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Abstract. To a germ f : (Cn, 0)→ (C, 0) with one-dimensional singular locus one associates

series of isolated singularities fN := f + l
N , where l is a general linear function and N ∈ N. We

prove an attaching result of Iomdin-Lê type which compares the homotopy types of the Milnor

fibres of fN and f . This is a refinement of the Iomdin-Lê theorem in the general setting of a

singular underlying space.

1. Introduction and main results. Let f : (Cn, 0) → (C, 0) be a function germ

with 1-dimensional singular locus Σf =
⋃

i∈I Σi, where Σi are the irreducible components.

Let l : (Cn, 0) → (C, 0) be a general linear function. We denote by F the Milnor fibre of

f and by FN the Milnor fibre of the germ fN := f + lN , for N ∈ N.

I. N. Iomdin proved the following:

Teorem [Io]. If N ≫0, then fN is an isolated singularity and the Euler characteristics

of F and FN are related by

χ(F ) = χ(FN ) − N
∑

i∈I

diµi,

where µi is the Milnor number of the transversal singularity at some point of Σi \ {0}

and di := mult0Σi.

The geometric proof given by Lê D. T. in [Lê-1] provides more information than just

the Euler number formula above. Lê proves that FN is made up from F by attaching

N
∑

i∈I diµi cells of dimension n− 1. Starting from Lê’s approach, we prove in a general

setting a more refined attaching formula, at the homotopy type level.
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Results related to the Iomdin-Lê theorem were obtained e.g. in [Si-1], [Si-2], [Va],

[Ti-1]. The main result proved here shows that one can control (up to a certain degree)

the attaching of cells and thus obtain new information in homotopy. Our proof is based

on the construction developed in [Ti-2].

We first give the statement, then show some interesting consequences.

Let (X, x) be a complex analytic space germ of dimension n and let f : (X, x) → (C, 0)

be an analytic function germ. We fix on X some Whitney stratification S := {Sj}j∈Λ.

There is, however, a canonical one, as proved by J. Mather.

Definition. Let Σfj
be the (possibly void) germ of the closure of the singular locus

of the restriction fj := f|Sj
. Define the singular locus of f by

Sing f :=
⋃

j∈Λ

Σfj
.

This definition depends on S, but one may take as S the canonical stratification and then

Sing f becomes intrinsic.

One easily shows that Sing f ⊂ f−1(0).

Suppose from now on that f has 1-dimensional singular locus, i.e. dim Sing f = 1. Let

then Sing f =
⋃

i∈I Σi be the decomposition into irreducible curves. We denote by di the

multiplicity of Σi at {x}.

The following well-known fact can be proved for instance by methods developed in §2.

Fact. Take a transversal slice H to Σi at some point a ∈ Σi \ {0}. Then the Milnor

fibre Fi of the restriction f|H : (H, a) → (C, 0) does not depend on H or a, up to

homeomorphism.

We denote the Milnor number of Fi by µi, the cone over Fi by C(Fi) and the suspen-

sion over Fi by S(Fi). It will be shown later that Fi is naturally embedded in F .

Let Ωf be a Zariski open dense subset of “general” linear functions l : (X, x) → (C, 0),

in a sense to be precised later. Let fN := f + lN , for N ∈ N. Our main result is the

following.

Theorem. Let f : (X, x) → (C, 0) have a 1-dimensional singular locus. Then, for

N ≫ 0, fN is an isolated singularity (i.e. Sing fN = {x}) and one has the following

homotopy equivalence:

FN
ht
≃ (F ∪ E)

∨

i∈I

∨

#Mi

S(Fi),

where #Mi = Ndi − 1, E :=
⋃

i∈I C(Fi) and F ∪ E is the result of attaching to F the

cones C(Fi) over Fi ⊂ F , ∀i ∈ I.

The proof will be given later, we now discuss some consequences.

Grothendieck introduced the notion of rectified homotopical depth. Lê shows in [Lê-

4] the close relation between two properties of a space (X, x): having maximal rectified

homotopical depth, i.e. rhd(X, x) = n, and the constant sheaf C•
X

being perverse (middle

perversity). In particular, the former implies the latter.
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Corollary 1. If rhd(X, x) = n, then

FN
ht
≃ (F ∪ E)

∨

#I

∨

#Mi

Sn−1

and F ∪ E is homotopy equivalent to a (possibly trivial) bouquet of spheres Sn−1.

Corollary 2. If C•
X

is perverse (e.g. if (X, x) is a complete intersection), then

bn−1(F ) ≤
∑

i∈I

µi.

P r o o f. If rhd(X, x) = n, then for each i ∈ I, Fi is a bouquet of spheres of dimension

n − 2 and FN is a bouquet of spheres of dimension n − 1, by [Lê-4], hence F ∪ E must

itself be a bouquet of such spheres. Corollary 2 is a direct consequence of the first one.

Corollary 1 is much stronger than the attaching result obtained by Vannier [Va] in

the smooth case X = Cn. Our improvement is in quality: the presence of the bouquet of

spheres was not known before. In homology, the inequality in Corollary 2 is not surprising,

since more recently D. Siersma proved, still on a smooth underlying space, an even sharper

bound [Si-2]:

bn−1(F ) ≤
∑

i∈I

Ker(hi − I),

where hi is the monodromy of the isolated singularity with Milnor fibre Fi, when turning

around {x} along a simple loop contained in Σi \ {x}.

2. Polar curves and geometric monodromy. Let g : (X, x) → (C, 0) be any

function. One regards (X, x) as embedded in (Cm, 0), for some sufficiently large m ∈ N.

By [Lê-3], there is a topological fibration g|X∩B : X ∩ B \ g−1(0) → D \ {0} induced

by g, where B is a small ball at 0 ∈ Cm and D is a small enough disc centred at 0. One

calls it the Milnor fibration of g. Let l : (X, x) → (C, 0) be a linear function. Let CrtΦ

be the critical locus, with respect to the fixed Whitney stratification S, of the map

Φ := (l, g) : X → C2.

We denote by Γ(l, g) the closure of the set CrtΦ \ Sing g.

By [Lê-3], there is an open dense subset of linear forms l such that Γ(l, g) is a curve or

it is void and that l−1(0) ∩ Sing g = {x}. We denote such a set by Ω̂g. The curve Γ(l, g)

is called the polar curve of g with respect to l, relative to S. For our previous function f

with 1-dimensional singular locus, we can prove the following:

Lemma. If l ∈ Ω̂f then, for N ≫ 0, the function fN has an isolated singularity.

P r o o f. We prove that the restriction fN |Si
is nonsingular, for any stratum Si ∈ S

of dimension ≥ 1.

By a local change of coordinates at p ∈ Si, one may assume that l is the first coordinate

x1. If p 6∈ Γ(l, f)∪ Sing f then the germ fN |Si
is clearly nonsingular, hence we only have

to prove the assertion at some point p ∈ Γ(l, f) ∪ Sing f , p 6= x, arbitrarily close to x.

Denote by ∂(fN) the Jacobian ideal of fN in the chosen coordinates. If p ∈ Sing f then
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V (∂(fN )) ∩ Sing f = V (l) ∩ Sing f = {x}, by the definition of Ω̂f . Since p 6= x, we get a

contradiction.

If now p ∈ Γ(l, f) then (∂fN/∂x1)(p) = (∂f/∂x1+NxN−1
1 )(p) can be equal to 0 for at

most one value of N . (If not, then x1(p) = 0, which would again contradict the definition

of Ω̂f .) This N depends on the point p, hence it is locally constant, thus constant on each

component of Γ(l, f). It follows that V (∂fN) ∩ Γ(l, f) = {x}, for all N except a finite

number of values.

From now on, we shall only consider the subset Ωg ⊂ Ω̂g of linear forms with the

property that l−1(0) is transversal to all Thom strata in a fixed (ag)-stratification of

g−1(0).

We resume Lê’s carrousel construction, following [Lê-2]. Let l ∈ Ωg. The curve

germ (with reduced structure) ∆(l, g) := Φ(Γ(l, g)) is called the Cerf diagram (of g, with

respect to l, relative to S). We use the same notation Γ(l, f), respectively ∆(l, g) for

suitable representatives of these germs. Let (u, λ) be local coordinates at 0 ∈ C2.

There is a fundamental system of “privileged” open polydiscs in Cm, centred at 0,

of the form (Dα × Pα)α∈A and a corresponding fundamental system (Dα × D′
α)α∈A of

2-discs at 0 in C2, such that Φ induces, for any α ∈ A, a mapping

Φα : X ∩ (Dα × Pα) → Dα × D′
α

which is a topological fibration over Dα × D′
α \ (∆(l, g) ∪ {λ = 0}).

Moreover, g induces a topological fibration

gα : X ∩ (Dα × Pα) ∩ g−1(D′
α \ {0}) → D′

α \ {0},

respectively

g′α : X ∩ ({0} × Pα) ∩ g−1(D′
α \ {0}) → D′

α \ {0},

which is fibre homeomorphic to the Milnor fibration of g, respectively to the Milnor

fibration of g|{l=0}. The disc D′
α has been chosen small enough such that ∆(l, g)∩∂Dα×

D′
α = ∅.

One builds an integrable smooth vector field on Dα×S′
α, where S′

α := ∂D′
α, tangent to

∆(l, g)∩(Dα×S′
α) and lifting the unit vector field of S′

α by the projection Dα×S′
α → S′

α.

The vector field on Dα×S′
α can be lifted by Φα, and this lift—which is tangent to the polar

curve Γ(l, g)∩Φ−1(Dα × S′
α)—can be integrated to get a characteristic homeomorphism

of the fibration induced by gα over S′
α, hence a geometric monodromy h of the Milnor

fibre Fg of g. We call it the (geometric) carrousel monodromy.

We fix some η ∈ S′
α and denote D = D(l, g) := Dα × {η}. Let

lα : X ∩ Φ−1
α (D) → D

be the restriction of Φα and notice that Fg is homeomorphic to l−1
α (D).

The integration of the vector field on Dα×S′
α produces a homeomorphism h : D → D

which we call the carrousel of the disc D: the trajectory inside Dα×S′
α of some point a ∈ D

is such that after one turn around the circle S′
α we get another point a′ := h(a) ∈ D. By

construction, the vector field restricted to {0} × S′
α is the unit vector field of S′

α, hence

the centre (0, η) of the carrousel disc D is indeed fixed; the circle ∂D is also pointwise

fixed.
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The distinguished points ∆(l, g)∩D of the disc have a complex motion around (0, η),

depending on the Puiseux parametrizations of the branches of ∆. Let ∆i be such a branch

and consider a Puiseux parametrization of it, in coordinates (u, λ): u =
∑

j≥mi
ci,jt

j ,

λ = tni , where
mi := mult0∆i, ni := mult0(∆i, {λ = 0}).

Let ρi := mi/ni be the Puiseux ratio of ∆i and notice that ρi ≤ 1, since l is general.

Lê D. T. defines the polar filtration of the disc D as follows. Assume that the Puiseux

ratios are decreasingly ordered: ρ1 ≥ ρ2 ≥ . . . Then there is a corresponding sequence

of open discs D1 ⊆ D2 ⊆ . . . ⊂ D centred at (0, η), where Di = Di+1 if and only if

ρi = ρi+1, such that ∆i+1 ∩ D ⊂ Di+1 \ Di, for i > 1 and ∆1 ∩D ⊂ D1.

In each annulus Ai := Di \ Di−1, the carrousel is not that easy to describe (we refer

to [Lê-2], [Ti-1], [Ti-2] for details), but at the “first approximation”, each point is rotated

by 2πρi. There must be a continuous transition between successive annuli: within a thin

enough annulus containing the circle Ai∩Ai+1 each point will have a carrousel movement

which is exactly a rotation by 2πρ(r), where r is the radius to that point and ρ(r) is a

continuous decreasing real function with values in the interval [ρi+1, ρi]. Then Lê proves

the following result, see [Si-1] for more details:

Proposition. Let l∈Ωf and let {ρi, i ∈ K} be the set of polar ratios of ∆(l, f), where

∆(l, f) =
⋃

i∈K ∆i is the decomposition into irreducible curves. If N > 1/ρi, ∀i ∈ K,

then the polar filtrations of (l, fN) and (l, f) are the same, except that (l, fN) has one disc

more. Consequently, the Milnor fibre F is naturally embedded in the Milnor fibre FN .

P r o o f (sketch). The technique is due to Lê. One notices that ∆(l, fN) has all the

polar quotients of ∆(l, f) and additionally one, namely 1/N . This is because the singular

locus of f becomes a component of the polar curve Γ(l, fN), hence its image by the map

(l, fN) is the supplementary component of ∆(l, fN ).

Replace g by f in the definition of the map Φ. We look at the image of Φ in coordinates

(u, λ). Then F = Φ−1(D) = Φ−1{λ = η} and FN = Φ−1(λ + uN = η). Using the

1-parameter deformation λ + εuN = η, where ε ∈ [0, 1], one constructs a nonsingular

vector field, tangent to ∆ and such that, by integrating it, one defines an embedding of

the carrousel disc D of (l, f) into {λ+uN =η}, see Figure 1. The image of this embedding

does not intersect Φ(Sing f). Therefore one can identify the carrousel disc D(l, f) with the

disc just before D(l, fN ) in the increasing polar filtration of the carrousel disc D(l, fN ).

The vector field on C2 can be lifted, then integrated to give an embedding F ⊂ FN ,

which is actually the lift of the embedding D(l, f) ⊂ D(l, fN).

We intend to use the constructions developped in [Ti-2] in order to prove that FN is

obtained from F by a controlled attaching of cells. We need some more notation.

Let ΦN := (l, fN) : (X, x) → (C2, 0) be the map obtained by replacing g by fN in the

definition of Φ. We saw that F ⊂ FN and that FN \ F = Φ−1
N (D(l, fN ) \D(l, f)), where

D(l, f) is identified with the disc just before D(l, fN ) in the increasing polar filtration

of D(l, fN ). Denote by A the annulus D(l, fN ) \ D(l, f) and by ∆Σ the component of

∆(l, fN) which comes from the singular locus of f ; this has the following parametrization:

u = t, λ = tN . Then A ∩ ∆(l, fN) = A ∩ ∆Σ is a set of N points equally distributed on

a circle included in A.
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Fig. 1

R e ma r k. The carrousel movement of any point in A is a rotation by 2π 1
N

.

We next define a “good” system of paths, see Figure 2. Let δ1, . . . , δN be small enough

equal discs included in A, centred at the N points of intersection A∩∆S . Let b∈∂D(l, fN )

and define a path from b to a ∈ ∂D(l, f) along a radius. Assume that, when rotating this

path counterclockwise, it intersects the discs δ1, . . . , δN in this order. Then define a path

γ1 from b to some b1 ∈ ∂δ1, say a segment.

By [Ti-2], the set of paths {γi+1 := hi(γ1) | i ∈ {0, N − 1}} is a non-selfintersecting

system of paths from b to bi+1 := hi(b1), respectively.

Fig. 2

Definition. For i ∈ I, k ∈ {1, . . . , di} and j ∈ {1, . . . , N}, let Bi,j,k be a small

Milnor ball centred at the point bi,j,k ∈ Γ(l, fN) ∩Φ−1
N (δj). Let Fi,j,k := Bi,j,k ∩Φ−1

N (bj)

be the local Milnor fibre of the germ at bi,j,k of the function l : Φ−1
N (A) → A. Since l

is trivial over γi, we may fix a trivialization. Then the union of the cone C(Fi,j,k) over

Fi,j,k and the mapping cylinder Fi,j,k × γi along the just named trivialization is called

the generalized thimble on Φ−1
N (b) associated to Fi,j,k.

It is now clear that the Milnor fibre FN is obtained, up to homotopy, as follows:

add to the fibre Φ−1
N (b) all the generalized thimbles, then transport this fibre along the
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path from b to a (using some trivialization). Hence FN is built up from F by attaching

all those generalized thimbles. Moreover, we have proved in [Ti-2] the following result.

(Notice that Fi,j,k is homeomorphic to Fi, for any j and k.)

Proposition [Ti-2]. There is the following homotopy equivalence:

FN
ht
≃ (F ∪i∈I ∪di

C(Fi))
∨

i∈I

∨

di(N−1)

S(Fi),

where each union F ∪di
C(Fi) is the result of attaching the di generalized thimbles asso-

ciated to Fi,1,k, for k ∈ {1, . . . , di}, as described above.

P r o o f (main lines). We have to prove that, for each i ∈ I, a number of di(N − 1)

thimbles are attached over something contractible, and therefore become suspensions over

the corresponding fibres Fi,j,k.

We have a good control over the attaching, given by the use of the carrousel h.

One may assume that the restriction of the geometric monodromy h on Φ−1
N (b) is the

identity (this comes from the fact that fN is an isolated singularity). Furthermore, one

may also assume that, by definition, the thimble associated to Fi,j+1,k is obtained as the

transformation by h of the thimble associated to Fi,j,k.

Now fix i and k and attach the cones C(Fi,j,k), through their thimbles, in the order

given by the index j. It follows that the attaching of C(Fi,j+1,k) is made over the already

attached cone C(Fi,j,k). A cone is contractible, thus the conclusion follows.

3. Proof of the Theorem. By the preceding Proposition, it remains to prove that,

for each i ∈ I, the attaching to F of the di cones C(Fi,1,k), k ∈ {1, . . . , di}, gives a

homotopy equivalence:

F ∪
⋃

k∈{1,...,di}

C(Fi,1,k)
ht
≃ (F ∪ C(Fi,1,1))

∨

k∈{2,...,di}

S(Fi,1,k).

Recall that the carrousel h, when iterated N times, will fix the small discs δj in the

annulus A. In particular hN is an automorphism of Φ−1
N (bj), ∀j ∈ {1, . . . , N}.

The crucial observation is that we may take, by definition,

bi,1,k+1 := hN (bi,1,k) and Fi,1,k+1 := hN (Fi,1,k),

and that the fibres Fi,1,k, k ∈ {1, . . . , di}, are pairwise disjoint. This is due to the geo-

metric monodromy h, obtained by integrating a vector field tangent to the trace of the

polar curve

Γ(l, fN) ∩ Φ−1
N (D(l, fN ) × S′

η).

Therefore the cones C(Fi,j,k) are also related by

C(Fi,j,k+1) = hN (C(Fi,j,k)), ∀k ∈ {1, . . . , di − 1}, ∀j ∈ {1, . . . , N}.

Let us denote by ΓΣ := Γ(l, fN) ∩ Φ−1
N (∆Σ) the component of the polar curve which

comes from the singular locus of f and let ΓΣ =
⋃

i∈I Γi be its decomposition into

branches. Such a branch Γi comes from the branch Σi of Sing f . Recall that the restriction

ΦN |Γi
: Γi → ∆Σ is a covering of degree di ramified over {0}.
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We have to be more precise in the definition of the vector field on D(l, fN), hence on

the carrousel movement. We may assume that the circle ∂D(l, f) is pointwise fixed by the

carrousel, say its radius is r0. Then consider a sufficiently thin closed annulus A[r0,r0+ε]

(i.e. its interior circle is of radius r0 and the exterior one of radius r0 + ε), where ε > 0

is very small, such that A[r0,r0+ε] ∩ ∆Σ = ∅. One requires that on the exterior circle of

A[r0,r0+ε] the carrousel movement is a rotation by 2π 1
N

, see the previous Remark.

The annulus A[r0,r0+ε] is the “transition zone” where one defines a continuous transi-

tion between the carrousel speed 0 (on the interior circle) and the carrousel speed 2π 1
N

(on the exterior one).

We fix a path from the point b1 to the centre of the disc D(l, fN ), say along a radius.

We call α the piece of this path from b1 to the intersection c1 with the exterior circle of

A[r0,r0+ε] and β the piece from c1 to the intersection d1 with ∂D(l, f). We then fix a

trivialisation τ of ΦN along the composed path β ◦α and transport by τ the fibre Φ−1
N (b1)

along β ◦ α. Denote by F ′
i,1,k (resp. F ′′

i,1,k) the image by τ of Fi,1,k into Φ−1
N (c1) (resp.

Φ−1
N (d1)).

Notice that F ′
i,1,k (resp. F ′′

i,1,k), k ∈ {1, . . . , di}, are also pairwise disjoint.

Now the Milnor fibres F ′
i,1,k are cyclically permuted by the iterated carrousel mon-

odromy hN , but for the fibres F ′′
i,1,k ⊂ Φ−1

N (d1) we have the following

Lemma. The action of h on Φ−1
N (d1) is the identity on Φ−1

N (d1) \
⋃

k F ′′
i,1,k and an

automorphism of each F ′′
i,1,k, k ∈ {1, . . . , di}.

P r o o f. Let {d′1}×D′
α be the disc in Dα×D′

α ⊂ C2 which contains d1 on its boundary.

By the fact that the carrousel fixes the point d1, the action of h on Φ−1
N (d1) is exactly

the monodromy of the fibration on a circle Φ−1
N ({d′1} × ∂D′

α) → {d′1} × ∂D′
α.

Fig. 3
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Since ∆∩{d′1}×D′
α = ∆Σ∩{d′1}×D′

α is a single point, say q, the only singular fibre in

Φ−1
N ({d′1}×D′

α) is Φ−1
N (q). Therefore, the monodromy of the fibration Φ−1

N ({d′1}× ∂D′
α)

is isotopic to the monodromy of the fibration over a small circle ∂δ in {d′1}×D′
α, centred

at q.

The singularities of the fibre Φ−1
N (q) are isolated, namely they are the set Γi∩Φ−1

N (q).

In turn, this latter monodromy splits into local monodromies of the Milnor fibres of the

local singularities Γi ∩ Φ−1
N (q), since the restriction of h to Φ−1

N (δ) \
⋃

k∈{1,...,d1}
Bk is a

trivial bundle over δ, where Bk is a Milnor ball at a point in Γi ∩ Φ−1
N (q).

We apply the iterated monodromy hN to the trivialisation τ over the path β and get

a trivialisation hN (τ) over the path hN (β), see Figure 3.

In particular, we have a mapping cylindre from F ′
i,1,k+1 to hN (F ′′

i,1,k) = F ′′
i,1,k, by

combining with the above Lemma.

Finally, let us notice that the fibre F can be identified with Φ−1
N (D(l, f)∪A[r0,r0+ε]),

since Φ−1
N (D(l, f) ∪ A[r0,r0+ε]) retracts to Φ−1

N (D(l, f)) homeomorphically.

The conclusion becomes now visible: the attaching to F of the cone C(F ′
i,1,k+1) is, by

using the trivialisation hN (τ) over the path hN (β), the attaching of a cone over F ′′
i,1,k.

But one has already attached, at one step before, a cone C(F ′′
i,1,k). Thus the new attaching

is over something contractible (i.e. over the base of a cone) and this concludes our proof.
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[Lê-1] D. T. Lê, Ensembles analytiques avec lieu singulier de dimension 1 (d’après Iomdine),
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