps have no finite RL-versal and finite topologically versal

deformations.
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