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Abstract. We prove existence of weak solutions to nonlinear parabolic systems with p-
Laplacians terms in the principal part. Next, in the case of diagonal systems an Loo-estimate for
weak solutions is shown under additional restrictive growth conditions. Finally, Loo-estimates
for weakly nondiagonal systems (where nondiagonal elements are absorbed by diagonal ones)
are proved. The Loo-estimates are obtained by the Di Benedetto methods.

1. Introduction. In this paper we consider the following initial boundary value
problem:

m
(1.1) Uiy — Z V - (aij(z,t,u, Vu) - Vuj) + Ri(x,t,u, Vu)u,
j=1
= fi(z,t,u,Vu), i=1,...,m, in N7 =02x(0,T),
ui‘t:OZUOiv i=1,...,m, in “Qa
w; =upi, i=1,...,m, onST =8x(0T),
where 2 C R"™ is a bounded domain, T € (0,00), S = 992, u = (u1,...,Uy) € R™,
z=(x1,...,2,) € R™ and dot denotes the scalar product in R".
The aim of this paper is to prove the existence of weak solutions to (1.1) and next to
show that the weak solutions are bounded under some restrictions.
To this end we assume the following structure conditions:

aij:QTmex]Rm”HR”z, ,j=1,...,m,
satisfy the Carathéodory condition and
m

(1.2) a1 |[Vul? < Z a;j(z,t,u, Vu)Vu; - Vu; < as|Vul?,

i,7=1
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where a1, oo are positive constants and p > 2; sometimes we use also the inequality

m
(13) Z (aij (ZE, t, u, Vu1) . Vulj — aij (.17, t, u, VUQ) . V’UQ]‘) . (VUU - V’LLQ,')
ij=1
> a|Vuy — Vuy|?,
where @ is a positive constant. Moreover,
R : 2T xR™ xR™ — R

, t=1,...,m,

satisfy the Carathéodory condition and
(1.4) Ri(x,t,u, Vu) = Ry;(z,t,u, Vu) + Roi(z, t,u, Vu),
where

BrlulPo™? < Ryg(a, t,u) < BolulPo?,
(1.5) i

Bolu —v|P° < Z(Ru(w7t7u)ui — Ryi(z,t, v)vi)(ui —v;),
where 3y, 31, B2 are positive C(Z)n;tants, po > 2, and
(1.6) 71 |Vu|? < Roi(x,t,u, Vu) < vo|Vul|®?,

where v, 2 are positive constants and gy > 0. Next,

fi: QT xR™"xR™ SR, i=1
satisfy the Carathéodory condition and
(1.7) |fi(z,t,u, Vu)| < 61(|ul) + d2(ju])[Vu|”, i=1,...,m,

where d1, 0 are positive increasing functions and v > 0 will be chosen later.

s, M,

Finally we assume the following restrictions:

q 2 n+2
(1.8) Dy <1 op= max{q,po}, ¢=p ;

p D« n
and
(1.9) O1(lul) <e(Ju" +1),  ba(|ul) < clul*?,
where
(1.10) p1+1<p*, p*=max{p,po},
and

1
(1.11) peEl vy
D P

DEFINITION 1.1. We denote by (P.1) the problem (1.1) with relations (1.2)—(1.11).

DEFINITION 1.2. By a weak solution of problem (P.1) we mean a solution u; €
Loo(0,T; La(£2)) N Ly(0, T; W, (£2)) N L, (27), i = 1,...,m, of the following integral
identity:

(1.12) —Zm: fuigoitdxdt—i— i faij-Vuj~V<pi dx dt

i=1 T ij=1 T

—|—§: fRiuigoidxdt:i ffigoida:dt—i fUOi@i(x,O)dx,

i=1 T i=1 T i=1
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which holds for any ¢; such that ¢;|s = 0, @ili=r = 0, @i € L2(27), ¢; € Loo(0,T;
Lo (£2)) N Lyp(0, T; W (£2)) N Ly, (£27), i = 1,...,m, and

(1.13) f OpuC dx dt = — f (u—ug)0tCdadt
ol o)

valid for any ¢ € L,(27), 9,¢ € Ly(27), 1/p + 1/p' = 1, such that ¢(T) = 0. To
show boundedness of weak solutions to problem (P.1) we have to obtain first an estimate
in Lo (0,7 Ly(£2)) N Lyp(0,T5 W, (£2)) N Ly, (27) and next applying the technique of
truncations we are able to get a sup-estimate. This procedure follows from the growth
condition (1.7) with g3 > 0, g2 > 0 and v > 0, because we need such an estimate for
weak solutions to obtain the well known recursive inequalities (see (3.16)) which imply
the sup-estimate.

Generally to prove existence of weak solutions and to obtain necessary estimates we
need the following identity with Steklov averages (see the end of this section):

(1.14) Z f [atuhm + Z(aij -Vu;)p - Vo, + (Riui)hgoi} dx dt
=1 Qx(h,T) Jj=1

= i f fripi dz dt.

=1 Qx(h,T)
Assuming now the growth conditions on the r.h.s. of (1.1) in the form

(1.15) \filz, t,u, Vu)| < di|Vui|? + doui|” +ds, i=1.....m,
n+2

n

where dy, da, d3 are constants, o < &, p, = max{q,po}, ¢ =p
growth conditions (1.2), (1.5), (1.6) in the following way:

, we can generalize the

(1.16) aw, fB2,v2 from (1.2),(1.5) and (1.6), respectively, are increasing functions of |ul.
Now we can introduce

DEFINITION 1.3. By (P.2) we denote the problem (1.1) with the growth conditions
(1.2)-(1.6), (1.15), (1.16).

Then to prove existence of solutions to problem (P.2) we have to consider instead of
(1.1) the following truncated problem:

Uit — Z V - (aij(z, t,u™12) V) - Vuy) + Ri(a, t,u2) V),

j=1
(1.17) = filw,t,u,Vu), i=1,...,m, in 27,
Uil=g = Ugs, 1=1,...,m, in §2,
wi =up;, i=1,...,m, onST,
where
Iy forov > l17
(1.18) plolz) = {v for I < v <y,
Iy for v <y,

where [y < I; are constants, v € R!.



468 W. M. ZAJACZKOWSKI
By u(":12) | where u = (uq,...,um), we indicate that each of the coordinates is of the
form (1.18). The truncated solutions were considered in [8].

DEFINITION 1.4. By (P.3) we denote the problem (1.17) with (1.2)—(1.6) and (1.15),
(1.16).

Remark 1.5. Generally any solution of problem (P.3) depends on (l1,l3), so we
should write u = u, 1,), but to simplify notation we omit the index (ly,l2).

DEFINITION 1.6. By a weak solution of the problem (P.3) we mean functions u; €
Loo(0,T; Lo(£2)) N Ly (0, T; WE(£2)) NLp, (£27), i = 1,...,m, which satisfy the following
integral identity:

(1.19) —i fuigoitdxdt—i— i fag-l’l?)-Vuj-Vapidmdt—i—i fREll’b)ui(pi dx dt

i=1 T ij=1 T i—1 T
m m
ZZ ffi%dﬂ?dt—z fUOi(Pi(an)dxa
i=1 o7 i=1 0

which holds for any ¢; such that ¢;|s = 0, pili=r = 0, @i € La(027), Vip; € Lp(.QT),
©i € Ly, (27), i =1,...,m. Moreover,

a%“l2) = aj (z,t,ul12) V), Rﬁll’l” = Ri(z, t,ul™") Vu).

Now we introduce some notation. Let £>0. Then (u—k)y = max{u—Fk, 0}, (u—k)_ =
max{—(u — k), 0}, A;:,i(t) ={z € R :u(z,t) >k}, A ,(t) ={z € 2 :u;(x,t) < k}. We
introduce the Steklov averages

on(a,t) = { (@) dr, b€ (hT),
0, t < h.

By |£2| we denote the measure of 2. The dot - denotes the scalar product in R™ and
foz} (02) ={ue W}(£2) : u=0on 912}

Now we formulate the well known result used in this paper. The following interpolation
inequality is satisfied (see [3], Ch.1):

(1.20) f|v\qudt§c*(esssup f|v|2dm>; I|Vv|pdxdt7
t
ot 2 ot

which holds for any v € VP (2!) and ¢ = p™t2, where ViP(027) is a Banach space with
the norm

ollv=2(or) = esssup [o(®)l|L, () + 1V Ollza(2),

and v|; = 0.

Now we present some information about the results of this paper. In Sections 2 and
3 the existence of bounded solutions to diagonal problem (P.1) is proved. In Sections 4
and 5 we show existence of bounded solutions to the diagonal problem (P.2) in which the
r.h.s. has very strong growth restrictions with respect to u. Finally in Section 6 we prove
existence of bounded solutions to nondiagonal problem (P.1).
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Finally we add some remarks concerning the results of this paper. We proved sup-
estimates for solutions of problem (1.1) under very strong growth restrictions (see (3.24),
(5.8) and (6.11)). These restrictions follow from the used cut-off functions (u; — k)4, ¢ =

1,...,m. Much less restrictions can be expected in the case of cut-off functions (Ju| — k)
which are used in [3], Ch. 8, Sect. 2. However in [3] there are considered only systems
with the same matrices in the main terms, a; = a, i =1,...,m (see (3.1)).

Moreover, we can expect much less restrictions on the growth of ther.h.s. in the case
when Stampaccia’s idea of getting sup-estimates is used (see [3], Ch. 5, Sect. 17). However
in the last case the coefficients a;, R; and f;, i = 1,...,m, must be either continuous
or Holder continuous with respect to z and ¢ or must satisfy some additional structure
conditions.

We think that the method presented in this paper (the proof of existence of weak
solutions and then showing L..-estimates) is appropriate for systems with measurable
coeflicients with respect to x and t.

2. Existence of weak solutions to problem (P.1). First we obtain an estimate.

LEMMA 2.1. Let (1.2)—(1.11) hold. Let S be Lipschitz continuous. Let p* =max{p,po}.
Let up € LQ(Qt), up € L,,(O,t; Wpl(.Q)) n Lpo(.Qt) n inp(.Qt) ﬂLQ(Qt), ub|t:0 €
P—ag
Ly(82), ug € Lo(£2), t < T. Then for solutions of problem (P.1) the following estimate
holds:
@1 [|uPde+ [|VuPdedt+ [|upodvdt+ [ [Vl dzdt
0 ot ot ot
2p
Ser(14 [ Quotl + IVusl? + [l + uol? + |75 + fuy|?) d dit

Qt

+ fuf(O)dm—i— fu%dac) < ¢p.
7} 7}

Proof. Putting ¢; = u; — up;, i = 1,...,m, into (1.14), performing integration with
respect to time, passing with h to zero and using the growth conditions (1.2), (1.4)—(1.7)
we obtain

1 2 P P 904,12
(2.2) 3 f(u—ub) dx + oy f|Vu| dx dt + (1 f\u| ° dx dt + v f|Vu| °lu|* da dt
9] 0t 0ot 0t
< fullu—wldedt +as [ [VulP= | Vuy|dzdt + By [ ufP*~2ulluy| do dt

nt nt nt

1
+ f|vu|qo|u\|ub|dxdt+§J(uo—ub(o)ydm‘
Qt

+ [ @Gulful) + Sa(ful)[Vul)lu — up| d dt.
Qt

In view of the Holder and Young inequalities the r.h.s. of (2.2) is estimated by
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1 1
(2.3) 3 f lu — up|? da + 3 f lupe|® da dt + & f |Vul|P dx dt + c(e1) f |Vup|P d dt
2 ot Q! Q!
teg | |uPodrdt +c(er) | |uplPodadt +e3 | |Vu|®|ul? dedt
! ! !
1
+ c(e3) f V|9 [up|? da dt + 3 f (uo — up(0))? da
Q! o)
+ [ @a(lul) + Sa(|ul) [ Vul*) fu = w| dz dt,
Qt
where ¢; € (0,1),1=1,2,3.
Since gg < p the third from the end term in (2.3) is bounded by

_2p_
€4 f [VulP dz dt + c(e4) f lup|P=%0 dxdt, e4 € (0,1).
ek ek
In view of (1.7) and (1.9) the last term in (2.3) is bounded by

c f (lu = up| + Ju)*|u — up| + |u*?|Vul" |u — up|) de dt = Iy + I + I,
of
where
L < f (| — up| T+ Jup [P Ju — up|) da dt = 145
of
Let p* = po and p1 + 1 < po. Then
I <es f |u — up|P° dx dt + c(e5) (1 + f |ub|% dx dt)
fok ot
<es [ fupe dxdt+c(55)(1+ f(|ub‘P0+|ub|%)dxdt), es € (0,1).
ot ok
Let p* =pand g +1 < p. Then

Ly <eo [ u—wlPdedt+ 6(56)<1 [ w7 da dt)
ok ot
H1D
<ege [ |Vul? dmdt+c(56)<1 + [ (w75 + |Vub\p)dxdt), e € (0,1).
Qt Qt
Moreover, puip*/(p* — 1) < p*.
Now we estimate I>. Hence we have

L< [ (ju—w | Vul” + Jup|** |u — w|[Vul’) e dt = I + L.
Qt
p2t

First we examine I3. Let p* = pg, pus + 1 < pg, pTl + % < 1. Then

I3 <er f (lu — up|P° + |VulP) dx dt + c(e7)
Qt
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<er [ (lu™ + Vul?) dxdt+c(s7)(1+ [ TP d:cdt), g7 € (0,1).
Qt Qt
Let p* =p, v+ p2 +1 < p. Then

I3 <eg f |u — up|P dz dt + c(es) f |Vu|1“—<::§+1) dx dt
Qt Qt

< ege f\V(u—ub)|pdxdt+5g f\VuV’dxdt—kc(sg)
Qt Qt

<egg f \Vu|pdmdt+c(sg)( f |Vub|pdacdt—|—l>7 g9 € (0,1).
Qt Qt

Finally we estimate I4. Let p* = py, % + p%) < 1. Then

Iy <eq f|u—ub|p°dxdt
Qt

1 v

% Pt Y ot (1=55—%)
teero) ([ 1vuldedr) ™ ([ | TF dpdr)
Qt Qt

< €10 f ([uf?> + |Vul?) dz dt + c(e10) f lup|° dx dt, €10 € (0,1).
ot ot
Let p* =pand p > v+ 1. Then

K2 +1
— T 1-=2) 2

P% ( p P
Iy <en f|u—ub|pd:vdt+c(811)( f|Vu|dedt) 1( flub|1* P d:(:dt) T
ok o° ok
K2
<ein [|Vul +clern) [ (Yl + w|' =5 )dwdt, e15 € (0,1).
nt ot

In view of (1.11) we have

2 2

1_L_Z<p0’ 1_1+V

Po p p

<p.

Applying the Gronwall lemma and using the above considerations in (2.2) we obtain (2.1)
for sufficiently small €;, s = 1,...,12. This concludes the proof.

Now applying the ideas from [1, 4, 9] we prove existence of weak solutions to problem
(P.1). Hence we have

THEOREM 2.2. Let the assumptions of Lemma 2.1 be satisfied. Let either
(a) po < q andp > qo + 45, or
(b) po > q and 15 + qo <p(1—pi0).

Let either

(¢) po < q and p > max{(1 + pu1);%5, (1 + p2) 745 + v}, or

(d) po > q and p > maX{an/( - %)7 (nLH +v)/(1 - %)}'

Then there exists a solution of problem (P.1) such that u € Lo (0,T; La(£2)) N L,(0, T
W (£2)) N Ly, (27) and the estimate (2.1) holds.
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Proof. To prove existence of solutions to problem (P.1) we assume that coefficients
n (1.1); do not depend on ¢. The case with time dependent coefficients can be treated
in the same way as in Remark 3.32 of [5].

Then we replace d;u by the backward difference quotient

_ 1
o7 "y = E[u(t) —u(t — h)].

Thus instead of the parabolic problem (1.1) we obtain an elliptic problem which we solve
by applymg the Galerkin method. To do this we choose hnearly independent functions
e € VV1 (£2) such that their linear combinations are dense in Wl( ). Similarly to [1, 4,
9] we are looking for an approximate solution of (1.14) in the form

A
(2.4) Upx = Uph + Z anxi(t)ei(z),

=1

with step functions apy; € Loo(0,7T), where upy, is time independent in each interval

((k—1)h,kh), k=0,1,...,

kh
(2.5) upn (2, 1) == % f up(x,s)ds for (k—1)h <t < kh,
(k=1)h

where for simplicity it is assumed that Z is an integer, and up) satisfies the equality

(26) ShA uh>\, Z f 8 UpNiPi dx + Z f a”VuhM V(pz dx
=1 1,7=1 2
+ Z f RiuhMgai dr — Z f fzSDz dr = 0,
=1 N =1

which holds for all test functions ¢ € V) := span{es, ..., ex}. We take initial data

(2.7 upx(t) == wuop(t) for —h <t <O,

1
~=min (1, ——
Uoh min < hu())UO

Hence the choice of ug, and upp, imply that we can determine upy(¢) inductively for
t € ((k—1)h,kh) as a solution of an elliptic problem. In fact, if upx(t — h) is known the
Lh.s. of (2.6) defines a continuous mapping @ : R* — R*, where the A parameters are
the unknown coefficients of up(t).

where ugp is bounded,

To prove the existence of upy(t) for t € (0,kh) we assume that up)(t) is already

known in (O, (k— l)h). Hence we have to determine o = {a; }i=1,..x = {@nri}i=1,..x for

€ (0,kh). Denote ¢ = Y7, aje; and consider a continuous mapping &y : R* — R*
such that @px;i(a) = Spa(d + upn,€i), i =1,..., X. Using (2.6) we obtain

A
(2.8) Ppr(a) - a= Z@hm o = Z Spa(@ + Upn, €;)as = Spa(@d + upn, @)

i=1
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m

= Z |:}1L(uh)\i(t) — upri(t — h)) (upxi(t) — upni)

=1

+ Z a;j - Vupx;(t) - V(unxi(t) — wphi) + Ritnxi () (unxi(t) — uphi)

— filunxi(t) — Ubhi)] dz.
Using the structure conditions (1.2)—(1.11) we obtain

1
(2.9)  Ppa(a)- a>ﬁ ui/\(t)dm—&—al f|Vuh,\|pdx+ﬁl f\uhﬂp“ dx
Q 19

+ 7 f|Vuh>\|q°|uh>\|2dx—a2 f|Vuh>\|p71|ubh|dx—52 f|uh>\|p°71|ubh|d:ﬂ
(%} (9] (%}

— Y2 f|Vuh)\|q°|uh)\| |ubh|dx—cf(uzh+u%)\(t—h)) dx
(9] (9]

—c [ Juny = wnldz = [ (unx @) + [unn ()12 [Vura(®)) unx = won] da.
2 2

In view of the Holder and Young inequalities and proceeding exactly as in Lemma 2.1 we
get

(2.10)  Ppr(a) -« 2h fuhxdiU-F f\VuhﬂpdCC-i-* fl’uh)\|p0 dz
+2;[|Vum|q°|um|2dx

2p
—e [l sl o 4 [ |7 4 [V P) de
(7]

— = [ (o + luna(t = b)) dz > 0,
Q
where for sufficiently large |a| the second inequality in (2.10) holds. Therefore there exists
ap € R* such that @, () = 0. Thus we have proved the existence of solutions to (2.6).
Now we obtain an estimate for solutions of (2.6). We put ¢ = upx — upp, into (2.6)
and integrate the result over ¢ from 0 to t. We have

% b/’ (una(8) = unx(t = h)una(t) dw = 7o [ (ufn(t) = uis(t = ) do

—_

¢ ¢
21hofbf U\ (1) — udy(t — b)) dadt = 21h fh b/‘u%/\(t)d:cdt;hf Ezfu%(t)dxdt
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where we used the fact that upy(t) are independent of ¢ in any interval (ih, (i + 1)h),

i=0,...,£ — 1, where £ is an integer, and upa(t) = uon(t) for t € (—h,0). Using the
above cons1derat10ns and the proof of Lemma 2.1 we obtain
(2.11) f ui () da + f (|Vupl? + [upa PO + |Vuna |2 ups |? dz dt < ¢,

2 0t

where ¢ depends on the norms of data functions. From (2.11) we can choose a subsequence
of {upy} still denoted by {upx} such that

upy — v weakly in L, (0, T; W, (£2)) N Ly, (£27)
and
upx — u  weak star in Lo (0,T; L2(£2))
as (h,\) — (0,00).

Now we show almost everywhere convergence of uyy — u in 27. Changing variables
in (2.6) from ¢ to t + h and integrating the result over ¢ from 0 to T'— h we obtain

(2.12)

1M
S
o7 o%l

f uhxj t+h *UhAJ( ))(pj dz dt
2
h

f (Z aijuh,\j(t + h) -V + Rjuh)\j(t + h)(pj — fjgoj) dxdt =0,
(7 k=1

<

+

IR

Jj=1

where the coefficients a;i, R; and f;, j,k =1,...,m, depend on upx(t + h).

Since ¢|s = 0 we put ¢ = F(upx(t + h) —upx(t)) — + (upn (t + h) — upn(t)) into (2.12).
Hence in view of (2.11) we obtain

T—h
(2.13) [ [ (wnalt +h) = wnn(1))? dwdt < ch
2
hence
(2.14) Upy — U in Ll(QT)
S0
(2.15) upy — u  almost everywhere in 27

Next from Lemma 6.3 of [6, Ch. 5, Sect. 6] we get

(2.16) upy — u  strongly in L,.(027)

where r < ¢ :p”T“.

Finally we prove strong convergence of Vupy to Vu.To show this we put ¢ =upy)—
Uph, — Vpx = w into (2.6), where vy € Ly (0,T; Vo) N Ly, (27) are approximations of u— 1w,
in L, (0, T; Wy (£2)) N Ly, (27) which are time independent in each interval ((k —1)h, kh).

Therefore
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(2.17) Upx — u—up  strongly in Ly(0,T; W, (£2)) N Ly, (27).

Now from (2.6) we obtain

m t m
(218) Y ffa uhmwzda?dtJrZ
=1 0

7”

0\“

f CLij (uh)\, Vuh)\) . Vuh,\j . Vwi da: dt
2

t
ffRL uh,\,Vuh,\)uthzda:dt
0 N

Repeating the considerations from [1] in the case @ = L (uf+...+u2), b= (u1,..., up) =
V&, B(u) =310 [y (u; — s;)ds; = 3(ul + ...+ u2,), we obtain

m t
(2.19) Z f f 8t_huh,\iwi dx dt
i=1 0 0
1t
Ef [ Blun(®)) da dt — fB ) dz + 0(h, \),
t—h 0
where 0(h,\) converges to zero as (h,A) — (0,00). The second term in (2.18) we write
in the form
(2.20) { f f Qg5 uh)\,Vuh)\) Vupy;

wj=1 0 N
— aij(uhA, V(ubh + Uh)\)) . V(ubhj -+ Uh)\j)} - Vw; dx dt

t
+ f f a” Upx, V ubh + Uh)\)) . V(ubhj + ’Uh)\j) — aij(uhA,Vu) . VUJ] -Vw; dx dt
0 N

+
o%“
b%

t
[aij (unx, Vu) — a;j(u, Vu)] - Vu; - Vw; de dt + f f a;j(u, Vu) - Vu,; - Vw; dz dt
0 0

EIl—I—IQ—FIg.

Using the ellipticity condition (1.3) we have I; > @|Vwl|P. In view of the Hélder and
Young inequalities we obtain

12§5jf\Vw|pdxdt
0 0
t

+e(e) [ [ laij(unn, V(upn +vin)) - V(uns + vnrg) = @i (unx, Vi) - Vs |77 da dt,
00
where ¢ € (0,1) and the second integral converges to zero as (h,\) — (0,00) because
of the strong convergence of upn + vpa to u in Ly(0,T; W) (§2)) and of the fact that
aij(uhMV(ub)\ +vpy)) - V(ubhj + ’Uh)\J) €L - (QT) (see [2], Th. 2, Ch. 1, Sect. 4).
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Similarly we have
t

t
Iggsff|Vw\pdxdt+c(€) ff|[a¢j(uhA,Vu)faij(u,Vu)]|Vuj|ﬁd:z:dt
0 2 0

+ ‘ (j‘([ a;j(u, Vu) - Vu; - Vuw,

where ¢ € (0,1) and the second term converges to zero because of the strong convergence
of upy — w in L.(27), r < q.
Next we consider the third term on the Lh.s. of (2.18). First we examine

i ijli(uh,\)uh,\iwidxdt

i=1 0

[Rii(unx)unxi — Rii(ush + vax) (Ushi + Unxs)]w; da dt

'MS

o
Il
i

%]

f [R1i(upn + vax) (Uphi + vari) — Rui(w)ug|w; do dt
Q

s
Il
-

Ru(u)uiwi dedt =14+ I5 + I.

+
NE

+
NE
R

i=1
In view of (1.5)3 it follows that

t
I> By [ [ |w dedt.
)
In virtue of the Holder and Young inequalities one gives

Sajf|w|p°dxdt
0 Q

t
) [ [ 1 BaiCnn + ) (i + vnns) = Bas (w)us| 7077 da d,
2

where ¢ € (0,1) and the second term converges to zero because up, + vp) converges
strongly to u in L, (0,T; W, (£2)) N Ly (£2T) (see also [2], Th. 2, Ch. 1, Sect. 4).

Finally Is converges to zero because w converges to zero weakly in L,(0,T;
W(2)) N Ly, (27).

Consider the second part of the third term on the Lh.s. of (2.18). In view of (1.6) and
the Holder inequality we obtain

‘f: j‘fRQi(U}“vuh)uhiwidﬂidt‘ Scjf\vuh|q°|uh||w|dxdt
=10 % 00

§c( f|Vuh|dedt)qU/p( f|Uh|p* dzdt)l/p*< f\w\"dazdt)l/azh,
ot

nt nt

n+2 _ 1
wrando = mmo-
P Px

where p, = max{po,q}, ¢ =p
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Let the assumption (a) of the theorem hold. Then p, = ¢, o < ¢ and w converges to
0 strongly in L, (27), so I; converges also to zero. Let the assumption (b) hold. Then
P« = Po, 0 < q and I7 converges also to zero.

Finally we pass to the limit on the r.h.s. of (2.18). In view of (1.7) and the Hélder
inequality we get

‘Z ffi(UhA,VUh)\)widxdt‘
i=1

< [ (™ + [Vun | fun[2)|w| dzdt + ¢ [ |w| dzdt
nt Qt

+c( f\vuwpdxdt)"/p( [ Tunal- dxdt)’“/p*( [l dxdt)l/oz

nt nt 0t
+c f lw| dz dt,
Qt

1 1
where o1 = 1,02 = "z _rz-

P P px
Let the assumption (c) of the theorem hold. Then
1 1 '
Ul:j, 0'2:@ and o; <q, i=1,2,
q » g

so |lwllL, (ory — 0,i = 1,2, as (h,A) — (0,00). If the assumption (d) is valid then

o1 = —171#71, o9 = ﬁ, o; < qand also ||wl|z, (ory — 0,i=1,2,as (h,A) — (0,00).
o P Do v

Summarizing the above considerations instead of (2.18) we obtain

(2.21) % fh JB(uh,\(t))da:dt— QfB(t)dHc [ 1Vw|? dzdt < 0(h, )
t— ot

if ¢ is sufficiently small.
In view of (2.15) and the Fatou lemma

so (2.21) implies
(2.22) Vupy — Vu  strongly in L,(£2%), t <T.
Hence (2.15) and (2.22) yield

aij(uh)wvuh)\) i aij(uavu)a lm] = 17"'am7
(2.23) R;(upx, Vupx)upri — Ri(u, Vu)u;, i=1,...,m,
filupx, Vupy) — fi(u, Vu), 1=1,...,m,

almost everywhere convergence in 27 and also weak convergence in LLI (024, t<T.
2
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Hence the above considerations imply that u satisfies the identity (1.12).
Finally the approximate solution satisfies

(2.24) [ o7 unncdzdt =~ [ (unx — uon)p¢ da dt,

QT QT*h
which holds for any ¢ such that ((t) = 0 for t > T — h and ¢ € L,(27), ¢, € Ly (027),
1/p+1/p" = 1. Since u € Ly(0,T; W, (§2)) we have a weak convergence of O Mupy — Oyu
in L, (0,T; Wp_,l(.Q)) Hence the limit function v satisfies (1.13), so u is a solution of
problem (P.1) defined by Definition 1.2. This concludes the proof.

In the case of vanishing boundary conditions we obtain
LEMMA 2.3. Let up = 0. Let (1.7)—(1.11) hold. Let p* = max{p,po} and p; +1 < p*,

1=1,2, % + ”;}H < 1. Moreover, let ug € La(£2) and ug|ls = 0. Then

(2.25) fuzdx—i— f(a1|Vu|p—|—ﬁl|u\p°+71\Vu\q°\u|2)dxdtS fu%dac—&—cgco.
2 0t 2

Proof. Putting ¢; = u;, ¢ = 1,...,m, into (1.12) and using the growth conditions
(1.2)—(1.7) we obtain

1
(2200 [w?dz+ [ (@l Vul? + Biful?* + 3 [Vul®|uf?) de dt
2 0t

L 2 s 2 v
=3 Qf“Od“CQfOUI + ul | Vul*)|u| dz dt.

Let 1 + 1 < p*. Then [, [u[**!dxdt < ey [, (JulP° + [VulP) dz dt + c(e1), €1 € (0,1).
Assuming pp +1 <p*, ¥ + “;—H < 1 yields

[ =t Vul dedt < o5 [ (ul™ + [Vul?) dedt + c(zs).
foX fol
Using the above inequalities in (2.26) and assuming e1, 9 sufficiently small we obtain
(2.25). This concludes the proof.
THEOREM 2.4. Let the assumptions of Lemma 2.3 and the assumptions (a)—(d) of
Theorem 2.2 hold. Then there exists a solution of problem (P.1) such that u € Lo (0,T;
Ly(£2)) N Ly (0, T V(I)/pl (£2)) N Ly, (27) and estimate (2.25) is valid.

3. L-estimate for solutions of diagonal problem (P.1). In this section we
consider the following diagonal system:

wig — V- (ai(z,t,u, Vu) V) + Ri(z,t,u, Vu)u; = fi(z,t,u, Vu) in 27,
(31) ui|t=0 = UQ; in Q,

W; = Up; on ST,
where ¢ = 1,...,m and instead of (1.2), (1.3) we assume that

2 .
a;: 2T xR™ xR™ - R" | i=1,...,m,
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satisfy the Carathéodory condition and
(3.2) a1 | VulP~2|Vu|* < ai(z, t,u, Vu) - V- Vg < ag|VulP 72|V |2, p>2, i=1,...,m,

where aq, ap are the same as in (1.2), and (1.3) is replaced by

(33) Z(ai(:r, t, u, Vul) . V’U,li - ai(:c, t, u, VUQ) . VUQZ‘) . (Vuli - VUQi)
i=1
> @|Vuy — Vugl?,
where @ is the same as before.
To show an L..-estimate for solutions of problem (3.1) we use the following weak
formulation with Steklov averages:

m T
(3.4) Z f f [Ovunii + (ai(z,t,u, Vu) - Vuy)p - Vi + (Ri(x, t,u, Vu)u)pe;
i=1 h 0

- (fi(xa t) u, vu))h@i] dx dt = 07
which holds for all ¢ € Ly(0,T; fol} (£2)). First we prove
LEMMA 3.1. Let k > 0 and let

(3.5) |Ub|Loc(QT) < E, |U0|LOO(_Q) <k.
Let ¢ =p™t2 p, = max{po,q}. Let
pid

3.6 1—-————>0, d<ugq,
( ) p*(d— 1)
and

o vV d
3.7 1—-({—=+—-]—>0 d .
(37 (p*+p>d—1> O
Let p* :max{p,po},
(3.8) wi+1<p*, i=1,2
and
(3.9) vyttt g

p p

Moreover, let the other assumptions of Lemma 2.1 and Theorem 2.2 hold. Then

(3.10) Z[f(ui—z)idwal [ 19 = F) 17 dat
=1 N nt
+ 61 [ (ui =R dwdt + f|Vui\q°(ui7E)id:z:dt}

nt 0t
pid

Sczzm:{ f(ui—E)+dxdt+ f(ui—E)idxdt+(jmgi(t”dt)l—m
; o , 7

kB2 4 v

N (Of |A;i(t)|dt)1(pﬁp)ddl]7

where d < q, ¢ depends on the r.h.s. of (2.1) and A%i(t) = meas{z € 2 :u;(z,t) > k}.
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Proof. Putting ¢; = (up; — k)4 into (3.4), using (3.2), (1.7) and (1.9) and letting
h — 0 we obtain

(3.11) Zf i — k)2 d:c—i—oqz [ V(i = %) P dadt
i=1 0

i=1 pt

+Z f R;i(u, Vu)u;(u; — k)4 dx dt
i=1 ()t

Scz f(|u|ﬂ1+|u‘“2‘vu|”)(ui—E)_;,_dxdt—kcz f(ui—E)_i_dxdt,

i=1 ()t i=1 ()t
Using (1.5); and the fact that u;(z,t) > k > 0 for = € A%'i(t) we have

(3.12) f dt [ Rui(u)ui(us — )y do = f dt [ Ru(wui(u; — )y da
? 0 =

0 +
Ak,i(t)

f [ ule2ui(u; — k) de > 61 j"dt [ luo2(u; - B)? do

0 A+ (1) 0 A% (t)

Zﬁ1jdt f [ug| PO~ 2 (u; — k)* dx > B ftdt f (u; — k)P0 dx

0 At 0 AT
X () ki ®)

:ﬂljdtf =R drdt, i=1,...,m,
nt

0
and in view of (1.6) we get

(3.13) f Ro;i(u, Vu)u;(u; — k)y de dt = f dt f Roi(u, Vu)u;(u; — k) dx
o A+ 1)
¢ t
> f dt f | Vi | Pu;(u; — k) doe >y f dt f V|9 (u; — k)? da
0 At 0 af W

_71f|vuz|qo( —®)idedt, i=1,...,m.
Qt

Now we examine the r.h.s. of (3.11). Using the Hélder and Young inequalities we have

(3.14) f Ju|"t (u; — k)4 dzdt = fdt f [u|"* (u; — k) d
o4 O Ar @

d—1 pt md 1 —
ng dt | |u|d—1da:+gf(ui—k)+da:dt
0 A%i(t) ot
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<d‘1(f|u|p* dmdt)p*<dd1)<j|Ai (t>|dt)1‘#f”+1 [ (w~F)L dvat,
- d o h ki d

where p, = max{g,po}, ¢ = p™=2, 1 <d <q.
Similarly we have

(3.15) f|u|“2|Vu| (u; — )4 da dt

IN
QU

;1‘} f \u|d 1|Vu|d 1da:+d f 4 dradt
04w

(g oy T

m:

IN

%(I\u”* dwdt)” " g (f\VuV’dxdt)

ot o
1 \d
+2 [ (i =% daat.
Qt
Using (3.12)—(3.15) in (3.11) and the estimate (2.1) for the weak solution we obtain (3.10).
This concludes the proof.
Now we obtain the well known iterative inequality of the type

(3.16) Yip1 < cb®Y!e,

where s = 0,1,..., @ > 0 (see [3], Ch. 1, Lemma 4.1; [6], Ch. 2, Lemma 5.7; [7], Ch. 2,
Lemma 4.7) which implies an L.o-estimate.

LEMMA 3.2. Let the assumptions of either Lemma 2.1 or Lemma 2.3 hold. Let

(3.17) Y, = Z [ (i o dadt,

i=1 ()t
where d < 6 < q = p"+2 ks = ko + k — 35, ke = max{[|uol|z. (), [usllLo s} t < T,
keR", s=0,1,..., Then there exist positive constants c3, a., a*, o such that
a”s 1 U—
(3.18) Yin S eV toa
where c3 = c3(cp), a* = max{ay,as,da1,das}, a. = min{ay,as,day,0as}, a3 =
(3 DEE4O01 = D) aa = (0 ES (0= =14 (B0~ =14

i=1,2, 7= 305 1), 72 = (52 + %)ffl, o =min{oy, 09}, k > 1. Moreover, we assume
that 1 < 1, 72 < 1.

Proof. Putting k = ks, into (3.10) and using the estimates (see [3], Ch. 5, Sect. 7),

20’(s+1)

(3.19) f AL )] dt < [ (i = k)% dwdt,
0 0ot

2(6—p)s
(3.20) f (u; — ko) dodt < c—— XEn f (wi — k) dwdt, p<3,
Qt Qt
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we obtain
(3.21) Z{ f (ui — ksy1)} da + ay f IV (u; — ksp1)y |P dadt
=1 ot
+ 0 [ (s = haga) do dt}
Qt
M [9(6-1)s 2(5 d)s
=1 fok ot
255 51 253 B
+ (ka [ (i k) dxdt> + <k5 [ (i = k)i d:cdt) ]
nt 0t

where /1 =1 — W:l—'ﬂ,ﬁg:l—(%—l—%)ﬁ:l—'yg.

In view of (3.17) and the Holder inequality we have

(3.22) Yo gzm:( [ (i = ko)t datdt) (f|A Do \dt) o
i=1

Qt
Using (3.19) with ¢ = ¢ and (3.21) in (3.22) yields

9a1s 9azs 1+n 2 26sa1 1+Jlg 255042 1+02%
(3.23) Yorr = CKk + k>Y iR Ol }

In view of either (2.1) or (2.25) we have

m

Y, < Z f |u;|? dx dt < co,

i=1 ()t
where ¢y depends on the norms of the data functions (ug and wup) (see either (2.1)
or (2.25)).

Then instead of (3.23) we obtain (3.18). This concludes the proof.
Finally we show the boundedness of weak solutions.

LEMMA 3.3. Let the assumptions of either Lemma 2.1 or Lemma 2.3 be satisfied. Let
oi, 1 = 1,2, be positive, so

D Vi .
3.24 = > , =1,2,
(3.24) Pl pl i

where 11 = (d 7 <1 12= (“2 + %)ffl <1,d<q. Then

(325) Sup |ui|Lm(QT) < k* + k‘o,
where
(3.26) ko = [cocy? 2" ()%

Proof. In view of either Lemma 4.1 of [3], Ch. 1, or Lemma 5.6 of [6], Ch. 2, or
Lemma 4.7 of [7], Ch. 2, we find that Y converges to zero as s — oo if

Yo < ¢5 70 ke+a/(09)9=a""/(o%5%),
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We have

H
.MS

=1

[ (i da:dt<z [ lwif’ dzat, t<T,

ot =1 0t

and the r.h.s. of the above inequality is bounded by ¢q in view of either (2.1) or (2.25).
Therefore k = ko, where kg is determined by (3.26). Similar considerations can be applied
to the function (u; — k)_ also, i = 1,...,m. In this way the lemma has been proved.

Remark 3.4. We find restrictions on pg, ue and v which satisfy relations (1.10) and
(1.11):

1
patl Vg

p* p

(3.27)  <pt—1,

where p* = max{p,po}, and (3.24) gives

d—1 pp P2 1/<d—1 p
d n+p  p. D d n+p’

(328) 1 <

where p, = max{q,po}, d < q¢= pnT“'

Let pg > ¢ > p. Then

d—1 ppo M2 1/<d—1 P
d n+p  po P d n+p

(329) 1 <

Let ¢ > po > p. Then

d—1 1 d—1
pq} P2 Vo H2 Vo P

3.30 < min -1, .
(3:30) m {po d n+p Po P o’ g p d n+p

Finally for py < p we have

d—1 1 d—1
(3.31) u1<min{p—1 pq} B2 Vg2 R Y 472 P

d n+p p P p g p d n+p

4. Existence of weak solutions to problem (P.3). First we obtain an estimate
for solutions of problem (P.3).

LEMMA 4.1. Assume the growth conditions (1.2)—(1.6), (1.15), (1.16). Assume that

Upt € LQ(QT), up € LP(O,T; Wpl(Q)) N LPO(QT) n inp(QT) N LQ(QT), Uy € LQ(.Q),
P—ao
up(0) € Lo(£2). Then for solutions of problem (P.3) the following estimate holds
(4.1) f uldz+ [ (Vul? + [uf™® + [Vu|® |u]?) dz dt
Qt
sa [1 + f ([t |* + [Vup[? + fup [P0 + up|[*P/P790) 4 uy|?) dv d
Qt

+ [ (w(O) + [uo?) dz|, t<T,
2

where ¢1 = ¢1(l1,12,dy,da, d3,t) is an increasing function of its arguments.
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Proof. To obtain the estimate, the Steklov averages should be used so instead of
(1.19) we examine the following integral identity:

m t
2) Z f f |:uzht§02 + Z (ll’lz) V’U,j . VQOZ + (Rgll’b)ui)hgoi —_ flhﬂoz] dm dt — 0
h 2

=1

<.

Putting ¢; = up; — up; in (4.2), integrating with respect to time in the first term, letting
h — 0 and using the conditions (1.2)—(1.6), (1.15), (1.16) yields

(4.3)

Ms NG

1
52 J (w =) dm+z [ [oalVuil” + Baluil™® + 51 | Vs |us]?] d
i=1 (ot

7

1
5 f Uog; — sz dx
2

i=1

NE

+ f [ | VulP 2| Vg | [ Vupi| + Ba|u|P0 2 Jug | [ups| + Yo | V|2 g | [ugs |] da dt

1 t

N
S)

Z |: |ubtt|2 (ui - Ub,')2 + (dl\Vul|g + d2|ui|‘7 + d3)|ul — ubi| dx dt.

Using the Hélder and Young inequalities in (4.3) implies (4.1). This concludes the proof.
Now we formulate the result on existence.

THEOREM 4.2. Let the assumptions of Lemma 4.1 be satisfied. Let

n
4.4 >
(4.4) P> =5+

Then there exists a solution of problem (P.3) such that u € Lo (0,T; La(£2)) N L,(0,T;
W3 (£2)) N Ly, (27) and the estimate (4.1) holds.

Proof. The proof is similar to the proof of Theorem 2.2. The difference is only
in passing to the limit in the third term on the Lh.s. of (2.18). We first consider the
expression

‘Z nglihlz)(Uh)\)Uh)\iwi dxdt‘

i=1 (t
c(l1,12)< f|uhx|2dxdt)1/2( f|w|2dxdt)1/25J1,
0t 0t

where .J; converges to zero since w converges strongly to zero in Ly (27), ¢ < ¢ = "74'2,
p=2.

Next we examine

‘Z fR(ll ot2) uhA,VuhA)uhAiwi dz dt
i=1 ()t
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clln, o) [ |Vuns|®|w| da dt
Qt

c(ll,lg)< f|Vuh)\|dedt)q0/p( f|W|ad$dt>1/GEJ27
Qt fok

where 0 = 1/(1—qo/p). The assumption (4.4) implies that o < ¢ so J converges to zero.

In view of the growth condition (1.15) we can easily pass to the limit on the r.h.s. of
(2.18). This concludes the proof.

5. Existence of solutions to diagonal problem (P.2). First we consider the
following diagonal and truncated system:

uip — V- (a;(x, t, w2 V) - V)
+ Ry(z, t,u2) Vu)Vu; = fi(z,t,u, Vu) in 27,

(5.1)
Uilt—0 = Uoi in (2,
W; = Up; on ST,
where i = 1,...,m, which is the truncated version of problem (3.2) and where the growth

condition (1.16) holds.

To show an L..-estimate for solutions to problem (5.1) we use the following weak
formulation of (5.1) with the Steklov averages

¢
(5.2) Z ff [Osunipi + (az(avtu(l1 1) ) - Vui)p - Vi
h Q2

i=1

(R, t, ") Vu)ug)npr — (fi(, t,u, V) pp;] de dt = 0,

which holds for all ¢ € Ly (0, T; W (£2)).

First we show
LEMMA 5.1. Let k, = max{||uo||r_ (), lusllror)}, let k>0 be such that

(5.3) lupllpory <k, lluollpo (o) <k

Let assumptions (1.2)—(1.6), (1.15), (1.16) hold. Then for weak solutions of problem (5.1)
the following inequality holds:

(5.4) Z f i — k)2 dx—|—§: f [O;V(ui — k)4 P+ Br(u; — k)T

=1 N i=1 gt

+ 71| Vu; | % (u; — k‘)i:l dx dt

= Z f {1(% — k) + (dafu; — k|7 + dok + dai) (u; — k) 4 | da dt.
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Proof. Putting ¢; = (u;, — k)4 into (5.2), integrating with respect to time in the
first term, letting h — 0 and using conditions (1.2)—(1.6), (1.15) yields

(5.5) Zf dm—&—z fa1|V i = k) [P+ Br(uy — k)E°

i=1 i=1 (ot
+ 71|V |9 (u; —k) | dx dt

<> [ (@IVuil? + dofuil? + dai) (i — F) 4 dadt.
i=1 ()t
In view of the Holder and Young inequalities in (5.5) we obtain (5.4). This concludes the
proof.

We need a bound for weak solutions of problem (5.1) which does not depend on [y
and [5. Hence we have

LEMMA 5.2. Let k. be defined in Lemma 5.1. Let assumptions (1.2)—(1.5), (1.15),
(1.16) hold. Then for weak solutions of problem (5.1) the following estimate is valid:

(5:6) > [(w—k)ide+ D> [ (|V(ui— k)P + Ba(us — k)T
i=1 0 i=1 ot
+71 V| (u; — k)% ) da dt < tea (e + 1) = ey,
where ca = |2|(d2k? + d3)?, c3 = c1(d? +d3 + 1).

Proof. Putting k = k. into (5.4) and using the Holder and Young inequalities yields

(57) Y f(ui—k*)idaﬂ—z [ [V (s = k)41
=1

i=1 ()t
+ ﬂl(ui — k*)g_o +71\Vui|q°(ui — k*)i] dx dt
<l Bue)(d+d3+ 1) [ (i = ko)d dodt +)2|(dak + ds)?,
i=1 ()t

where ¢, is the constant from imbedding (1.20) and |{2| denotes the volume of (2.
In view of the Gronwall lemma we get

o [ (i k)% da < e D Q| (A + dy)?,

Using this inequality in (5.7) implies (5.6). This concludes the proof.
Next we prove a result analogous to Lemma 3.2.

LEMMA 5.3. Let the assumptions of Lemma 5.2 hold. Let

Y, = Z [ (i = ko) da

i=1 ()t
where kg = ki + k — 25, s=0,1,..., 0 < qu”f, ks is defined in Lemma 5.1. Let
1
(5.8) 7 1= =, R P« = max{po, q}.

s & pe ntp’
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Then we have the recursive inequalities

a*s s
(5.9) Yopr <6 T y, 70 & ;

where a, = minf{ay, as,as}, a* = max{ay,as,as}, and a;, i = 1,2,3, 0g, are defined by
(5.14), k > 1 and cg depends on cs, cq.

Proof. Putting k = ks, into (5.4) and using the Holder inequality yields

(5.10) Z f i — g+1 2 de+ Z f {al \V g+1) |p +ﬂ1( — ks_;,_l)f_o] dx dt
=1

i=1 ()t
< [ [ (i = koy1)? dudt
=1 t

Px—0

+d2( f(ui—k*)p* dzdt)g/p*( f(uifkg_‘_l) — "da:dt) pr

nt nt

+ (kI +d3) f(ui_ks+1)+d$dt:|~

Qt
Using (5.6) and (3.20) in (5.10) implies
(5.11) Z[f —hsy)2dz+ar [ |V — ko) | dodt
i=1 0t
+ 01 [ (= ko) dmdt]
Qt
m d% 2(6-2)s
< B i — k)% dw dt
_02[2‘11 53 [(u )5 dx
i o]
2( B pe )5 px—0
+ dycl” ( —— [ (i = k) dxdt)
7
2(671)5
Qt’

where in view of (5.8)1, ppig < 0 < g so for p, = g we get the relation p > (0 +1);15

and for p, = po the relation o < (p — #_2)1’0.
From (3.22), (3.19), (1.20) and (5.11) we obtain

Px

9(6-2)s 2(5*pfia) i 9(5-1)s (1+%)% 9ds 1-
G12) Yo <o | Tom Vet o Vo) o \w)

Continuing calculations (5.12) implies

2a13 2a23 1+%§ 2@38 1+UO%
(513) Y;+1 S Cs |:( a1 + Laz >Y9 + WYZ@ :|a
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where

N )
nq q

do\
D« n;)q P«/)nq b/ q

-
co=2(1-=)-=
n D D

To obtain the iterative of inequalities of type (3.16) we have to assume that a;,
1 =1,2,3, o are positive, which follows from the assumption (5.8). Using Y; < Y < ¢y,
where the last inequality follows from Lemma 5.2 and in view of the definitions of a*,
a, and the assumption that k > 1, instead of (5.13) we obtain (5.9). This concludes the
proof.

Finally we show boundedness of weak solutions.

LEMMA 5.4. Let the assumptions of Lemmas 5.2 and 5.3 be satisfied. Then

(515) sup |ui|Loo(QT) S k* + k(],
where

e, )
(5.16) ko = [eacd® 2% (mas)" @0

Proof. The proof is the same as the proof of Lemma 3.3.
Summarizing the above considerations we obtain the main result of this section.

THEOREM 5.5. Let the assumptions of Theorem 4.2, Lemmas 5.2 and 5.3 be satisfied.
Put in place of cq in (5.16) a constant c; > ¢4 such that |l1], |la] are less than k. + ko.
Then there exists a bounded solution of problem (P.2) such that u € Loo(0,T; La(£2)) N
Lpo (27) 0 Ly (0, T5 W,y (£2)).

6. L..-estimate for weakly nondiagonal problem (P.1). In this section we prove
an L..-estimate for weak solutions to problem (1.1) in the case when

(6.1) aij(z, t,u, Vu) = a;(x, t,u, Vu)d;; + Aij(z, t,u, Vu), 4,j=1,...,m,
where A;; is a matrix with vanishing diagonal elements.
To obtain the sup-estimate we have to repeat the proof of Lemma 3.1, i.e., to prove
inequality (3.10).
LEMMA 6.1. Assume (1.2)—(1.11). Assume that
(6.2) |Aij| < er(u|™[Vul® +ul®), 4j=1,...,m,
where c1,b,dy, dy are nonnegative constants. Assume that k > 0 satisfies
(6.3) luolla(a) <k llupllpoory <k

Assume also that

(6.4) P> b2 dip b+l dap 1

<1, + < 1.
p«(p—1) p-1 p(p—1) p—1
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Then
(6.5) Z[f wi— k) dr+on [V —k)yPdudt+ B [ (u— k) dvdt
i=1 ot *
1 [ IVl (i — F)2 dmdt}
Qt
m _ e 4 t N 1—m,
gcQZ{f(ui—kpdde f(ui—k)+d:cdt+2(f|AEi(t)|dt) }
i=1 gt at =1 0 ’
where d < ¢q, ¢ = pnT”, v o= #ﬁl), Yo = (Z% + %)d%dp V3 = p*?;fl) =+ §+17 Y4 =
dap + 1

Proof. The proof is very close to the proof of Lemma 3.1, where in the integral
identity (3.4) the diagonal matrix a;d;; is replaced by the matrix defined by (6.1). Another
difference is that we have to add on the r.h.s. of (3.10) the term

(6.6) ‘ Z [ A5VuiV (u; ~ F) da dt‘.
i,j=1 ot
We shall treat the term in the similar way to the expression on the r.h.s. of (3.11).
In view of (6.2) to estimate (6.6) we have to examine the integrals

m t t
Z(fdt [l (a0 ey [ar [ \u|d2p/|Vu|p/dm>EK1+K2,
=10 At 0 At

where 1/p+1/p’ = 1.
We shall restrict our considerations to Kj. By the Holder inequality we have

(6.8) K, < Z(f dt [ Ju d;z:) (fdt [ |Vu|pdx) e
0 af 0 Arw
o f 1z o),
0

where (6.4); has to be used.
Similarly, we have

(6.9) K, < ci ( f |A%z(t)‘ dt)l_'“’
=1 0

where (6.4)2 was used.
Therefore (6.5) has been proved. This concludes the proof.

Repeating the proof of Lemma 3.2 yields

LEMMA 6.2. Let the assumptions of Lemma 3.2 and Lemma 6.1 be satisfied. Then

there exist positive constants €, ag, a°, & such that

72“0 1+5
(6~10) Yst1 < CWYS )

Qo
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where ¢ = ¢(co), co is defined either in (2.1) or in (2.25), d < & < q, a® = max{ay, az, day,
5@2,50[3,(50[4}, ag = min{al,a2,6a1,§a275a3,6a4}, a; =1+ Uig7 o; = %(1 — ’Yz') - Y,
i=1,...,4, 7 = min{o1,09,03,04}, k > 1 and 73, y4 are defined in (6.5).

Similarly to the case of Lemma 3.3 we have

LEMMA 6.3. Let the assumptions of either Lemma 2.1 or Lemma 2.3 be satisfied. Let
the assumptions of Lemma 6.1 hold. Let

(6.11) Py T <1, i=1,....4
no l—m

Then

(6.12) sup ug| (o) < ks + ko,

where

(6.13) Fo = [coc 20" ()" o

Remark 6.4. To prove Lemma 6.3 the following restrictions must be imposed:
+1 v .
M1+1<p*7 :U‘27*+7<1’ 77,<L7 2:13"'743
p p n+p
_ 1 d _ v)_ d _ d b+1 _ d 1
where Y1 = m, Yo = (';% + E)ﬂa V3 = p*(;fl) + I%’ Y4 = p*(;gl) + p—1° and

p* = max{po, p}, p» = max{po,q}, d < q.

Remark. The method of getting an L..-estimate presented in this paper is much
more restrictive that the one given in [3], Ch. 8, Sect. 2. However, it seems that our
method can be applied more successfully to some anisotropic cases and for systems with
different matrices a;, i =1,...,m.
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