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Abstract. Global solutions of semilinear parabolic equations are studied in the case when
some weak a priori estimate for solutions of the problem under consideration is already known.
The focus is on the rapid growth of the nonlinear term for which existence of the semigroup and
certain dynamic properties of the considered system can be justified. Examples including the
famous Cahn–Hilliard equation are finally discussed.

1. Introduction. Global solvability and qualitative behaviour of solutions are usu-
ally a very important part of studies on parabolic equations. It is known that although
in general local existence is merely a consequence of regularity of the coefficients and the
(nonlinear) right side only ([2], [4], [8]), the global existence and all the more the dynamic
behaviour of the system are much more delicate properties.

In the study of global solvability many partial results are known, e.g. a priori esti-
mates [13], the method of invariant regions [16] or the comparison technique [3]. Each
of these methods has its own interesting applications but one could hardly expect to
find any general approach covering all interesting examples. However, it very often hap-
pens, especially in the case of equations describing physical or biological processes, that
some introductory global in time estimate resulting from the phenomena described by the
equation (e.g. consequences of mass conservation or properties of the energy functional)
is initially given. With this partial introductory information the proof of the global exis-
tence becomes much simpler, and also suitable time independent estimate of the solutions
(necessary for dissipativeness of the system) can be derived, very often enabling the con-
struction of an absorbing set and attractor. It is also possible to study growth rates of

1991 Mathematics Subject Classification: 35K25, 35A05, 35B40.
Key words and phrases: compact semigroups, higher order parabolic equations, a priori

estimates, global existence, Cahn–Hilliard equation.
Supported by the State Committee for Scientific Research Grant No. 2 P301 032 05.
The paper is in final form and no version of it will be published elsewhere.

[39]



40 J. W. CHOLEWA AND T. D LOTKO

the nonlinearities for which global solutions exist, defining in the autonomous case the
semigroup {T (t)}t≥0 by the formula T (t)u0 = u(t, u0), t ≥ 0.

Our model example in which such a situation can be observed is the Cahn–Hilliard
equation, where the introductory information is a H1(Ω) a priori bound of the solution
(resulting from existence of the Lyapunov functional). This partial information allows
further H2+µ(Ω), µ ∈ [0, 2) estimates (cf. [6], [7]) to be obtained, from which existence
of the global solution and also certain dynamic properties of the system can then be
deduced (cf. Example 1 of Section 4).

In this paper the ideas described above will be developed for a semilinear parabolic
equation of the form

(1) ut = Au+ f(t, x, dm0u), (t, x) ∈ R+ ×Ω,

where −A =
∑
|ξ|,|ζ|≤m(−1)|ζ|Dζ(aξ,ζ(x)Dξ) denotes a 2m-th order uniformly strongly

elliptic operator in a bounded domain Ω ⊂ Rn, the function f : R × cl Ω × Rd0 → R

is locally Lipschitz continuous (here d0 = (n+m0)!
n!(m0)!

is the number of all multi-indices
β with |β| ≤ m0) and dm0u, m0 ≤ 2m − 1, stands for the vector {Dβu}|β|≤m0 =
{u, ∂u∂x1

, . . . , ∂u∂xn ,
∂2u
∂x2

1
, . . . , ∂

m0u
∂x
m0
n
} of the spatial partial derivatives of u of order not ex-

ceeding m0.
Together with (1) the following initial-boundary conditions are considered:

(2) u(0, x) = u0(x) in Ω,

(3) B0u = B1u = . . . = Bm−1u = 0 on ∂Ω.

In our studies we assume that:

A-I. The triple (−A, {Bj}, Ω) forms a “regular elliptic boundary value problem” in
the sense of [8, p. 76] (i.e. the root condition, smoothness condition, strong complementary
condition are satisfied, and moreover, the system {Bj} is normal).

A-II. The condition ∫
Ω

(Av)wdx = −
∫
Ω

a(v, w)dx

holds for all v ∈ W 2m,2
{Bj} (Ω) = {ϕ ∈ W 2m,2(Ω) : B0ϕ = . . . = Bm−1ϕ = 0}, w ∈

Wm,2
{Bj}(Ω), where the form a(w, v) =

∑
|ξ|,|ζ|≤m aξ,ζ(x)DξvDζw is symmetric and coer-

cive [12, p. 217], i.e. for some λ0 > 0, c > 0:

(4)
∫
Ω

a(w,w)dx+ λ0‖w‖2L2(Ω) ≥ c‖w‖
2
Wm,2(Ω), w ∈Wm,2

{Bj}(Ω).

The paper is organized as follows: Section 2 contains preliminaries, Section 3 is de-
voted to global existence and a priori estimates, while in Sections 4, 5 the Cahn–Hilliard
equation and the Kuramoto-Sivashinsky equation are considered as illustrations of the
ideas presented in the paper.

2.Preliminarynotes. The notation of monographs [8], [10] will be followed throughout
the paper. In particular, we denote by Dβu, β ∈ Nn, the spatial partial derivative

∂|β|u

∂x
β1
1 ...∂xβnn

of order |β| = β1 + . . . + βn. Also the symbol Dju with j ∈ N is used for
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the vector {Dβu, |β| = j} and furthermore, as already mentioned in the introduction,

dm0u stands for {Dβu, |β| ≤ m0}. Consequently, |Dju| =
√∑

|β|=j (Dβu)2, whereas |Ω|
denotes the Lebesgue measure of Ω.

Since the triple (−A, {Bj}, Ω) is a “regular elliptic boundary value problem”, A :=
−A+ λ with D(A) = W 2m,p

{Bj} (Ω), 1 < p <∞ is sectorial [8, p. 101] for sufficiently large
λ > λ0, λ fixed from now on. In particular, the Sobolev Embedding Theorem can then
be quoted in the form (cf. [10, Th. 1.6.1], [8, pp. 177–179]):

(5) D(Aα) ↪→W k,q(Ω), with k − n

q
< 2mα− n

p
, p ≤ q, 0 ≤ α ≤ 1,

whereas the Calderón-Zygmund estimate [8, Th. 19.2, p. 77] may be rewritten as:

(6) ‖v‖W 2m,p(Ω) ≤ C1‖Av‖Lp(Ω), for v ∈ D(A), 1 < p <∞.

For convenience the Nirenberg-Gagliardo inequality [8, Chap. I, Th.10.1] and the
elementary Young inequality are also recalled:

(7) ‖Djv‖Lq(Ω) ≤ C2‖v‖θWk,p(Ω)‖v‖
1−θ
LrΩ), for θ ∈ [j/k, 1], 0 ≤ j < k,

if 1
q = j

n + θ( 1
p −

k
n ) + (1− θ) 1

r and k − j − n
p is not a nonnegative integer,

(8) ab ≤ δas + Cδb
s
s−1 , Cδ =

s− 1
s

(sδ)
1

1−s , for a ≥ 0, b ≥ 0, δ > 0, s > 1.

Furthermore, from the assumptions introduced in Section 1, A with domain D(A) =
H2m
{Bj}(Ω) is symmetric and its range is the whole space L2(Ω) [8, p. 77]. Hence, A is

selfadjoint on L2(Ω) [11, Chapt. IV, §1] and by the coercivity condition (4) its spectrum
lies in the interval [c,∞) [11, Chapt. IV, §1]. Moreover, this last property is preserved also
in the case when A is considered on the domain D(A) = W 2m,p

{Bj} (Ω) with any 1 < p <∞
[18, §5.5.1], so that in particular:

(9) Re(σ(A)) ≥ c > 0 for any choice of D(A) = W 2m,p
{Bj} (Ω), 1 < p <∞.

Additionally, the resolvent of A is compact (cf. [18, Th. 5.5.1 (b)]).
In further considerations we shall treat (1)–(3) as an evolution problem

(10)

{
du

dt
+Au = F (t, u), t > 0,

u(0) = u0,

with D(A) = W 2m,p
{Bj} (Ω) and F (t, u) := f(t, x, dm0u) + λu. If for some α ∈ (m0

2m , 1),
p ∈ (1,∞) the function F : R+ × D(Aα) → Lp(Ω) is Lipschitz continuous on bounded
sets and u0 ∈ D(Aα), then (cf. [9, Th. 4.2.1, p. 73], [10, Th. 3.5.2, p. 71]):

Proposition 1. There is a unique solution of (10) on a maximal interval of existence
[0, τu0); i.e. there exists a continuous function u : [0, τu0)→ D(Aα) satisfying (10), such
that du

dt : (0, τu0) → D(Aα) and F (·, u(·)) : [0, τu0) → Lp(Ω) are continuous and u(t)
belongs to D(A) for t ∈ (0, τu0). Moreover , if τu0 <∞, then ‖u(tn)‖D(Aα)→∞ for some
sequence tn → τ−u0

; i.e. u “blows up” in a finite time.

R e m a r k 1. Lipschitz continuity of F from R+×D(Aα) to Lp(Ω) on bounded sets
follows easily when α ∈ (m0

2m , 1) and 2mα − m0 >
n
p . By Sobolev Embedding [10, Th.
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1.6.1] we then have D(Aα) ↪→ Wm0,∞(Ω) and, since f is locally Lipschitz continuous,
for any bounded subset I × U of R+ ×D(Aα) we obtain:

∀ v1,v2∈U
t1,t2∈I

‖F (t1, v1)− F (t2, v2)‖Lp(Ω)

≤ ‖F (t1, v1)− F (t2, v1)‖Lp(Ω) + ‖F (t2, v1)− F (t2, v2)‖Lp(Ω)

≤ LI |t1 − t2|+ ‖f(t2, ·, dm0v1)− f(t2, ·, dm0v2) + λ(v1 − v2)‖Lp(Ω)

≤ LI |t1 − t2|+
∑
|β|≤m0

LU,β‖Dβ(v1 − v2)‖Lp(Ω) + λ‖v1 − v2‖Lp(Ω)

≤ CI×U (|t1 − t2|+ ‖v1 − v2‖D(Aα)),

where the constant CI×U depends on I and U (note that since U is bounded in Wm0,∞(Ω)
the range of the arguments of f is then restricted to a compact subset of R1+n+d0).

Our task can now be introduced as follows:

Knowing for some 0 ≤ l ≤ m0 the following a priori estimate for the solution u of the
problem (1):

(11) ‖Dlu(t)‖Lr(Ω) ≤ ρ(t), t > 0,

with a function ρ ∈ C0
(
[0,∞)

)
, find the growth condition for the nonlinear term f in

(1) for which the global solution u of (10) exists defining (when f is time independent)
the semigroup {T (t)}t≥0 by the formula T (t)u0 = u(t, u0). We are further interested in
finding time independent estimates of solutions suitable for the study of the dynamics of
the considered system.

R e m a r k 2. When l > 0, the estimate (11) is not sufficient to control the derivatives
Dju with 0 ≤ j < l. Using (11) and the boundary conditions (3), we can often estimate
these lower derivatives basing on the Generalized Poincaré Inequality [17, p. 50]:

(12) ‖w‖Hl−1(Ω) ≤ c{‖Dlw‖L2(Ω) + p(w)}, for w ∈ H l(Ω),

where p is a continuous seminorm on H l(Ω) which is a norm on the space P l−1 of
polynomials of degree not exceeding l − 1. Clearly such an estimate is true when (3)

are Dirichlet boundary conditions and p(w) =
√∑l−1

j=0

∫
Γ
|Djw|2dσ (Γ ⊂ ∂Ω, |Γ | > 0,

l ≤ m). Inequality (12) then guarantees, in particular, that ‖Dlw‖L2(Ω) is the norm on
H l
{Bj}(Ω) equivalent to the standard H l(Ω) norm.

Thus, if l > 0 in (11) we shall assume that for the solution u of (10):

(13) the full W l,r(Ω) norm of u is estimated a priori for t > 0 by ρ(t).

R e m a r k 3. Nevertheless, in order to ensure (13) in the case when (11) is known,
it merely suffices to obtain some weak estimate of Ls(Ω) norm or even seminorm of u.
Such a situation takes place, for instance, in Examples 1, 2 of Section 4.

3. Global solutions. We assume throughout this section that the conditions A-I,
A-II of Section 1 are satisfied, an a priori estimate (11) holds and if l > 0 in (11) then
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also (13) is valid. Additionally we require that the nonlinear term f in (1) satisfies the
following growth condition:

(14) |f(·, ·, dm0u) + λu| ≤ C3

(
1 +

m0∑
j=0

|Dju|γj
)
, m0 ≤ 2m− 1,

where each exponent γj is restricted by the conditions:

Restriction 1. γj ≥ 1 for j = 0, . . . ,m0 and

1a. γj ≤ 1 +
2m− 1− j
j − l + n/r

if r(l − j) < n,

1b. γj arbitrarily large if n ≤ r(l − j).

We shall then prove that:

Lemma 1. If D(A) = W 2m,p
{Bj} (Ω) with p > nr

n+(2m−1−l)r and u(t) is a solution of (10)
on [0, τ ] (τ arbitrarily large), then for each α ∈ ( 2m−1

2m , 1)

(15) ‖F (t, u)‖Lp(Ω) ≤ k(t)
(
1 + ‖Aαu‖Lp(Ω)

)
, 0 ≤ t ≤ τ,

where k is the continuous function defined in (25).

P r o o f. The proof rests on the Nirenberg-Gagliardo inequality (7).
From the growth condition (14) we obtain:

(16) ‖F (t, u)‖Lp(Ω) ≤ C3|Ω|
1
p + C3

m0∑
j=0

‖Dju‖γj
Lpγj (Ω)

.

Whenever n ≤ r(l − j), the Sobolev Embedding W l−j,r(Ω) ↪→ Lq(Ω), q ≥ 1 (cf. [1,
Th. 5.4]), and a priori estimate (13) give immediately:

(17) ‖Dju‖γj
Lpγj (Ω)

≤ C4ρ
γj (t), for arbitrarily large pγj .

If n > r(l− j) and j 6= 2m− 1, then the Nirenberg-Gagliardo inequality (7) together
with the Sobolev Embedding (5) give (ε = 0 when 2m− 1− j − n

p is not a nonnegative
integer, otherwise ε > 0 and sufficiently small):

‖Dju‖γj
Lpγj (Ω)

≤ C5‖u‖
θjγj
W 2m−1,p+ε(Ω)‖D

lju‖(1−θj)γj
Lrj (Ω)

(18)

≤ C ′5‖Aαu‖
θjγj
Lp(Ω)‖D

lju‖(1−θj)γj
Lrj (Ω)

,

with parameters

(19) lj =
{
j, 0 ≤ j < l,
l, l ≤ j ≤ m0

and rj =
{

nr
n−(l−j)r , 0 ≤ j < l,
r, l ≤ j ≤ m0,

provided that the following requirements are satisfied:

(20)

{
1
γjp

= j−lj
n + θj( 1

p+ε −
2m−1−lj

n ) + (1− θj) 1
rj
,

θj ∈ [ j−lj
2m−1−lj , 1].

Additionally we shall require that:

(21) γjθj ≤ 1.
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Taking in (20) p > nr
n+(2m−1−l)r (note that nr

n+(2m−1−l)r = nrj
n+(2m−1−lj)rj by (19)) we

get:

(22) γjθj(γj) =
γj(

j−lj
n + 1

rj
)− 1

p

2m−1−lj
n + 1

rj
− 1

p+ε

,

which shows that γjθj(γj) (and also θj(γj)) is increasing with respect to γj and clearly,
since j < 2m− 1, γjθj(γj) must reach 1 at some γjmax ≥ 1. Hence, we have

(23) γjmaxθj(γjmax) = 1,

and next, considering (22) and (19), we obtain immediately

(24) γjmax = 1 +
2m− 1− j + n( 1

p −
1
p+ε )

j − l + n
r

.

Moreover, analyzing the dependence between θj and γj it is easy to see that the value
θj(γjmax) satisfying condition (23) is always attained in the interior of [ j−lj

2m−1−lj , 1] ad-
missible for θj (if ε ≥ 0 is sufficiently small).

Inserting estimates (17), (18) in the right side of (16) and applying conditions (11),
(13) (note that ‖Dljv‖Lrj (Ω) ≤ const‖v‖W l,r(Ω) for 0 ≤ j < l) we obtain finally:

‖F (t, u)‖Lp(Ω) ≤
(
C3|Ω|

1
p + C3C4

∑
{j;n≤r(l−j)}

ργj (t)(25)

+ C3C
′
5

∑
{j;n>r(l−j)}

ργj−1(t)
)

(1 + ‖Aαu(t)‖Lp(Ω))

=: k(t)(1 + ‖Aαu(t)‖Lp(Ω)).

The proof of Lemma 1 is completed.

From Lemma 1 and Proposition 1 with D(A) = W 2m,p
{Bj} (Ω), we obtain directly:

Theorem 1. For each α ∈ ( 2m−1
2m , 1) and p > nr

n+(2m−1−l)r such that F : R+ ×
D(Aα)→ D(Aα) is Lipschitz continuous on bounded sets, the solution u of the problem
(10) with u0 ∈ D(Aα) exists globally for t ≥ 0 and , when F is time independent , T (t)u0 =
u(t, u0), t ≥ 0, defines a strongly continuous semigroup of operators T (t) : D(Aα) →
D(Aα), t ≥ 0.

P r o o f. According to Proposition 1 it suffices to show that u cannot “blow up” in a
finite time. Although the proof, which rests on consideration of the integral equation

(26) u(t) = e−Atu0 +
t∫

0

e−A(t−s)F
(
s, u(s)

)
ds,

is standard (cf. [8, Th. 16.7, p. 176], [10, Corollary 3.3.5]), we insert it for completeness.
From (26) and (15), we obtain

‖Aαu(t)‖Lp(Ω) ≤ ‖Aαe−Atu0‖Lp(Ω) +
t∫

0

k(s)‖Aαe−A(t−s)‖ds(27)
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+
t∫

0

‖Aαe−A(t−s)‖‖Aαu(s)‖Lp(Ω)ds

=: I(t) +
t∫

0

J (t, s)‖Aαu(s)‖Lp(Ω)ds.

Moreover from (9), according to the results of [10, Th. 1.4.3, Ex. 4, §1.4]:

I(t) ≤ ‖e−AtAαu0‖Lp(Ω) + sup
s∈[0,t]

{k(s)}C6

∞∫
0

e−c(t−s)

(t− s)α
ds(28)

≤ C7e
−ct‖Aαu0‖Lp(Ω) + sup

s∈[0,t]

{k(s)}C6
Γ (1− α)
c1−α

≤ C7 + C8 sup
s∈[0,t]

{k(s)},

and also,

(29) J (t, s) ≤ C6
e−c(t−s)

(t− s)α
≤ C6

(t− s)α
.

Making use of (28) and (29) we get from (27) the Volterra type integral inequality:

(30) ‖Aαu(t)‖Lp(Ω) ≤ C7 + C8 sup
s∈[0,t]

{k(s)}+
t∫

0

C6

(t− s)α
‖Aαu(s)‖Lp(Ω)ds,

which, by [10, Lem. 7.1.1], gives an estimate of ‖Aαu(t)‖Lp(Ω) for t ≥ 0. The proof of
Theorem 1 is completed.

Consider further the special case m0 ≤ m when the nonlinear term f in (1) is time
independent and contains the derivatives of order not exceeding half the order of A. Let
r ≥ 2 in (11) (or (13), respectively) and also F : D(A 1

2 ) → D(A 1
2 ) (where D(A) =

H2m
{Bj}(Ω)) is Lipschitz continuous on bounded sets. Then:

Theorem 2. If the introductory a priori estimate (11) (or (13), respectively) is time
independent then

(31) ‖A 1
2u(t)‖L2(Ω) ≤ max{‖A 1

2u0‖L2(Ω), (C9)
1
2 }, t > 0,

and Theorem 1 holds with α = 1
2 . Moreover , T (t) : D(A 1

2 )→ D(A 1
2 ) takes bounded sets

into bounded sets and is compact on D(A 1
2 ) for each t > 0.

P r o o f. Since the resolvent of A is compact, according to Proposition 1 and [9, Th.
4.2.2], it suffices only to prove that uniform estimate (31) is valid. Multiplying (10) by
Au we get:

1
2
d

dt
‖A 1

2u‖2L2(Ω) = −‖Au‖2L2(Ω) − (F (u),Au)L2(Ω)(32)

≤ −‖Au‖2L2(Ω) + ‖F (u)‖L2(Ω)‖Au‖L2(Ω).

Since (11) and (13) are time independent then k(t) ≡ k in (15). Inserting (15) with
k(t) ≡ k in the right side of (32) and using Young and standard Interpolation Inequality
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[10, Th. 1.4.4], for arbitrarily chosen α ∈ ( 2m−1
2m , 1) we obtain:

1
2
d

dt
‖A 1

2u‖2L2(Ω) ≤ −‖Au‖
2
L2(Ω) + k(1 + ‖Aαu‖L2(Ω))‖Au‖L2(Ω)(33)

≤ −1
2
‖Au‖2L2(Ω) +

1
2
k2 + k‖Au‖1+αL2(Ω)‖u‖

1−α
L2(Ω).

For r ≥ 2 and ρ(t) ≡ ρ in (11) (or in (13) respectively), (33) may be rewritten as

(34)
d

dt
‖A 1

2u‖2L2(Ω) ≤ −‖Au‖
2
L2(Ω) + k2 + 2k(ρ|Ω|

r−2
2r )1−α‖Au‖1+αL2(Ω).

Then combining (34) with an obvious inequality

(35) ‖A 1
2u‖2L2(Ω) ≤ C‖Au‖

2
L2(Ω),

it is easy to see that for some C9 > 0 (cf. [7, Lem. 5]):

(36) ‖A 1
2u‖2L2(Ω) ≤ max{‖A 1

2u0‖2L2(Ω), C9},

(more precisely, C9 := Cz0, where z0 is the positive root of an algebraic equation: −z +
k2 + 2k(ρ|Ω| r−2

2r )1−αz
1+α

2 = 0 and C appears in (35)). The proof is completed.

4. Examples

Example 1. As the first example we shall consider the Cahn–Hilliard equation ([17],
[7]):

(37)


ut = −ε2∆2u+∆ (g(u)) , (t, x) ∈ R+ ×Ω, n ≤ 3,
u(0, x) = u0(x) for x ∈ ∂Ω,
∂u
∂N = ∂(∆u)

∂N = 0 on ∂Ω,

where g is a polynomial of order 2l − 1,

g(s) =
2l−1∑
j=1

ajs
j , l ∈ N, l ≥ 2 and l = 2 if n = 3,

with a2l−1 > 0. From (37) it is easy to deduce (cf. [7]) that

(38) the average u(t) =
1
|Ω|

∫
Ω

u(t, x)dx of u(t) is preserved,

and moreover, that

(39) L(φ) =
ε2

2
‖∇φ‖2L2(Ω) +

∫
Ω

( φ∫
0

g(s)ds
)
dx

is the Lyapunov functional for (37). We have

(40) ∆ (g(u)) = g′′(u)|∇u|2 + g′(u)∆u,

and for n = 3, with the prescribed growth of g:

(41) |∆(g(u))| ≤ const ((1 + |u|)|∇u|2 + (1 + |u|2)|∆u|).

Making use of (38) and (39) our introductory a priori estimate (11) now reads (cf.
Remark 2):

(42) ‖u(t, ·)‖H1(Ω) ≤ const′(‖u0‖H1(Ω), |u0|),
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i.e. (13) holds with l = 1 and r = 2. Evidently, A = −ε2∆2 and D(A) = {φ ∈ H4(Ω) :
∂φ
∂N = ∂(∆φ)

∂N = 0 on ∂Ω}.
Restriction 1a. with (l = 1, r = 2, m = 2, n = 3, j)j=0,1,2 allows for

γ0 ≤ 7, γ1 ≤
7
3
, γ2 ≤

7
5
,

in (14), so that the maximal growth for f given by ∆ ◦ g can be:

(43) |f(·, d2u)| ≤ C3(1 + |u|7 + |∇u| 73 + |∆u| 75 ).

By simple application of the Young inequality to the components of the right side in (41)
we find that:

|u| |∇u|2 ≤ 6
7
|∇u| 73 +

1
7
|u|7,

|u|2 |∆u| ≤ 5
7
|∆u| 75 +

2
7
|u|7,

which shows that the restriction (43) is satisfied by the Cahn–Hilliard equation when
n = 3. For dimensions n = 1, 2 we have no restrictions on l in the definition of g and
also Restriction 1b. allows for arbitrarily large γ0 > 1 so that the results of Section 3 are
applicable to (37) for all n ≤ 3. Since also F : D(A 1

2 )→ D(A 1
2 ) (here D(A) = H2m

{Bj}(Ω))
is Lipschitz continuous on bounded sets, whereas the introductory estimate (42) is time
independent, then Theorem 2 ensures that for D(A) = H2m

{Bj}(Ω) the solution u of the

problem (10) with u0 ∈ D(A 1
2 ) exists globally for t ≥ 0 and T (t)u0 = u(t, u0) (t ≥ 0)

defines a strongly continuous semigroup of operators T (t) : D(A 1
2 ) → D(A 1

2 ), t ≥ 0.
Moreover, T (t) takes bounded sets into bounded sets (see (31)) and is compact on D(A 1

2 )
for t > 0. Additionally, since the estimate (31) of ‖A 1

2u‖L2(Ω) is time independent then
also ‖F (u)‖L2(Ω) is globally bounded for t ∈ [0,∞). Hence, in the presence of [10,
Th. 3.3.6], we obtain global boundedness of ‖Aαu‖L2(Ω) with any α ∈ [ 12 , 1) and in
consequence for each α ∈ [ 12 , 1) we get a compact semigroup T (t) : D(Aα) → D(Aα),
t ≥ 0.

According to [9, Th. 4.2.4] and the results of Section 3, only point dissipativeness
needs to be additionally checked in order to show that the global attractor for the Cahn–
Hilliard problem (37) exists on D(Aα) for each α ∈ [ 12 , 1). We leave this part of studies
until Section 5 where existence of an absorbing set will be briefly justified.

Example 2. Our second example will be the Kuramoto-Sivashinsky equation in di-
mension n ≤ 3. Following [14], we shall treat the problem of the form:

(44)


ut + ε2∆2u+∆u+ 1

2 |∇u|
2 = 0, (t, x) ∈ R+ ×Ω,

u(0, x) = u0(x), x ∈ Ω ⊂ Rn,
∂u
∂N = ∂(∆u)

∂N = 0 on ∂Ω,

although usually space periodic boundary conditions in (44) are considered (cf. [17], [14]).
The conditional result, that the L2(Ω) global in time boundedness of |∇u| implies Hk(Ω)
global boundedness of u, is formulated in [14]. Let us then assume that for u solving (44):

(45) ‖∇u(t, ·)‖L2(Ω) ≤M, t > 0,
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which is true e.g. for even solutions when Ω ⊂ R; see [14]. Integrating the first equation
in (44) over Ω we get:

d

dt
u(t) ≡ d

dt

(
1
|Ω|

∫
Ω

u(t, x)dx
)

= − 1
2|Ω|
‖∇u(t, ·)‖2L2(Ω),

so that, in the presence of (45), the H1(Ω) norm of u (by Remark 2; ‖u‖H1(Ω) =
(‖∇u(t, ·)‖2L2(Ω) + |u(t)|2)

1
2 ) is estimated for t > 0. The operator A and the domain

D(A) are clearly the same as for the Cahn–Hilliard equation, while the nonlinear term
is:

(46) f(·, d2u) = −∆u− 1
2
|∇u|2.

The growth condition (43) is then admissible for validity of the results of Section 3 and
in this example it is satisfied by f directly from (46). Thus, assuming (45) we have the
semigroup T (t) : D(Aα) → D(Aα), t ≥ 0 (with any α ∈ [ 12 , 1)) defined for the problem
(44) by T (t)u0 = u(t, u0). Moreover, T (t) takes bounded sets into bounded sets and is
compact for t > 0.

5. Dissipativeness of the Cahn–Hilliard equation. We shall develop here the
results of Example 1 showing existence of the global attractor for the Cahn–Hilliard
equation (37).

Note that for any α ∈ [ 12 , 1) an element u0 ∈ D(Aα) is an equilibrium point of
the semigroup T (t) : D(Aα) → D(Aα), t ≥ 0, if and only if u(t, u0) ≡ u0 (t ≥ 0) is a
stationary solution of (37) constructed in Proposition 1. Hence the set S of all equilibrium
points of the semigroup generated by (37) on D(Aα) does not depend on α ∈ [ 12 , 1) and
in particular S ⊂ D(A). Furthermore, using the identity (u0 ∈ S):

0 = L(T (t)u0)− L(u0) = −
t∫

0

‖∇[−ε2∆u0 + g(u0)]‖2L2(Ω),

following from (37) and (39), and elliptic regularity theory (note that by the assumption
A-I of Section 1 the boundary ∂Ω appearing in (37) is of the class C4), it is easy to
see that the elements of S coincide with H2(Ω) solutions of the elliptic boundary value
problem:

(47)

{
−ε2∆v + g(v) = 1

|Ω|
∫
Ω
g(v)dx, x ∈ Ω,

∂v
∂n = 0 on ∂Ω,

(cf. [5, Lem. 2] for detailed proof).
It is also clear that S contains all constant functions v ≡ const and that the compact

global attractor (if it exists) has to contain S. To allow existence of the global attractor it
is thus necessary to restrict further the semigroup T (t) from the whole D(Aα) (α ∈ [ 12 , 1))
to its positively invariant (with respect to T (t); cf. property (38)) metric subspace:

(48) Hαb = {φ ∈ D(Aα); |φ| ≤ b}, b > 0,

i.e. consider for each α ∈ [ 12 , 1), b > 0 the semigroup

T (t) : Hαb → Hαb , t ≥ 0.



GLOBAL SOLUTIONS VIA PARTIAL INFORMATION 49

We shall then recall the following (cf. [7, Lem. 1]):

Lemma 2. The set S ∩ Hαb is bounded in D(A) with the bound depending on ε, b, Ω
and constants characterizing the nonlinear term g.

P r o o f. From [17, p. 152] we have immediately:

(49) ∃C>0 ∀s∈R − g(s)s ≤ −1
2
a2l−1s

2l + C,

(50) ∀ν>0 ∃Cν>0 ∀s∈R |g(s)| ≤ νa2l−1s
2l + Cν .

We also recall that elements of S are H2(Ω) solutions of the elliptic boundary value prob-
lem (47). Then considering (47), we find that (cf. [7, Lem. 1] for the direct calculations):

(51) ε2‖∇v‖2L2(Ω) ≤ (C + Cν |v|)|Ω|,

(52) ε2‖∆v‖2L2(Ω) ≤ sup
s∈R
{−g′(s)}‖∇v‖2L2(Ω) = C10‖∇v‖2L2(Ω)

(note that (−g′) is bounded from above). Next, taking the Laplacian of both sides of the
equation in (47) and multiplying the result by ∆2v, we get the equality:

(53) −ε2‖∆2v‖2L2(Ω) +
∫
Ω

(g′′(v)|∇v|2 + g′(v)∆v)∆2vdx = 0,

which, in the presence of the Young inequality, leads to the estimate:

ε2

2
‖∆2v‖2L2(Ω) ≤

1
ε2

(‖g′′(v)‖2L∞(Ω)‖|∇v|
2‖2L2(Ω)(54)

+ ‖g′(v)‖2L∞(Ω)‖∆v‖
2
L2(Ω)).

Since for n ≤ 3 the Sobolev Embeddings D(A 1
2 ) ↪→ L∞(Ω), D(A 1

2 ) ↪→ W 1,4(Ω) are
valid, it follows that (based on Remark 2 with p(w) = |w|) the estimates (51), (52) are
sufficient to bound the right side of (54) and to obtain the required H4(Ω) boundedness
of S ∩Hαb . Lemma 2 is thus proved.

We can now justify that:

Lemma 3. For arbitrary α ∈ [ 12 , 1), b > 0 the semigroup generated by the Cahn–
Hilliard equation on the metric space Hαb has a global attractor.

P r o o f. Based on the results contained in Example 1 it suffices to show that for any
α ∈ [ 12 , 1), b > 0 the semigroup T (t) : Hαb → Hαb , t ≥ 0 generated by (37) is point
dissipative (cf. [9, Th. 4.2.4]).

Let us define the set

Bαb = {φ ∈ Hαb ; ‖Aαφ‖L2(Ω) ≤ sup
v∈S∩Hα

b

‖Aαv‖L2(Ω)}

and note that by Lemma 2, Bαb is bounded in D(Aα) (α ∈ [ 12 , 1), b > 0). Choosing next
some u0 ∈ Hαb we obtain immediately, from the results of Example 1, that the ω-limit set
ω(u0) ⊂ Hαb attracts u0 in Hαb (cf. [9, Lem. 3.2.1]). Moreover, by the proof of [10, Th.
4.3.4] (based on considerations of the Lyapunov functional), the set ω(u0) consists only
of the elements of S. Hence ω(u0) is a subset of Bαb , which proves simultaneously that
Bαb attracts each point of Hαb . Our considerations are completed.
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Additionally we have reported in our paper [5] certain natural generalizations of the
results concerning the single Cahn–Hilliard equation (37) to the system case (i.e. when
multicomponent alloys and, consequently, systems of equations similar to (37) are con-
sidered).
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