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Abstract. Toagerm f : (C",0) — (C,0) with one-dimensional singular locus one associates
series of isolated singularities fy := f+ lN7 where [ is a general linear function and N € N. We
prove an attaching result of lomdin-Lé type which compares the homotopy types of the Milnor
fibres of fy and f. This is a refinement of the lomdin-Lé theorem in the general setting of a
singular underlying space.

1. Introduction and main results. Let f : (C",0) — (C,0) be a function germ
with 1-dimensional singular locus ¥y = (J,.; ¥i, where X; are the irreducible components.
Let [ : (C™,0) — (C,0) be a general linear function. We denote by F' the Milnor fibre of
f and by Fy the Milnor fibre of the germ fx := f + 1V, for N € N.

I. N. Iomdin proved the following:

TEOREM [lo]. If N>0, then fn is an isolated singularity and the Euler characteristics
of F' and Fy are related by
X(F) = x(FN) — deiui,
iel
where p; is the Milnor number of the transversal singularity at some point of ¥; \ {0}
and d; := multg>;.

The geometric proof given by Lé D. T. in [Lé-1] provides more information than just
the Euler number formula above. Lé proves that Fi is made up from F by attaching
N} icr dipi cells of dimension n — 1. Starting from Lé’s approach, we prove in a general
setting a more refined attaching formula, at the homotopy type level.
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Results related to the Tomdin-Lé theorem were obtained e.g. in [Si-1], [Si-2], [Va],
[Ti-1]. The main result proved here shows that one can control (up to a certain degree)
the attaching of cells and thus obtain new information in homotopy. Our proof is based
on the construction developed in [Ti-2].

We first give the statement, then show some interesting consequences.

Let (X, z) be a complex analytic space germ of dimension n and let f : (X, z) — (C,0)
be an analytic function germ. We fix on X some Whitney stratification S := {S;}ea-
There is, however, a canonical one, as proved by J. Mather.

DEFINITION. Let ¥y, be the (possibly void) germ of the closure of the singular locus
of the restriction f; := fs,. Define the singular locus of f by

Sing f := U Xy,
jeA
This definition depends on S, but one may take as S the canonical stratification and then
Sing f becomes intrinsic.
One easily shows that Sing f € f~1(0).

Suppose from now on that f has 1-dimensional singular locus, i.e. dim Sing f = 1. Let
then Sing f = (J;c; ¥ be the decomposition into irreducible curves. We denote by d; the
multiplicity of ¥; at {x}.

The following well-known fact can be proved for instance by methods developed in §2.

FAcT. Take a transversal slice H to ¥; at some point a € ¥; \ {0}. Then the Milnor
fibre F; of the restriction fig : (H,a) — (C,0) does not depend on H or a, up to
homeomorphism.

We denote the Milnor number of F; by p;, the cone over F; by C(F;) and the suspen-
sion over F; by S(F;). It will be shown later that F; is naturally embedded in F.

Let Q¢ be a Zariski open dense subset of “general” linear functions ! : (X, z) — (C,0),
in a sense to be precised later. Let fy := f + [V, for N € N. Our main result is the
following.

THEOREM. Let f : (X,z) — (C,0) have a 1-dimensional singular locus. Then, for
N > 0, fn is an isolated singularity (i.e. Sing fy = {x}) and one has the following
homotopy equivalence:

ht
Fy~(FUE)\/ \/ S(F),
i #M;
where #M; = Nd; — 1, E := | J,c; C(Fi) and F U E is the result of attaching to F' the
cones C(F;) over F; C F, Vi e I.

The proof will be given later, we now discuss some consequences.

Grothendieck introduced the notion of rectified homotopical depth. Lé shows in [Lé-
4] the close relation between two properties of a space (X, z): having maximal rectified
homotopical depth, i.e. rhd(X, z) = n, and the constant sheaf C§ being perverse (middle
perversity). In particular, the former implies the latter.
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COROLLARY 1. If thd(X, z) = n, then

Fy2(FuB)\ \/ s

#1 #M;
and F U E is homotopy equivalent to a (possibly trivial) bouquet of spheres S™~ 1.

COROLLARY 2. If C% is perverse (e.g. if (X,z) is a complete intersection), then

bp—1(F) < Zﬂi'
iel
Proof. If rhd(X,x) = n, then for each i € I, F; is a bouquet of spheres of dimension
n — 2 and Fy is a bouquet of spheres of dimension n — 1, by [Lé-4], hence F' U E must
itself be a bouquet of such spheres. Corollary 2 is a direct consequence of the first one. m

Corollary 1 is much stronger than the attaching result obtained by Vannier [Va] in
the smooth case X = C™. Our improvement is in quality: the presence of the bouquet of
spheres was not known before. In homology, the inequality in Corollary 2 is not surprising,
since more recently D. Siersma proved, still on a smooth underlying space, an even sharper
bound [Si-2]:

bn1(F) <Y Ker(h; — 1),
i€l
where h; is the monodromy of the isolated singularity with Milnor fibre F;, when turning
around {z} along a simple loop contained in ¥; \ {x}.

2. Polar curves and geometric monodromy. Let g : (X,z) — (C,0) be any
function. One regards (X, z) as embedded in (C™,0), for some sufficiently large m € N.

By [Lé-3], there is a topological fibration gjxng : XN B\ g~(0) — D\ {0} induced
by g, where B is a small ball at 0 € C™ and D is a small enough disc centred at 0. One
calls it the Milnor fibration of g. Let | : (X,z) — (C,0) be a linear function. Let Crt®
be the critical locus, with respect to the fixed Whitney stratification S, of the map

®:=(l,9): X - C2

We denote by I'(l, g) the closure of the set Crt® \ Singg.

By [Lé-3], there is an open dense subset of linear forms ! such that I'(, g) is a curve or
it is void and that [='(0) N Sing g = {z}. We denote such a set by Q,. The curve T'(l, g)
is called the polar curve of g with respect to [, relative to S. For our previous function f
with 1-dimensional singular locus, we can prove the following;:

LEMMA. Ifl € (AZf then, for N > 0, the function fn has an isolated singularity.

Proof. We prove that the restriction fys, is nonsingular, for any stratum S; € S
of dimension > 1.

By alocal change of coordinates at p € S;, one may assume that [ is the first coordinate
x1. If p € T'(l, f) USing f then the germ f N|s, is clearly nonsingular, hence we only have
to prove the assertion at some point p € I'(l, f) U Sing f, p # x, arbitrarily close to z.
Denote by 9(fn) the Jacobian ideal of fx in the chosen coordinates. If p € Sing f then
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V(9(fn)) N Sing f = V(1) N Sing f = {z}, by the definition of Qf. Since p # x, we get a
contradiction.

If now p € T'(1, f) then (O fn/021)(p) = (Of /Ox1+ Nz ~1)(p) can be equal to 0 for at
most one value of N. (If not, then z1(p) = 0, which would again contradict the definition
of ) #.) This N depends on the point p, hence it is locally constant, thus constant on each
component of I'(, f). Tt follows that V(0fn) NT'(I, f) = {z}, for all N except a finite
number of values. m

From now on, we shall only consider the subset {2, C Qg of linear forms with the
property that [=1(0) is transversal to all Thom strata in a fixed (a,)-stratification of
971 (0).

We resume Lé’s carrousel construction, following [Lé-2]. Let [ € Q4. The curve
germ (with reduced structure) A(l, g) := ®(I'(, g)) is called the Cerf diagram (of g, with
respect to [, relative to §). We use the same notation I'(l, f), respectively A(l,g) for
suitable representatives of these germs. Let (u, \) be local coordinates at 0 € C2.

There is a fundamental system of “privileged” open polydiscs in C™, centred at 0,
of the form (D, X Py)aca and a corresponding fundamental system (D, X D.)aea of
2-discs at 0 in C2, such that ® induces, for any « € A, a mapping

b, : XN (Dy X Py) — Dy, x D,

which is a topological fibration over D, x D/, \ (A(l,g) U{A =0}).
Moreover, g induces a topological fibration
ga : XN (Do x Po) N g~ (Dy \ {0}) — D, \ {0},
respectively
9o XN ({0} x Pa) Ng™ (D, \ {0}) — D;, \ {0},
which is fibre homeomorphic to the Milnor fibration of g, respectively to the Milnor
fibration of g|f;—p}. The disc D;, has been chosen small enough such that A(Z, g) NODy x
D! = 0.

One builds an integrable smooth vector field on D, x S, where S/, := 9D’ tangent to
A(l, g)N(Dgy x S.) and lifting the unit vector field of S/, by the projection D, x S/, — S.,.
The vector field on D, xS/, can be lifted by ®,,, and this lift—which is tangent to the polar
curve I'(l, g) N®~ (D, x S/ )—can be integrated to get a characteristic homeomorphism
of the fibration induced by g, over S/, hence a geometric monodromy h of the Milnor

fibre Fj; of g. We call it the (geometric) carrousel monodromy.
We fix some 1 € S/, and denote D = D(l, g) := Dy x {n}. Let

lo : XN® (D) - D

be the restriction of ®,, and notice that F, is homeomorphic to I '(D).

The integration of the vector field on D,, x S/, produces a homeomorphism i : D — D
which we call the carrousel of the disc D: the trajectory inside D,xS?, of some point a € D
is such that after one turn around the circle S, we get another point o’ := h(a) € D. By
construction, the vector field restricted to {0} x S/, is the unit vector field of S/,, hence
the centre (0,7) of the carrousel disc D is indeed fixed; the circle 9D is also pointwise
fixed.
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The distinguished points A(l, g) N D of the disc have a complex motion around (0, 7),
depending on the Puiseux parametrizations of the branches of A. Let A; be such a branch
and consider a Puiseux parametrization of it, in coordinates (u,\): u = ijmi cijtd,
A =t", where

m; = multoAi, n; = multo(Ai, {)\ = 0})
Let p; := m;/n; be the Puiseux ratio of A; and notice that p; < 1, since [ is general.

Lé D. T. defines the polar filtration of the disc D as follows. Assume that the Puiseux
ratios are decreasingly ordered: p; > p2 > ... Then there is a corresponding sequence
of open discs D; C Dy C ... C D centred at (0,7), where D; = D;4; if and only if
pi = pi+1, such that A; 11 ND C Dyyq \ Dy, fori >1and A;ND C D;.

In each annulus A; := D; \ D;_1, the carrousel is not that easy to describe (we refer
to [Lé-2], [Ti-1], [Ti-2] for details), but at the “first approximation”, each point is rotated
by 2mp;. There must be a continuous transition between successive annuli: within a thin
enough annulus containing the circle A;N A, each point will have a carrousel movement
which is exactly a rotation by 2wp(r), where r is the radius to that point and p(r) is a
continuous decreasing real function with values in the interval [p;;1, p;]. Then Lé proves
the following result, see [Si-1] for more details:

PROPOSITION. Let 1 €Qy and let {p;,i € K} be the set of polar ratios of A(l, f), where
A(l f) = Uiex Qi is the decomposition into irreducible curves. If N > 1/p;, Vi € K,
then the polar filtrations of (I, fn) and (1, f) are the same, except that (I, fn) has one disc
more. Consequently, the Milnor fibre F' is naturally embedded in the Milnor fibre Fy .

Proof (sketch). The technique is due to Lé. One notices that A(l, fn) has all the
polar quotients of A(l, f) and additionally one, namely 1/N. This is because the singular
locus of f becomes a component of the polar curve I'(I, fx'), hence its image by the map
(I, fn) is the supplementary component of A(l, fx).

Replace g by f in the definition of the map ®. We look at the image of ® in coordinates
(u,A). Then F = & }(D) = &1\ = n} and Fy = @A+ uY = 7). Using the
I-parameter deformation A 4+ eu’¥ = 7, where £ € [0,1], one constructs a nonsingular
vector field, tangent to A and such that, by integrating it, one defines an embedding of
the carrousel disc D of (I, f) into {\+u” =7}, see Figure 1. The image of this embedding
does not intersect ®(Sing f). Therefore one can identify the carrousel disc D(I, f) with the
disc just before D(I, fx) in the increasing polar filtration of the carrousel disc D(I, fn).
The vector field on C? can be lifted, then integrated to give an embedding F' C Fy,
which is actually the lift of the embedding D(I, f) C D(I, fn).

We intend to use the constructions developped in [Ti-2] in order to prove that Fy is
obtained from F' by a controlled attaching of cells. We need some more notation.

Let @y := (I, fy) : (X, 2) — (C?,0) be the map obtained by replacing g by fy in the
definition of ®. We saw that F C Fiy and that Fiy \ F = & (D(l, fx) \ D(l, f)), where
D(l, f) is identified with the disc just before D(I, fx) in the increasing polar filtration
of D(I, fx). Denote by A the annulus D(I, fi) \ D(l, f) and by Ayx the component of
A(l, fn) which comes from the singular locus of f; this has the following parametrization:
u=1t A=t". Then ANA(l, fn) = AN Ayx is a set of N points equally distributed on
a circle included in A.
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Fig. 1

Remark. The carrousel movement of any point in A is a rotation by 2#%.

We next define a “good” system of paths, see Figure 2. Let d1, ...,y be small enough

equal discs included in A, centred at the N points of intersection ANAg. Let be 9D(I, fn)
and define a path from b to a € 9D(I, f) along a radius. Assume that, when rotating this
path counterclockwise, it intersects the discs d1,...,dy in this order. Then define a path
y1 from b to some by € 991, say a segment.

By [Ti-2], the set of paths {v;+1 := h*(v1) | i € {0, N — 1}} is a non-selfintersecting
system of paths from b to b; 11 := hi(b1), respectively.

D(,fy)

Fig. 2

DEFINITION. For i € I, k € {1,...,d;} and j € {1,...,N}, let B; ;1 be a small
Milnor ball centred at the point b; j r € T'(I, fa) N fI)X,l(éj). Let F; jx =B N @El(bj)
be the local Milnor fibre of the germ at b; ;1. of the function [ : ®5'(A) — A. Since !
is trivial over v;, we may fix a trivialization. Then the union of the cone C(F; ;) over
F; ;. and the mapping cylinder F; ; X «; along the just named trivialization is called
the generalized thimble on ®'(b) associated to Fj ;.

It is now clear that the Milnor fibre Fj is obtained, up to homotopy, as follows:
add to the fibre ®'(b) all the generalized thimbles, then transport this fibre along the
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path from b to a (using some trivialization). Hence Fly is built up from F by attaching
all those generalized thimbles. Moreover, we have proved in [Ti-2] the following result.
(Notice that F; ; ; is homeomorphic to Fj, for any j and k.)

PROPOSITION [Ti-2]. There is the following homotopy equivalence:

ht
Fy 2~ (FUcrUa,C(R)\/ '\ SE),
i€l di(N—1)
where each union F' Uy, C(F;) is the result of attaching the d; generalized thimbles asso-
ciated to Fy 1, for k € {1,...,d;}, as described above.

Proof (main lines). We have to prove that, for each ¢ € I, a number of d;(N — 1)
thimbles are attached over something contractible, and therefore become suspensions over
the corresponding fibres F; ; 1.

We have a good control over the attaching, given by the use of the carrousel h.
One may assume that the restriction of the geometric monodromy h on @El(b) is the
identity (this comes from the fact that fy is an isolated singularity). Furthermore, one
may also assume that, by definition, the thimble associated to F; j11, is obtained as the
transformation by h of the thimble associated to F; ; 1.

Now fix ¢ and k and attach the cones C'(F; k), through their thimbles, in the order
given by the index j. It follows that the attaching of C(F; j11 ) is made over the already
attached cone C(F; ;). A cone is contractible, thus the conclusion follows. m

3. Proof of the Theorem. By the preceding Proposition, it remains to prove that,
for each ¢ € I, the attaching to F' of the d; cones C(F; 1), k € {1,...,d;}, gives a
homotopy equivalence:

Fu U C(E,l,k) hﬁt (FUO(FiyLl)) \/ S(Fi,l,k)-
ke{l,....d;} ke{2,...,d;}
Recall that the carrousel h, when iterated N times, will fix the small discs §; in the
annulus A. In particular h"V is an automorphism of ®'(b;), ¥4 € {1,..., N}.
The crucial observation is that we may take, by definition,

bitgrr :=hY(bi1g)  and  Fqpqq :=h"(F1k),

and that the fibres F; 1%, k € {1,...,d;}, are pairwise disjoint. This is due to the geo-
metric monodromy h, obtained by integrating a vector field tangent to the trace of the
polar curve

LI, f3) V@ (D fx) % Sy).
Therefore the cones C(F; ;1) are also related by
C(Fijpsr) =0V (C(Fijn)),  Vke{l,....di—1}, ¥je{l,...,N}.

Let us denote by T's := I'(I, fx) N ®5'(Ax) the component of the polar curve which
comes from the singular locus of f and let I's = J;c;I'; be its decomposition into
branches. Such a branch I'; comes from the branch ¥; of Sing f. Recall that the restriction
@Np, : I'i — Ag is a covering of degree d; ramified over {0}.
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We have to be more precise in the definition of the vector field on D(I, fy), hence on
the carrousel movement. We may assume that the circle 9D(I, f) is pointwise fixed by the
carrousel, say its radius is ro. Then consider a sufficiently thin closed annulus A »4¢)
(i.e. its interior circle is of radius ry and the exterior one of radius 9 + €), where € > 0
is very small, such that Ay . 4 N Ax = ). One requires that on the exterior circle of
Afr,ro+e) the carrousel movement is a rotation by 27r%, see the previous Remark.

The annulus Ay, e is the “transition zone” where one defines a continuous transi-
tion between the carrousel speed 0 (on the interior circle) and the carrousel speed 27‘1’%
(on the exterior one).

We fix a path from the point by to the centre of the disc D(I, fn), say along a radius.
We call a the piece of this path from b; to the intersection ¢; with the exterior circle of
Alro,ro4e) and (3 the piece from c; to the intersection di with OD(l, f). We then fix a
trivialisation 7 of ® 5 along the composed path 5o« and transport by 7 the fibre <I>;Vl (b1)
along #oa. Denote by I, (resp. F/, ;) the image by 7 of Fjy into @' (c1) (resp.
5 (dy):

Notice that Fj, , (vesp. F, ), k € {1,...,d;}, are also pairwise disjoint.

Now the Milnor fibres FZ-',L . are cyclically permuted by the iterated carrousel mon-
odromy h™, but for the fibres F}’, ; C @' (d1) we have the following

LEMMA. The action of h on ®y'(dy) is the identity on ®5'(di) \ U, F',  and an
automorphism of each F') ., k € {1,...,d;}.

Proof. Let {d}}x D/, be the disc in D, x D!, C C? which contains d; on its boundary.
By the fact that the carrousel fixes the point d;, the action of h on (I)]_vl (d1) is exactly
the monodromy of the fibration on a circle &' ({d}} x 9D.) — {d}} x 9DL,.

Fig. 3
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Since AN{d}} x D, = Axn{d|} x D/, is a single point, say ¢, the only singular fibre in
o' ({di} x D) is @' (q). Therefore, the monodromy of the fibration ®'({d}} x 9DY)
is isotopic to the monodromy of the fibration over a small circle &9 in {d}} x D’,, centred
at q.

The singularities of the fibre <I>;,1 (q) are isolated, namely they are the set T'; N <I>]_Vl (q).
In turn, this latter monodromy splits into local monodromies of the Milnor fibres of the
local singularities T'; N ® ' (q), since the restriction of h to ®3'(d) \ Ukeqr,. a0y Br is a
trivial bundle over §, where By, is a Milnor ball at a point in I'; N ®3'(g). =

We apply the iterated monodromy h'V to the trivialisation 7 over the path 3 and get
a trivialisation h™V () over the path h" (3), see Figure 3.

In particular, we have a mapping cylindre from F, ., to hN(Fl-”’Lk) = I/, by
combining with the above Lemma.

Finally, let us notice that the fibre F' can be identified with <I>]_Vl (D, f)U Apgrgse])
since @' (D(1, f) U Alrg,ro+e]) Tetracts to @' (D(1, f)) homeomorphically.

The conclusion becomes now visible: the attaching to F' of the cone C'(F}, ;) is, by
using the trivialisation h" (7) over the path h¥(3), the attaching of a cone over Fl
But one has already attached, at one step before, a cone C(F}’; ;). Thus the new attaching
is over something contractible (i.e. over the base of a cone) and this concludes our proof.
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