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Abstract. Existence of weak solutions and an Loo-estimate are shown for nonlinear non-
degenerate parabolic systems with linear growth conditions with respect to the gradient. The
Loo-estimate is proved for equations with coefficients continuous with respect to = and t in
the general main part, and for diagonal systems with coefficients satisfying the Carathéodory
condition.

1. Introduction. We consider the following initial boundary value problem for a
nonlinear system of parabolic equations:

Uit — ZV (aij(x, tu, Vu) - Vuy) = fi(z,t,u, Va)  in 27 = 2 x (0,T),

(1.1) =t

Uilt=0 = uo; in 2,

U = Up; on ST =8 % (0,7),
where ¢ = 1,...,m, 2 C R” is a bounded domain, S = 02 and the dot denotes scalar

product in R™. Strictly speaking the main term in (1.1); takes the form

SOV (ay V) =30 S 0 (a0, u5).
j=1

j=1r,s=1
Moreover, u = (u1,...,Un) € R™, o = (z1,...,2,) € R™
Our aim is to prove existence of solutions to (1.1) and then to show regularity under
appropriate assumptions on the coefficients of (1.1);.
To this end we assume the following structure conditions. First

2 . .
aij:QTxR”me7"—>R", i,j=1,...,m,
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satisfy the Carathéodory condition and

m
(1.2) | Vul? < Z aij(z,t,u, Vu) - Vuj - Vu; < as|Vul?,
i,j=1
where a1, ae are positive constants and | | denotes the norm in R.
Moreover, there exists a positive constant ag such that

(1.3)  ao|Vur — Vugl|?

S Z (aij(:r,t,u, V’Lbl) . Vulj - aij(x,tu, VUQ) . VUQJ') . (VUU — VUQZ)
i,j=1
Finally, the r.h.s. (right hand side) functions
fi: QT xR xR™ - R, i=1 m

goeeey 5

satisfy the Carathéodory condition and there exist positive constants 31, B2, B3 such that
(14) \fz(a:,t,u,Vuﬂ §ﬂ1|vu"+ﬂ2|u|+ﬁ3a ZZI,,TTL

Now, we introduce some definitions and auxiliary results. First we define the Steklov
averages
on(a,t) { Lf vl m)dr, e (b1,
0, t < h.
Next,
W3(02) = {u e W}(2) : uls = 0}.

In this paper we prove existence of weak solutions to nonlinear parabolic systems with
linear growth conditions with respect to Vu for the right-hand side functions. Next an
Lo-estimate is shown in two cases. In the first case using the technique of Solonnikov (see
[5]) an Loo—estimate is shown for general parabolic systems with coefficients of the main
part continuous with respect to z and ¢. In the case of coefficients which are measurable
with respect to x and ¢ the Loo-estimate is shown by the method of Di Benedetto (see [3])
for diagonal systems only. Moreover, the diagonal elements are the same. In this paper
the methods of [7] cannot be applied for general n.

2. Existence of weak solutions. First we need

DEFINITION 2.1. By a weak solution of problem (1.1) we mean solutions wu; €
Loo(0,T;Ly(£2)) N Ly(0,T; W, (£2)), i = 1,...,m, of the integral identity

(2.1) Z [ (i = wop) i da it + Z [ aij - Vu; - Vo, dudt = i [ fiti dat,

=1 0T B,j= IQT i,7=1 nT
which holds for any ¢; such that ¢;|s = 0, ¢;|i=1 = 0, ¢;rEL2(2T), $;€ Lo (0,T; La(£2))
N Ly (0, T;W(82),i=1,....m

To obtain necessary estimates we need the following identity with Steklov averages:

(2.2) Z [ (atumqsz n Z aij - Vu;)n - Vi — fih@-)dx dt = 0.

i=1 2x (h,T)
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Hence, we have

LEMMA 2.2. Let up € Loo(0,T; La(£2)) N W3 (27), ug — up(0) € La(£2). Let (1.2) and
(1.4) hold.

Then there exist constants ¢; = c1(au, 51, B2, B3), c2 = ca(ay, aa, B2) such that

(2.3) f|u| dr + oy f|Vu| dx dt

Qt

<etlep [ (ul? + funl? + [Vap 2)da dt

Qt

b

+ B3]£2"| + esssup, f |up|>dx + f lup — up(0)?dz|, t<T
Q Q
where |2t = tvol 2.

Proof. Putting ¢; = up; —

up; into (2.2), integrating with respect to time and passing
with h to 0 we obtain

1
3 f|u—ub|2dx—|—a1 f\Vu\zda:dt
2

Qt

< f|u—ub\|ubt\dxdt+a2 f|Vu|\Vub|dmdt

+ [ (BilVul + Balu| + Bs) u — wp| dwdt + 5 f|u0—ub( )[2da,

Qt
where we have used (1.2) and (1.4).

In view of the Holder and Young inequalities we have

B f|u—ub| dx + o f|Vu| dxdt<f f(|u—ub|2+|ubt\2)dxdt
ot Qt

+e f|vu|2dxdt+— f|Vub|2dxdt

Qt

B 2 2
—|—% [|u up|“dx dt + [o I\u up|“dx dt

+ B f\ubHu—ub\dxdt—&—ﬁs f|u—ub\dﬂcdt
Qt

2 f ug — up(0 dx.

Choosing € = % and using again the Holder and Young inequalities implies

2 51 352 53 2
qu—ub) do + 2L f|Vu| dmdt<<2++2+2)f(u—ub) dx dt
Qt Qt
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f|vu 2dedt + + f|ubt|2dxdt
Q‘ (z*

2 2 ﬂS t 1 2
+ 5 [ wPdrdt+ 32 |+2Qf(uo—u,,(0)) dz,
Qt

where |2t| = t|£2| and |2| = vol £2.
In view of the Gronwall inequality we have
f lu — up|?dzx + oy f |Vul|*dx dt
nf
26} 202
S e(1+ all +382+063)t |:<1 + 72 + 52> f (lvub‘Q + |U/bt|2 + |Ub|2)d$dt
,Qt
+ B3] 2] + f (uo — ub(O))zdI}
Q
Using [, |ul?*dz < [, |u— upPdx + [, |up|*dz in the above inequality gives (2.3). This
concludes the proof.

Now, we prove existence of solutions to (1.1).

LEMMA 2.3. Let the assumptions of Lemma 2.2 hold. Let (1.3) hold and let S be
Lipschitz continuous. Then there exists a weak solution to problem (1.1) such that

Ui € Loo(0,T; Lo(2)) N Ly (0, T; Wy (2)),  i=1,...,m,
and the estimate (2.3) holds.

Proof. To prove existence of solution to problem (1.1) we replace d;u by the back-
ward difference quotient

07 u = Z[u(t) — u(t — h)].

Sl

Hence, to prove existence of solutions to (1.1) we approximate (1.1) using time and
space discretization. Successively, on time levels we solve approximated (projected on
finite-dimensional space) elliptic equations.

Then, we prove estimates for approximate solutions. Finally, we pass to the limit to
show existence.

Let e;(x), i =1,..., A, be linearly independent smooth functions in VIO/%(Q) such that
their linear combinations are dense in I/Io/é(ﬂ) Then we are looking for an approximate
solution of (1.1) in the form

A
(24) UQ(JZ, t) = Uph + Z da,z(t) 61‘(1'), (337 t) € “QTa
i=1
where a = (h, A~ ),

Lt ) Loo(0,T) are constant on the subintervals I, = (tx—1,tx),

tr=kh, k=1,... h =, s € N. The values of d, on I}, are determined successively



Lo-ESTIMATE FOR PARABOLIC SYSTEMS 495

fork=1,..., % by solving the elliptic problems

(2.5) Sa(ta, ) = Z f {35}1%2‘(0 i + Zaijh “Vugj - Vi — fih@} dx =0,
i=1 0 =1
which hold for any ¢; € V) = span{ey,...,er},
1 kh
Qijh = 7 a;;(s, z,ua(t), Vua(t)) ds,
(k—1)h

kh
fin = % f fi(s,x,ua(t), Vue(t))ds, te ((k—1)h,kh).

(k=1)h
We take the initial data
(2.6) U (t) ;== ugp(t) for—h <t <0,
and
(2.7) in (1 L
. ‘= min —
Uon ) h‘uo‘ uo,
and the boundary conditions
A
(2.8) upp (x, 1) == 7 up(z,s)ds, te ((k—1)h,kh),

(k—1)h

where upy, is time independent also in each interval ((k — 1)k, kh).

The choice of ugp, implies that we can determine u, (t) inductively for ¢ € ((k—1)h, kh)
as a solution of an elliptic problem. In fact if u, (t—h) is known the Lh.s. of (2.5) defines a
continuous mapping @, : R*® — R*, where the \ parameters are the unknown coefficients
of us ().

To prove the existence of uq () for t € (0, kh) we assume that us(?) is already known
in (0, (k —1)h). Therefore, we have to determine {dqy;}i=1,.. 2 for t € (0,kh). Consider a
continuous mapping @, : R* — R* such that

Doi(de) = Sa(Ua,€), T=1,...,,

where d, = uq — Uph, do = Z;\ZI du,i(t)e;(x). Then using (2.5) we obtain

.....

A A
(29) @a(da) : da = Z Qsozi(da) da,i = Z Sa(uow ei) doz,i
] =1

= Z Sa(uavua - ubh)

+ Z f [Zaijh -V (t) - V(Uas — Uphi) — fin(Uai — Upni) | de.
i=1 0
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In view of the Holder and Young inequalities we have

1 1
2.1 P de > |~ - 2 Jupn|?
@10 @ulde) oz [ (a0 = erbuaO o

1
-t = D =t = )l )
€1
2
+ b/va1|Vua2dxsgbf|Vua|2d:r g f[|Vubh| dx

ﬂ% 2 2
_Ebf‘ua—ubﬂ dx—ﬂ2J|ua| dx

2 [ Qual? 4 ) = By [ (Jtal + sl
2 2

Choosing 1 = % and g9 = % we obtain

1 2
(2.11) Do(dy) - do > (—2@—352— ) [ lual? dz
a1 2 2 2
+ 5 [ 1Vual? dz ~ f (lupn|? da + |ua(t — h)|? dz
2 .Q
+ |ua(t — h)||ups|)dz — =2 Vu 23:—— upn|? dz
ot (t = ) o] ) alﬁf wl*d f| )

—% lupn|? dzx — B3 f|ubh|dx—%|m.
2 2

Therefore, for sufficiently large |d,(t)| and sufficiently small h we have @, (dy) - do > 0,
so there exists dq, (t) such that @,,(da,) = 0, that is, u,(t) exists.

Now, we obtain an estimate for solutions of (2.5). We put ¢ = u,(t) — up into (2.5)

and integrate the result over ¢ from 0 to ¢;11, where ¢t; = ih, i < % Then we obtain

tiy1

1
(2.12) f - [ Wa®) = ualt = h))(ua(t) — upn(t))dz dt
Q
tit1 m m tit1
+ f Z falkh'vuak'v(ual_ubhl)dxdt_z f ffzh(ual—ubhl)dl’dt-
0 ki=1 0 =1 0 0

Using the formula in line 6 on page 316 of [1] and the structure conditions (1.2) and (1.4)
we get

(2.13) ;Lijlf‘[ u? (t) dx dt — qughdx—koq :[“!!‘ |Vuo|? dz dt

ti tit1

_ ff —’LLoh 8 ubhd:vdt—kill f f(ua_uoh)ubhd(ﬂdt
0 N

ty 2
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tit1

tar [ [ |Vua|| V| d dt
0

tiy1

+ f f(ﬁ1|vua|+ﬁ2|ua|+63)‘ua—’ubh|da?dt.
0o N

Since u, and wup, are constants in the intervals (¢;,t;,11), i =0,..., % — 1, we have

tita

(214) [ ul(tia)det fdtf\Vua| da

0

tiy1
<c f f uZ (t) dx + ¢z f (upn (tis1) + ugy)dz
0

9]

tiy1

+c3 f dt f (|u0h|2 + |a?ubh|2 + |Ubh‘2 + |Vubh|2)dx + c4.
0 2

Hence, in view of the Gronwall lemma we obtain

tig1
(2.15) f u?(tiv1)de + ay f dt f |Vuu > dz < ¢,
2 0 Q

0 (2.15) holds for any t € (0,T).
From (2.15) we can choose a subsequence of {uq} still denoted by {us} such that
U — u weakly in Lo (0, T I/Iofé(ﬂ)), and u, — u weak star in Lo (0,7 La(£2)), as o — 0.
Now, we shall show almost everywhere convergence of u, — u in £27. Changing the
time variable in (2.5) from ¢ to ¢ + h and integrating the result over ¢ from 0 to 7' — h we
obtain

m 1 T—h
216) Y (h [ [ (it +n) - um-(t)> - dz dt
i=1 0o N
T—h
+ [ [ (Za”hwa]wz findi ) da dt)
0 N j=1
Putting ¢ = uq(t + h) — ua(t) — (upn(t + h) — upr(t)) we get
(2.17) Tf_hdt [ (walt+h) = ua(t))? dz < ch.

0

Hence, in view of Lemma 1.9 from [1] u, — u strongly in Li(£27), so
(2.18) Uy —u  a.e. in 27

Now, from Lemma 6.3, Ch. 5, Sect. 6 of [4] we see that u, — u strongly in L,.(027),
where r < ¢ = p”T“.
Finally, we prove strong convergence of Vu, to Vu. To show this we put ¢ =uy—vs =

Wy, into (2.5), where v, € Lo(0,T; V) are approximations of u in L (0, T} I/IO/%(Q)), which
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are time independent in each interval ((k — 1)h, kh), so
(2.19) Vo — u  strongly in Ly(0,T; Wy (£2)).

From (2.5) we have

j‘fa Uai Wei d.’I;dt"F Z f faljhvuajvwaz dl’dt
0 ,j=1 0
:zm: jffih~wa¢dxdt.
0 2

i=1

(2.20)

I

i=1

From [1] we know that @ = (uf + ...+ u2,), b = (u1,...,un) = VP, B(u) = L(uf +
.. +u?), so

M

(2.21)

ffa Vot d dt > %ffB(ua(t))da:dt—fB(u(t))da:+o(a),
0 h 2 2

1 t—

2

where o(a) — 0 as a — 0.
The second term in (2.20) takes the form

Emj jfaithuaijmdmdt
0 2

ij=1

mo ot
= Z f f aijh(Vwaj Vwa: + V(v — 1) Vwe; + VujVwy,;)de dt
Y]

7,7=1
= Il + IQ + 13,

where I converges to zero because of strong convergence of v, — u in Lo(0,T} V[O/%(.Q))
Finally, I3 — 0 because w,, converges weakly to 0 in Lo (0, T} W%(Q))
Finally, we examine the last term in (2.20). Hence, we consider

t

1> [ [ fine waidadt] < e(VuaLa(2%) + [ Vua)lpao + Dlwal o,
i=1 0

which converges to zero because w, — 0 strongly in Lo(£27).
Summarizing the above results we get

h f fBua ) dx dt — fB dx—l—f|Vwa\2da:dt<o( ),
Qt
where in view of the Fatou lemma
t

hmlnf fllz fBua dxdt—fB ))dxz > 0.

Hence,

(2.22) Vug — Vu  strongly in Ly (027).
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Finally, we pass to the limit in the integral identity

m

(2.23) Z ff@ Munitp; dx dt + Z ffauhVua]Vqﬁzda:dt
i=1 0 ,j=1 0
:i fffih'(bidl'dt.
0

i=1 Q
In the first term we use the integration by parts formula and we can pass to the limit

since ¢ € H'(0T). In the other two terms we can pass to the limit because of (2.18),
(2.20) and Theorem 2, Ch. 1, Sect. 4 of [2]. Hence (2.1) follows. This concludes the proof.

3. Regularity of solutions. First we have

THEOREM 3.1. Let S € C?, a;j = a;i(z,t) € C’(QT;R”Z), i,j =1,...,m. Let the
assumptions of Lemma 2.2 hold. Then the weak solution belongs to Wg’l(QT ,p>1.

)

Proof. Since u; € Loo(0,T; La(£2)) N La(0,T; W4 (£2)),i=1,...,m, and (1.4) holds,
the r.h.s. of (1.1) are in Lo(£27). Hence, in view of [5] we have w; € Wpt(QT), i =
1,...,m. Then by imbedding theorems Vu; € Ly, (27) and u; € Ly, (27),i=1,...,m,
where p; < W, @ < % Now the r.h.s. of (1.1) are in L,, (£27), so in view of

[5], ug € W2 (£2T), i =1,...,m. Then imbedding theorems imply that Vu,; € L,,(27),

T p1(n+2 p1(n+2
u; € Lg,(£2"), where py < n1+(2 pl), g2 < ml-(2—2p)1'

. _1(n+2
get at the kth step Vu; € Ly, (27), u; € Ly (27),i=1,...,m, and py < Zi%gk_l),

Continuing the considerations we

qr < ﬁ%m By induction p, = 712(271(7-:21 and ¢, = 27(::;?, s=1,2,... Hence, at the
sth step u; € Wgs’l(QT), i=1,...,n, so for sufficiently large s we conclude the proof.

In the case when a;; are not continuous with respect to  and ¢ the result of Solonnikov
(see [5]) cannot be used. Then we obtain an L..-estimate by applying the method of Di
Benedetto (see [3], Ch. 8, Sect. 2).

THEOREM 3.2. Let S be Lipschitz continuous, let a;; = ad;;, 4,7 = 1,...,m, a =
a(x, t,u, Vu) be measurable with respect to x, t and continuous with respect to u, Vu. Let
the assumptions of Lemma 2.2 hold. Then the weak solution is bounded.

Proof. We use the integral identity

m

m t
(3.1) Z ff [Oruindi + (a- Vug)p - V| dedy =
0 0

i=1

fffih'@dﬂ?dt,
0 2

where ¢; = w;nf(|un]), f is a nonnegative, nondecreasing function on RT satisfying
supg<g<; f'(5) < oo forall I >0, and f(w) = fe[(w — k)], where

i=1

1 if s > ¢,
f=(s) = {8_18 if0<s<e,
0 if s <0,

and k > ko, ko = max{|w|i=o|r_(2), |w|s|L.(sx0,1))}-
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Using the function ¢; in (3.1), integrating with respect to time and passing with h to
zero we obtain

(3:2) ;bfofsf(s)ds—i—cg f\Vu|2f(w)dxdt+a1 f|uiVui|2¥dxdt
Qt Qt

1 w
<e [+ fw)dedi+ 5 [ [ sf(s)dsl,
nt 2 0
where w = |u|. Then passing with € to zero we get
33)  [(w-kide+ [|[Vw—k)[Pdedt <A [wx{(w k) >0}dvdt.

(%} 0t 0t

Now, using Lemma 2 of [6] we obtain supgr w < 2ko. This concludes the proof.

4. Remarks

1. Using the technique of DiBenedetto we proved an L..-estimate for the system

wip — div(a(z, t,u, Vu)Vu,) = fi(z,t,u,Vu), i=1,...,m,

Uili=0 = Ui0, Uils =upi, 1=1,...,m,

(4.1)

where |f;| < ca|Vu| + cslul + c6, 0 < 1 < a(z,t,u, Vu) < ca, Jug| + |up] < e3, c1 — ¢ are
positive constants and a(z,t,u, Vu) is measurable with respect to x, ¢ and continuous
with respect to u, Vu. Continuity with respect to u and Vu is necessary to prove existence
of weak solutions.

2. Assuming continuity with respect to x and ¢ in the principal part of the parabolic
system we can prove regularity for weak solutions to the following system using the
technique of Solonnikov:

Ut — Z Z aa:j (aijkl(xat)ukzz> = fi(x,t,u,Vu), 1= 1a cee, M,
(42) 3, l=14,k=1

Uile=0 = W0, Uils =upi, T=1,...,m,

where a1, = a;jri(2,t) are continuous with respect to x, ¢t and satisfy the Legendre—
Hadamard condition

i€ > apl€?,  ap >0,

where | | is the euclidean norm in the linear space of matrices. The other assumptions
are the same as in (4.1). Applying the technique of Solonnikov we can also show that
U € Loo(27) and Vu; € Loo(27), i =1,...,m. Moreover, Theorem 3.1 implies some
Hoélder continuity of Vu also if data are sufficiently smooth.

In the above considerations the linear growth of f;, ¢ = 1,...,m, with respect to Vu
plays the role of critical exponent.

In this case we can repeat the considerations of [7] implying an L..-estimate and we
22y 1+ (see (3.18) of [7]) but a > 0 holds for n < 2 only.

obtain the inequality Y541 < ¢
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