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1. Introduction. In this lecture, we want to discuss some regularity properties of
p-harmonic maps with values in euclidean spheres.

Let Bn = {x ∈ Rn:
∑

(xi)2 < 1} denote the unit n-dimensional ball, and write Sm−1

for the unit sphere in Rm. Define the functional

Ip(u) =
∫

Bn

|∇u(x)|p dx for u ∈W 1,p(Bn, Sm−1).

For exponents p ∈ [2, n], we wish to investigate those maps which are critical points of
Ip with respect both to variations in the range and in the parameter domain.

Definition. By a stationary p-harmonic map we mean here any u belonging to the
Sobolev space

W 1,p(Bn, Sm−1) ≡
{
f = (f1, . . . , fm) : fi ∈W 1,p(Bn) and

m∑
i=1

(fi(x))2 = 1 a.e.
}
,

and satisfying the following two conditions:
d

dt

∣∣∣∣
t=0

Ip

(
u+ tψ

|u+ tψ|

)
= 0 for all ψ = (ψ1, . . . , ψm) ∈ C∞0 (Bn,Rm),(1)

d

dt

∣∣∣∣
t=0

Ip(u(x+ tζ(x))) = 0 for all ζ = (ζ1, . . . , ζn) ∈ C∞0 (Bn,Bn).(2)

If a map u ∈ W 1,p(Bn, Sm−1) satisfies only the condition (1), we say that u is weakly
p-harmonic.

Condition (1) is easily checked to be equivalent to the fact that u ∈W 1,p(Bn, Sm−1)
is a weak solution to the Euler-Lagrange elliptic system
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(3) −div (|∇u|p−2∇u) = |∇u|pu.

More precisely, the integral identity

(4)
∫

Bn

|∇u|p−2∇ui · ∇ψi dx =
∫

Bn

ψiui|∇u|p dx

holds true for all i = 1, . . . , n and ψ = (ψ1, . . . , ψn) ∈ C∞0 (B,Rn). Here and everywhere
below,

|∇u|2 =
m∑
i=1

n∑
j=1

(
∂ui

∂xj

)2

.

Another integral identity for stationary p-harmonic maps,

(5)
∫

Bn

|∇u|pdiv ζ dx = p
∑

1≤j≤m
1≤k,`≤n

∫
Bn

|∇u|p−2 ∂u
j

∂xk

∂uj

∂x`

∂ζ`

∂xk
dx,

which holds true for all ζ ∈ C∞0 (Bn,Bn), is a consequence of (2). Note that for smooth
maps u formula (5) follows from (4) if we set ψj := ζ · ∇uj . By a suitable choice of
the testing map ζ, one can obtain the so-called monotonicity formula for stationary
p-harmonic maps,

(6) rp1 –
∫

Bn(x,r1)

|∇u(y)|p dy ≤ rp2 –
∫

Bn(x,r2)

|∇u(y)|p dy, r1 < r2 ≤ dist(x, ∂Bn).

This fact was proved for Yang–Mills fields and stationary harmonic maps by Price [18];
Fuchs [8] observed that (6) is valid also for stationary p-harmonic maps.

It is also possible to define and consider stationary p-harmonic maps u : Mm → Nn

between Riemannian manifolds. We shall not pursue that point further here.
It is well known that the regularity theory of p-harmonic maps is a delicate topic. The

example of the map u(x) = x/|x| from the unit ball Bn to its boundary ∂Bn ≡ Sn−1,
which is singular at 0 and weakly p-harmonic for all p ∈ [1, n), shows that weakly p-
harmonic maps do not have, in general, to be continuous. In fact, the state of affairs
is even worse: T. Rivière [19] has recently given an example of a weakly harmonic map
u ∈W 1,2(B3, S2) which is discontinuous at every point of B3.

However, there are lots of results about regularity and partial regularity of weakly
p-harmonic maps under various additional assumptions. Let us mention below just a few;
the list is obviously far from being complete.

Hardt and Lin [12], Fuchs [9], and Luckhaus [16] proved independently a theorem
stating that minimizing p-harmonic maps u : Mm → Nn are of class C1,α, 0 < α < 1,
outside a set of Hausdorff dimension m− [p]− 1 (that was a generalization af an earlier
result of Schoen and Uhlenbeck [20] concerning the case p = 2 of minimizing harmonic
maps). Fuchs [8] was able to show that some partial regularity results are valid also for
stationary p-harmonic maps with range contained in a small ball B(r0) ⊂ Nn of radius
r0 determined by the geometry of underlying manifolds.
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There is also a series of recent developments which were obtained via applications
of a theorem of Coifman, Lions, Meyer, and Semmes (1)—this method allows proving
regularity or partial regularity without assuming that u minimizes the Dirichlet integral.
In his papers [13]–[15], F. Hélein proved that any weakly harmonic map f : M → N

defined on a two-dimensional Riemannian manifold M is continuous; [13] contains the
proof for N = Sn−1, [15] concerns the case when N is a compact manifold with a Lie
group of isometries acting transitively, and [14] deals with the case of arbitrary compact
RiemannianN . (By standard elliptic regularity methods, continuity of a weakly harmonic
map implies its C∞-smoothness.) Evans [4] and Bethuel [1] generalized Hélein’s result to
the case of stationary harmonic maps on n-dimensional manifolds, n ≥ 2, proving their
regularity outside a singular set of (n − 2)-dimensional Hausdorff measure zero. Up to
now, these recent developments hardly have any counterparts for p 6= 2.

Let us now state our main results.

Theorem 1 (case p = n). Any weakly n-harmonic map u ∈W 1,n(Bn, Sm−1) is locally
Hölder continuous on Bn.

Theorem 2. Let 2 ≤ p < n and assume that u ∈ W 1,p(Bn, Sm−1) is a stationary
p-harmonic map. Then the set V ⊂ Bn defined by

V :=
{
x ∈ Bn : rp –

∫
Bn(x,r)

|∇u(y)|p dy → 0 as r → 0
}

is open, Hn−p(Bn \ V ) = 0, and u is locally Hölder continuous on V .

Actually, M. Fuchs [7] proved these results independently and via different methods.
A relatively short and direct proof of Theorem 1 can be found in [21]. Here, we would
like to sketch the proof of Theorem 2.

Our proof combines earlier ideas due to Hélein and Evans with one simple observation
from [21]. Namely, we note that the right-hand side of (3) is an element of the local Hardy
space H1

loc, a proper subspace of L1 (for p = 2 this was noticed and exploited by Hélein
[13]–[15]). Due to that fact we are able to model the main part of the argument on Evans
[4], introducing some modifications in order to cope with nonlinearity and degeneracy
of the p-Laplace operator Lp(u) := div (|∇u|p−2∇u). We exploit the duality between
H1(Rn) and BMO(Rn) to obtain, for the scaled energy

(7) E(x, r) = rp−n
∫

Bn(x,r)

|∇u(y)|p dy,

the following decay estimate.

Theorem 3. There exist constants (depending only on n, m, and p) ε0 ∈ (0, 1) and
θ ∈ (0, 1) such that

(8) E(x, r) < ε0 ⇒ E(x, θr) ≤ 1
4E(x, r)

for all x ∈ Bn and all positive r < d(x, ∂Bn).

(1) The theorem states that the Jacobian of a map u ∈ W 1,n(Rn) belongs to the Hardy
space H1(Rn).
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Then we apply the Dirichlet growth theorem [11] and a covering argument to deduce
Hölder continuity of u on an open subset V of Bn with Hn−p(Bn \ V ) = 0.

2. Hardy space, BMO, and Fefferman–Stein duality theorem

Definition. A measurable function f ∈ L1(Rn) belongs to the Hardy space H1(Rn)
if and only if

f∗ := sup
ε>0
|ϕε ∗ f | ∈ L1(Rn).

Here, ϕε(x) := ε−nϕ(x/ε), and ϕ is a fixed function of class C∞0 (B(0, 1)) with
∫
ϕ(y) dy =

1. The definition does not depend on the choice of ϕ (see [6]).
The interested reader will find other equivalent definitions of H1(Rn) and more details

in [10] or [24]. Let us just mention here that H1(Rn) is a Banach space with the norm
‖f‖H1 = ‖f‖L1 + ‖f∗‖L1 . Moreover, the condition f ∈ H1(Rn) implies

∫
f(y) dy = 0.

C. Fefferman [5], [6] proved that the dual of H1(Rn) is equal to the space of functions
of bounded mean oscillation, BMO(Rn). More precisely, there exists a constant C such
that

(9)
∫
Rn

h(y)ψ(y) dy ≤ C‖h‖H1‖ψ‖BMO

for all functions h ∈ H1(Rn) and ψ ∈ BMO(Rn).
The interesting paper of S. Müller [17] inspired some of the research reported in [3],

in particular the following remarkable theorem.

Theorem 4 (Coifman, Lions, Meyer, Semmes). Assume that u ∈ W 1,p(Rn), 1 < p

<∞, and that H ∈ Lp/(p−1)(Rn,Rn) satisfies the condition divH = 0 in D′(Rn). Then
∇u ·H ∈ H1(Rn), and

(10) ‖∇u ·H‖H1 ≤ C‖∇u‖Lp‖H‖Lp/(p−1)

for some constant C depending only on n and p.

The estimate (10) was not explicitly stated in [3], but follows from the proof presented
there (cf. also [4, Section 2]). Let us now make explicit a corollary of the above theorem
(more or less well known to specialists).

Corollary 5. Let Ω be a ball in Rn. Assume that u ∈ W 1,p(Ω), 1 < p < ∞, and
that H ∈ Lp/(p−1)(Ω,Rn) satisfies the condition divH = 0 in D′(Ω). Then one can find
a function h ∈ H1(Rn) such that

h(x) = ∇u(x) ·H(x), x ∈ Ω,

and

‖h‖H1 ≤ C‖∇u‖Lp(Ω)‖H‖Lp/(p−1)(Ω).

The constant C does not depend on the size of Ω.

P r o o f. See [21].
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3. Energy decay estimates

P r o o f o f T h e o r e m 3. Assume that (8) is violated and for all positive θ ∈ (0, 1)
we can find a sequence of balls Bk ≡ B(xk, rk) ⊂ Bn, k = 1, 2, . . . , such that

(11) E(xk, rk) = λpk
k→∞−→ 0,

and at the same time

(12) E(xk, θrk) > 1
4λ

p
k.

We now change the variables,

Bn 3 z 7→ y = xk + rkz ∈ Bk, k = 1, 2, . . . ,

to rescale everything to the unit ball Bn ⊂ Rn. Write

vk(z) :=
u(xk + rkz)− ak

λk
, ak := –

∫
Bk

u(y) dy.

Using the Poincaré inequality and the classical change of variables formula, we easily
obtain the following three statements:

sup
k

∫
Bn

|vk(z)|p dz < +∞,(13) ∫
Bn

|∇vk(z)|p dz = 1 for all k ∈ N,(14)

θp−n
∫

Bn(0,θ)

|∇vk(z)|p dz > 1/4 for all k ∈ N.(15)

Therefore, we may pass to a subsequence and assume without loss of generality that

vk → v strongly in Lp(Bn,Rm) and a.e.,(16)

∇vk ⇀ ∇v weakly in Lp(Bn,Rmn).(17)

What we now need to conclude the proof of Theorem 3 is the following.

Main Lemma. |∇vk|(p−2)/2∇vk
k→∞−→ |∇v|(p−2)/2∇v in the strong topology of

L2(B(0, 1/2)). Moreover , the limit function v satisfies the non-constrained p-harmonic
equation, i.e.

(18)
∫

Bn

|∇v|p−2∇v · ∇ψ dy = 0

for all ψ = (ψ1, . . . , ψm) ∈ C∞0 (Bn,Rm)
Let us first show that this fact implies Theorem 3.
Well-known results of N. Uraltseva [27] and K. Uhlenbeck [26] (see also [23]) assert

that ∇v is locally Hölder continuous on Bn. In particular, we have the estimate

(19) ess sup
y∈Bn(0,1/2)

|∇v(y)| ≤ C(n, p)
( ∫

Bn

|v(y)|p dy
)1/p

,
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which in view of (13) implies

(20) θp−n
∫

Bn(0,θ)

|∇v(y)|p dy ≤ Cθp < 1/8,

if only θ∈ (0, 1/2) is small enough. On the other hand, the strong convergence of gradi-
ents, |∇vk|(p−2)/2∇vk → |∇v|(p−2)/2∇v, combined with (15) forces

θp−n
∫

Bn(0,θ)

|∇v(z)|p dz ≥ 1/4,

a contradiction to (20). Therefore, the argument will be complete once we prove the Main
Lemma. The proof given below is modelled on [4, Section 4], with some minor changes
forced by nonlinearity of the p-Laplace operator.

Take a smooth function ζ : Rn → [0, 1]. To fix ideas for a moment, assume that
supp ζ ⊂ B(0, 9/16) and ζ ≡ 1 on B(0, 1/2). Mimicking the arguments of [4] one can use
the monotonicity formula to prove the following.

Lemma 6. For every 1 ≤ i ≤ m, the double sequence (ζ(vik − vis))k,s∈N is bounded in
BMO(Rn).

Next, for k ∈ N and 1 ≤ i, j ≤ m, define the vector field bijk ∈ Lp/(p−1)(Bn,Rn) with
coordinates

(21) bijk,` = |∇vk|p−2

(
(aik + λkv

i
k)
∂vjk
∂x`
− (ajk + λkv

j
k)
∂vik
∂x`

)
.

An easy straightforward calculation (see e.g. [21]) leads to

Lemma 7. div bijk = 0 in D′(Bn); more precisely ,
n∑
`=1

∫
Bn

∂φ

∂x`
bijk,` dz = 0

for every function φ ∈W 1,p(Bn) ∩ L∞(Bn) with compact support.

Combining this lemma with Corollary 5 we obtain

Lemma 8. The sequence of functions
n∑
`=1

bijk,`
∂(ζvjk)
∂x`

, k = 1, 2, . . . ,

is bounded in H1(Rn) for each 1 ≤ i, j ≤ m.

P r o o f o f t h e M a i n L e m m a. For sake of brevity, write G(ξ) = |ξ|(p−2)/2ξ, and
let H(ξ) = |ξ|p−2ξ. Pick a bounded function ψ ∈ W 1,p(Bn,Rm) with support contained
in Bn. Set ψk(y) := ψ(z) = ψ((y − xk)/rk)). Because u ∈ W 1,p(Bn, Sm−1) is weakly
p-harmonic, we have ∫

Bk

H(∇u) · ∇ψk dy =
∫
Bk

|∇u|puψk dy.



STATIONARY p-HARMONIC MAPS 389

Changing integration variables from y ∈ Bk to z ∈ Bn gives

(22)
∫

Bn

H(∇vk) · ∇ψ dz = λk
∫

Bn

|∇vk|p(ak + λkvk)ψ dz.

Write now the same identity with vk (resp. ak, λk) replaced by vs (resp. as, λs), substitute
ψ = ζ2(vk − vs) in both of the resulting equalities and subtract one of them from the
other to obtain

Lk,s ≡
∫

Bn

ζ2(H(∇vk)−H(∇vs)) · (∇vk −∇vs) dz(23)

+ 2
∫

Bn

ζ(vk − vs) · (H(∇vk)−H(∇vs)) · ∇ζ dz

≤ |Rk,s|+ |Rs,k|,

where, for k, s ∈ N,

(24) Rk,s = λk
∑

1≤i,j≤m
1≤`≤n

∫
Bn

ζ2|∇vk|p−2 ∂v
j
k

∂x`

(
∂vjk
∂x`

(aik + λkv
i
k)(vik − vis)

)
dz.

By the Hölder inequality, (16) and (17), the absolute value of the second integral on the
left hand side of (23) does not exceed

C‖vk − vs‖Lp(Bn) sup
k∈N
‖∇vk‖Lp(Bn) = o(1) for k, s→∞.

To estimate from below the first integral on the left hand side of (23), we apply the
elementary inequality

(H(X)−H(Y )) · (X − Y ) ≥ 1
p
|G(X)−G(Y )|2,

valid for p ≥ 2 and for vectors X, Y in any scalar product space. The calculations imply

(25) Lk,s ≥
1
p

∫
Bn(0,1/2)

|G(∇vk)−G(∇vs)|2 dz + o(1) for k, s→∞.

To estimate the right hand side of (23), note that |u| = 1 implies
m∑
j=1

(ajk + λkv
j
k)
∂vjk
∂xi

= 0 for i = 1, . . . , n and k ∈ N.

Therefore, the crucial trick of Hélein can be adapted to the case p 6=2. We may use the bijk
to express the integral Rk,s, and then apply Fefferman’s theorem. Here is the calculation:

Rk,s = λk
∑

1≤i,j≤m
1≤`≤n

∫
Bn

ζ2|∇vk|p−2 ∂v
j
k

∂x`

(
∂vjk
∂x`

(aik + λkv
i
k)− ∂vik

∂x`
(ajk + λkv

j
k)
)

(vik − vis) dz

= λk
∑

1≤i,j≤m
1≤`≤n

∫
Bn

ζ2 ∂v
j
k

∂x`
bijk,`(v

i
k − vis) dz
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= λk
∑

1≤i,j≤m

∫
Rn

( n∑
`=1

bijk,`
∂(ζvjk)
∂x`

)
ζ(vik − vis) dz

− λk
∑

1≤i,j≤m
1≤`≤n

∫
Rn

vjkb
ij
k,`ζ

∂ζ

∂x`
(vik − vis) dz ≡ λk(Σ1

k,s −Σ2
k,s).

The estimate of Σ1
k,s is provided by the Fefferman–Stein duality theorem, Corollary 6,

and Lemma 8:

sup
k,s∈N

|Σ1
k,s| ≤ C

∑
1≤i,j≤m

sup
k∈N

(∥∥∥∥ n∑
`=1

bijk,`
∂(ζvjk)
∂x`

∥∥∥∥
H1(Rn)

)
sup
k,s∈N

‖ζ(vik − vis)‖BMO(Rn) <∞.

To get a bound for Σ2
k,s, we employ the Hölder inequality with exponents 2p, 2p,

p/(p− 1) to obtain

sup
k,s∈N

|Σ2
k,s| ≤ C <∞,

since, by Lemma 6 and John–Nirenberg’s inequality, the sequence vk is bounded in
L2p(B(0, 15/16),Rm), and (bijk,`)k∈N is bounded in Lp/p−1(B(0, 15/16)) by (14).

Hence, |Rk,s| ≤ Cλk for k, s→∞. Estimating Rs,k in the same way, and using (23)
and (25) we obtain the L2-Cauchy condition for G(∇vk),

(26)
∫

Bn(0,1/2)

|G(∇vk)−G(∇vs)|2 dz → 0 as k, s→∞.

To identify the strong limit of G(∇vk), recall two other elementary inequalities:

|G(X)−G(Y )|2 ≥ 3−p|X − Y |p,(27)

|H(X)−H(Y )| ≤ 2(p− 1)(|X|p + |Y |p)
p−2
2p |G(X)−G(Y )|.(27)

Combining (27) with (26) gives ‖∇vk−∇vs‖Lp
k,s−→ 0. Therefore, (17) implies ∇vk → ∇v

in Lp(B(0, 1/2)), and a subsequence is convergent pointwise a.e. Since the map ξ 7→ G(ξ)
is a homeomorphism of Rmn, the strong L2 limit ofG(∇vk) is equal toG(∇v). This proves
the first statement of the Main Lemma.

To prove that the limit function v satisfies div (|∇v|p−2∇v) = 0, note first that (28)
and the Hölder inequality imply that∫

B(0,1/2)

|H(∇vk)−H(∇v)|
p

p−1 dz

≤ C
( ∫
B(0,1/2)

|G(∇vk)−G(∇v)|2 dz
) p

2p−2
sup
k∈N

( ∫
Bn

|∇vk(z)|p dz
) p−2

2p−2
.

Therefore H(∇vk)→ H(∇v) strongly in Lp/(p−1)(B(0, 1/2),Rmn). Now, recall the iden-
tity (22), assume that suppψ ⊂ B(0, 1/2) and conclude upon letting k →∞ that

div (|∇v|p−2∇v) = 0 in the interior of {x ∈ Bn : ζ ≡ 1}.

Varying the initial choice of ζ, we obtain the second statement of the Main Lemma.
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P r o o f o f T h e o r e m 2. Define

(29) Ṽ = {x ∈ Bn : E(x, r) < ε0 for some r < d(x, ∂Bn)}.
Obviously, Ṽ is open, and moreover Hn−p(Bn \ Ṽ ) = 0. To see this, check that the set V
of those x ∈ Bn for which the normalized energy E(x, r) tends to zero as r → 0, is equal
to Ṽ . Therefore, by Frostman’s lemma (see e.g. [27, Lemma 3.2.2 & Corollary 3.2.3]) we
obtain immediately 0 = Hn−p(Bn \ V ) = Hn−p(Bn \ Ṽ ).

If x ∈ V , then by iterations of inequality (8), Theorem 3 implies that for some positive
constants C and β we have E(y, r) ≤ Crβ for all y in a small neighbourhood of x and
all sufficiently small radii r. Therefore, applying Morrey’s imbedding theorem [11, pages
64–65], we conclude that u is uniformly Hölder continuous with exponent α = β/p on
compact subsets of V .

R e m a r k s. Using a rather standard argument, one can use Gehring’s lemma to prove
that |∇u|∈Lqloc(V ) for some q > p. Global higher integrability of |∇u| on the set V would
obviously imply that the Hausdorff dimension of Bn \V is strictly smaller than n− p. In
spite of some efforts, we were not able to prove this fact.

Another interesting problem is to prove the following.

Conjecture 9. For any ε > 0 there exists δ > 0 such that if Ω ⊂ V is an open set
with diamΩ ≤ δ, then the inequality

–
∫
Q

|∇u(y)− [∇u]Q| dy ≤ ε –
∫

2Q

|∇u(y)| dy

is valid for any cube Q such that 2Q ⊂ Ω.

This result would imply that |∇u| ∈ Lqloc(V ) for any q <∞, thus allowing for a new
and relatively simple proof of the Hölder continuity of ∇u on V .

4. One more regularity theorem. As a byproduct of the proofs presented above,
we are able to generalize a theorem of F. Hélein and F. Bethuel (asserting smoothness of
weakly harmonic maps u : Mm → Nn with |∇u| ∈ Lmloc) to the p-harmonic case.

Theorem 10. Assume that u ∈ W 1,p(Bn, Sm−1) is a weakly p-harmonic map (not
necessarily stationary), with |∇u| ∈ Ln(Bn). Then u is Hölder continuous on Bn.

We sketch below a proof of this result, without entering into technical details, which
are either identical or very similar to those appearing in the proof of Theorem 3. The
task of writing down a fully detailed proof is left to the interested readers as an easy but
tedious exercise.

First, note that for u satisfying the assumptions of Theorem 10 we have, by Hölder
inequality,

E(x, r) = rp−n
∫

Bn(x,r)

|∇u(y)|p dy ≤ C
( ∫

Bn(x,r)

|∇u(y)|n dy
)p/n

.

Therefore, by the absolute continuity of the integral, the set V defined by (29) is equal
to Bn, no matter what value of ε0 > 0 we choose. All that remains to be done is to prove
inequality (8).
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The first part of the proof of decay of E(x, r) goes without any changes.
In the proof of Lemma 6, the monotonicity formula can be replaced by the imbedding

W 1,n ⊂ BMO, and instead of applying John–Nirenberg’s lemma we can use the classical
Sobolev imbedding theorem (functions from W 1,n

loc are locally integrable with any power
q ∈ [1,∞)).

The rest of the proof also goes without changes.

Added in proof. A few months after having submitted this work to Banach Center Publi-
cations, the author learned that other mathematicians, among them Takeuchi, Toro, and Wang,
have independently proved Theorems 1 and 2 (see [22], [25]).
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riemannienne, ibid. 312 (1991), 591–596.
[15] —, Regularity of weakly harmonic maps from a surface into a manifold with symmetries,

Manuscripta Math. 70 (1991), 203–218.
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