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Abstract. It is shown that the approximating equations whose existence is required in
the author’s previous work on partially regular weak solutions can be constructed without any
additional assumption about the equation itself. This leads to a variation of a Galerkin method.

In the paper [1] the existence of partially regular weak solutions of an abstract
parabolic equation of the form

(EQ) Ut +AU = F (U, t)

is proved under the assumption that there exists a family of approximating equations

Ut +AU = Fk(U, t)

for k = 1, 2, . . . which are strongly solvable. Here we show that such an approximating
sequence always exists, if we just assume what is directly implied in the assumptions for
the equation (EQ). For further literature and some applications see both [1] and [2]. We
adhere to the notation used in [1], with the exception of denoting the real numbers by R
and the non-negative real numbers by R+. Now we make the following assumptions.

Let A denote a self-adjoint positive operator on a Hilbert space H with domain
of definition D(A) which has a compact inverse A−1. Let T ≤ +∞ and I = [0, T ] for
T < +∞, while I = [0,+∞) otherwise. Assume also that with the fixed number µ ∈ (0, 1)
the nonlinearity F : D(A)× I → H has the following properties.

1. There are numbers η < 1 and C1 < ∞ such that for all U ∈ D(A), t ∈ I we have
with a+ = max(a, 0) and a− = max(−a, 0)

{(F (U, t), U)}+ ≤ η[{(F (U, t), U)}− + ‖A1/2U‖2] + C1(‖U‖2 + 1).

2. There is a continuous increasing function C2 : R+ → R+ such that for U,U ′ ∈
D(A), t, t′ ∈ I we have

‖F (U, t)− F (U ′, t′)‖ ≤ C2(‖AµU‖+ ‖AµU ′‖)(‖Aµ(U − U ′)‖+ |t− t′|) and
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‖F (U, t)‖ ≤ C2(‖Aµ/2U‖)(‖AµU‖+ 1).

3. There is a continuous increasing function C3 : R+ → R+ such that for all U, V ∈
D(A), t ∈ I we have

|(F (U, t), V )| ≤ C3(‖U‖)‖AV ‖(‖A1/2U‖2µ + ((F (U, t), U)−)µ + 1).

The notation for function spaces in this paper does not differ much from general prac-
tice, and coincides completely with that used in [1]. We call a function U : (t, t′) → H

a strong solution of the equation (EQ) on the interval (t, t′) if U ∈ C1((t, t′), H) ∩
C0((t, t′), D(A)) and fulfills the equation there. Then we get the following slightly en-
hanced version of the main theorem of [1].

Theorem. For every U0 ∈ H there is a function U : I → H such that U ∈
L∞((0, T̂ ), H) ∩ L2((0, T̂ ), D(A1/2)) for all T̂ ≤ T, T̂ ∈ R, which also has the follow-
ing properties.

(P1) We have A−1U(t) ∈ C0([0, T̂ ], H) and U(0) = U0. There is a relatively open set
D ⊂ [0, T̂ ] such that m([0, T̂ ]\D) = 0, and U ∈ C1(D, H) ∩ C0(D,D(A)), and

Ut +AU = F (U, t)

for t ∈ D. We have 0 ∈ D if U0 ∈ D(A), and ‖Aµ/2U(t)‖ → ∞ as t ↑ ∂D\{0, T̂}.
(P2) In addition U is a weak solution of our problem, i.e. for V ∈ C1([0, T̂ ], H) ∩

C0([0, T̂ ], D(A)) we have∫
D∩(t,t′)

− (U,AV ) + (F (U, t), V ) + (U, Vt)dτ = (U(t′), V (t′))− (U(t), V (t))

for 0 ≤ t ≤ t′ ≤ T̂ .
(P3) There is an ε0 > 0 such that if ‖U(t)‖ ≤ ε ≤ ε0 in [T1, T2] ⊂ [0, T̂ ], then

[T1 + ε2, T2] ⊂ D. Also for all t ∈ [0, T̂ ] we have

‖U(t)‖2 ≤ exp(2αt)‖U(0)‖2 + C1(exp(2αt)− 1)/α for α 6= 0 and

‖U(t)‖2 ≤ ‖U(0)‖2 + 2C1t for α = 0,

where α = C1 − (1− η)λ1, with λ1 being the lowest eigenvalue of A.

Therefore, if C1 is sufficiently small , this solution will become strong after a time
determined by C1 and ‖U0‖, and if both C1 and ‖AU0‖ are small enough, it is strong on
the whole interval. The former is also true if C1 only becomes small after a time. Also
if for a t0 ∈ D there is a strong solution V (t) of the initial-value problem on [t0, T̂ ], and
V (t0) = U(t0), then U(t) = V (t) for t ≥ t0.

Now we can prove our theorem. First it is clear by checking the proof of Theorem 1.1
in [1] that we do not really need to assume U0 ∈ D(A). Instead we can also approximate
U0 from this space and then proceed as before, just losing the fact that 0 ∈ D. Now we
have to find a series of approximating equations and verify the assumptions of [1]. We
use Fk(U, t) = Pk(F (PkU, t)) where Pk is the orthogonal projection of H to the space
generated by the first k eigenfunctions of A. Then we have of course ‖PkU‖ ≤ ‖U‖ for
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all U ∈ H and ‖AsPkU‖ ≤ ‖AsU‖ for all U ∈ D(As), s > 0. This makes it clear that
hypothesis (H2) in [1] is fulfilled. For (H1) note that

{(PkF (Pk(U), t), U)}+ = {(F (Pk(U), t), PkU)}+

≤ η[{(F (Pk(U), t), Pk(U))}− + ‖A1/2PkU‖2] + C1(‖PkU‖2 + 1)

≤ η[{(PkF (PkU, t), U)}− + ‖A1/2U‖2] + C1(‖U‖2 + 1)

= η[{(Fk(U, t), U)}− + ‖A1/2U‖2] + C1(‖U‖2 + 1).

For (H3) consider

|(PkF (PkU, t), V )| = |(F (PkU, t), PkV )|
≤ C3(‖PkU‖)‖APkV ‖(‖A1/2PkU‖2µ + ((F (PkU, t), PkU)−)µ + 1)

≤ C3(‖U‖)‖AV ‖(‖A1/2U‖2µ + ((Fk(U, t), U)−)µ + 1).

Now the inequality in (H4) is even fulfilled in the very strong form

‖Fk(U, t)‖ ≤ C∗k(‖U‖),
which is very easy to ascertain as ‖AµPkU‖ ≤ Ck‖U‖. The convergence Fk(U, t) →
F (U, t) for U ∈ D(A) is obvious. So we have now verified all conditions in [1], and
therefore proved our theorem. To see the relationship with a Galerkin method apply Pk
to the equation

Ukt +AUk = PkF (PkUk, t).
This gives us

(PkUk)t +APkUk = PkF (PkUk, t),
so the evolution of PkUk is exclusively determined by PkUk itself, and it is a Galerkin-
approximation for our solution using the eigenfunctions of A. If P ∗k is the projection to
the perpendicular space, we get (P ∗kUk)t +A(P ∗kUk) = 0, so if our initial value is chosen
as belonging to the linear hull of the first k eigenvalues, Uk itself even is a Galerkin
approximation of our solution.

References
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