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Abstract. Further extension of the Levinson transformation theory is performed for par-
tially dissipative periodic processes via the fixed point index. Thus, for example, the periodic
problem for differential inclusions can be treated by means of the multivalued Poincaré transla-
tion operator. In a certain case, the well-known Ważewski principle can also be generalized in
this way, because no transversality is required on the boundary.

1. Introduction. The problem of transforming the existence of forced oscillations to
the verification of some stability properties has been usually connected with the name of
Norman Levinson, because of his pioneering article [21]. It is, for example, well-known (see
e.g. [26, p. 172]) that, under some natural regularity assumptions, the periodic dissipative
first-order system admits a harmonic. By the dissipativity we mean here the one in the
sense of N. Levinson, i.e. when all solutions are (uniformly) ultimately bounded.

This classical result was formalized in the most abstract setting, i.e. in terms of
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dissipative periodic processes, in [14], [15] (see also [13] and the references therein). An-
other interesting and rather abstract result of this type says (see [23]) that a positively
Lagrange-stable motion which is asymptotically stable limits to a periodic motion. The
historical survey of the Levinson transformation theory with an extensive bibliography
can be found in [4], where the generalization to the nondissipative case has been prob-
ably done for the first time (for the quite equivalent reformulation in terms of guiding
functions see also [2]). In fact, only the partially dissipative systems were there under the
consideration, while, with respect to the remaining components, the origin was supposed
to be a uniform repeller.

The main purpose of this paper is two-fold: (i) to avoid (among others) some regularity
conditions like uniqueness, assumed in [4], (ii) to make a further generalization of the
Ważewski-type results (for the comparison in terms of the Lefschetz index or the Conley
index see e.g. a very recent paper [24] and the references therein).

Let us conclude that an increasing interest has been recently paid to the partial
stability properties themselves (see e.g. two monographs [22], [25]) as well as to the
further generalization of the concept of attractivity (see [7], [16], [17]) or repulsivity (see
[8], [9]), mostly again with respect to the application to the existence of forced periodic
oscillations (see e.g. [8], [18], [19], [20], [24], [27]).

The paper is organized as follows: in Section 2, the concept of fixed point index
for multivalued decomposable mappings is introduced. The basic fixed point theorem is
posed in Section 3, while the relationship with multivalued Poicaré operator is clarified
in Section 4. The concluding remarks concerning the applications to ordinary differential
equations and inclusions are given in Section 5.

2. Fixed point index for multivalued decomposable mappings. In this section
we introduce the topological degree of so-called decomposable mappings that will be our
main tool for carrying out the future results, concerning differential inclusions.

Definition 1. A nonempty subset A of a metric space X is of the Rδ type if it is the
intersection of a decreasing sequence of compact contractible subsets of X.

Note that in case X is an ANR space, then A is Rδ, provided it is the intersection of a
decreasing sequence of compact AR’s. It is also convenient to point out that the product
of two Rδ sets is an Rδ set as well.

Definition 2. A multivalued mapping ϕ : X → Y is called upper-semi-continuous
(u.s.c.), provided for any open subset B ⊂ Y , the set {x ∈ X | ϕ(x) ⊂ B} is open in X.
ϕ is said to be lower-semi-continuous (l.s.c.), provided for any open subset B ⊂ Y , the
set {x ∈ X | ϕ(x) ∩B 6= ∅} is open in X.

Definition 3. A multivalued operator ϕ : X → Y is called admissible, provided X

and Y are compact metric ANR’s and ϕ is u.s.c. with Rδ values.

Definition 4. We say that a single-valued map f : X → Y is an ε-approximation of
ϕ : X → Y on its graph if the following condition holds:

∀x ∈ X ∃ y ∈ X d(x, y) < ε and distY (f(x), ϕ(y)) < ε.
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The following approximation theorem (cf. [11]) is of a particular importance for defin-
ing a fixed point index.

Theorem 1. If ϕ : X → Y is admissible, then for every ε > 0 there exists a continu-
ous map fε : X → Y , that is an ε-approximation of ϕ. Moreover , there is an ε0 > 0 such
that every two ε0-approximations of ϕ are homotopic.

Assume we have a map ϕ : X → X, having a decomposition:

Dϕ : X = X0
ϕ1−→X1

ϕ2−→X2
ϕ3−→ · · · ϕn−→Xn = X, ϕ = ϕn . . . ϕ2ϕ1,

where each ϕi is admissible in the sense of Definition 3. In such case we say that ϕ is
decomposable. Let A be an open subset of X with no fixed points of ϕ on its boundary
and let fi, i=1,. . . ,n, be ε-approximations of ϕi for an ε > 0. Let us call the map:
f = fn . . . f2f1 the ε-decomposable approximation of ϕ. Using Theorem 1, one can show
that there exists an ε0 > 0 such that every two ε0-decomposable approximations of ϕ are
homotopic with the homotopy χ : X × [0, 1]→ X such that:

∀t ∈ [0, 1] ∀x ∈ ∂A x 6= χ(x, t).

Now, following [5], we define an index of ϕ over X with respect to A:

(1) IndX(Dϕ, A) = indX(f,A),

where ind indicates the ordinary fixed point index of maps on compact ANR’s and f is an
arbitrary ε0-decomposable approximation of ϕ. The remarks above prove the correctness
of (1).

Below we collect some properties of Ind:

Theorem 2. Let ϕ,ψ : X → X be the decomposable maps such that IndX(Dϕ, A)
exists.

(i) (Existence) If IndX(Dϕ, A) 6= 0 then ϕ has a fixed point in A.
(ii) (Additivity) If Aj , j = 1, . . . , n are open, disjoint subsets of A and all fixed points

of ϕ|A lie in
⋃n
j=1Aj then, IndX(Dϕ, Aj), j = 1, . . . , n, are defined and :

IndX(Dϕ, A) =
n∑
j=1

IndX(Dϕ, Aj).

(iii) (Homotopy invariance) Suppose that the decompositions Dϕ and Dψ are homo-
topic, that is:

Dϕ : X = X0
ϕ1−→X1

ϕ2−→X2
ϕ3−→ · · · ϕn−→Xn = X, ϕ = ϕn . . . ϕ2ϕ1,

Dψ : X = X0
ψ1−→X1

ψ2−→X2
ϕ3−→ · · · ψn−→Xn = X, ψ = ψn . . . ψ2ψ1,

and there is a decomposable homotopy : χ : X × [0, 1]→ X:

Dχ : X × [0, 1] = X0× [0, 1]
χ1−→X1× [0, 1]

χ2−→ · · ·
χn−1−→ Xn−1× [0, 1]

χn−→Xn = X,

where χ = χnχ̄n−1 . . . χ̄1, χi(x, λ) = χi(x, λ) × {λ} for x ∈Xi−1, λ ∈ [0, 1], i =
1, . . . , n−1, χi are u.s.c. with Rδ values, χi( · , 0) = ϕi, χi( · , 1) = ψi, i = 1, . . . , n,
and x 6∈ χ(x, λ) for x ∈ ∂A and λ ∈ [0, 1]. Then IndX(Dψ, A) is defined and
IndX(Dψ, A) = IndX(Dϕ, A).
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(iv) (Multiplicativity) If η : Y → Y is decomposable and IndY (Dη, B) exists, then:

IndX×Y (Dϕ ×Dη, A×B) = IndX(Dϕ, A) · IndY (Dη, B),

where:

Dϕ : X = X0
ϕ1−→X1

ϕ2−→X2 −→ · · ·
ϕn−→Xn = X, ϕ = ϕn . . . ϕ2ϕ1,

Dη : Y = Y0
η1−→ Y1

η2−→ Y2 −→ · · ·
ηn−→ Yn = Y, η = ηn . . . η2η1,

and

Dϕ ×Dη : X × Y = X0 × Y0
ϕ1×η2−→ X1 × Y1

ϕ2×η2−→ X2 × Y2 −→ · · ·

· · · ϕn×η2−→ Xn × Yn = X × Y.

(v) (Units) Suppose that ϕ is admissible. If ϕ is constant , that is: for every x ∈ X
ϕ(x) = B ⊂ X then:

IndX(Dϕ, A) =
{

1 if A ∩B 6= ∅,
0 if A ∩B = ∅.

One can see that the definition (1) depends on the decomposition Dϕ. However, when
it is clear, which decomposition we mean, we will usually write:

IndX(ϕ,A)

instead of IndX(Dϕ, A).

3. A fixed point theorem. The following theorem is an improved version of Lem-
ma 1 in [4] and will be applied to the Poincaré operator, defined in the next section.

Theorem 3. Let E1 and E2 be two finite dimensional normed spaces. Assume we
have:

ϕ : [0, T ]× (E1 × E2)→ E1,

ψ : [0, T ]× (E1 × E2)→ E2

u.s.c. mappings with Rδ values such that the following conditions hold :

(i) the maps ϕ0 = ϕ(0, · ) and ψ0 = ψ(0, · ) are projections onto the spaces: E1 and
E2, respectively.

Let A ⊂ E1, B ⊂ E2, A,B are open, bounded and :
(ii) A · [0, 1] = A, B · [0, 1] = B, (that is: A, B are star-shaped with respect to the

origins),
(iii) ϕT (∂A×B) ∩A = ∅, ψT (A× ∂B) ⊂ B,
(iv) 0 6∈ ϕ([0, T ]× (∂A× {0})).

Then the map (ϕT , ψT ) : E1 ×E2 → E1 ×E2; (ϕT , ψT )(x) = ϕT (x)× ψT (x) has at least
one fixed point in the set R = A×B.

P r o o f. Take K1 and K2 being the closed balls in E1 and E2, centered at the origins
and large enough to contain the sets A and B, respectively. (We also demand that ∂A∩
∂K1 = ∂B ∩ ∂K2 = ∅.)



PARTIALLY DISSIPATIVE PERIODIC PROCESSES 113

Set: r1 : E1 → K1, r2 : E2 → K2 to be the radial retractions onto K1 and K2,
respectively. Consider the homotopy: H : (K1 ×K2) × [0, 1]→ K1 ×K2,

H((u, v), λ) = (r1[(1− λ)u+ ϕT (u, λv)], r2[λψT (λu, v)]) u ∈ K1, v ∈ K2, λ ∈ [0, 1],

where ϕT = ϕ(T, · ) and ψT = ψ(T, · ). This homotopy is decomposable in the sense of
the fixed point index (compare Theorem 2 (iii)). It is not difficult to see that the map

S1 : (K1 ×K2) × [0, 1]→ E1,

S1((u, v), λ) = (1− λ)u+ ϕT (u, λv)

is u.s.c. with Rδ-values, so the convex hull of its image is a compact ANR contained
in E1. The same is true for the mapping

S2 : (K1 ×K2)× [0, 1]→ E2,

S2((u, v), λ) = λψT (λu, v).

Hence,

DH : (K1 ×K2)× [0, 1] S1×S2−−−−→ co((S1 × S2)((K1 ×K2)× [0, 1])) r1×r2−−−−→K1 ×K2

is a decomposition of H. The fact that H has no fixed point on the boundary of R
follows from (ii) and (iii). By the homotopy invariance of fixed point index we obtain the
following equality:

IndK1×K2((r1ϕT , r2ψT ),R) = IndK1×K2((r1[ · + ϕT ( · , 0)], 0),R),

which by the multiplicativity and units properties is equal to:

IndK1(r1[ · + ϕT ( · , 0)], A).

Define the homotopy: H : K1 × [0, T ] −→ K1 as

H(u, t) = r1[u+ ϕ(t, (u, 0))], u ∈ K1, t ∈ [0, T ].

Recalling (iv) and using the homotopy invariance property once again, this time for the
index on K1, we have:

IndK1(r1[ · + ϕT ( · , 0)], A) = IndK1(r1[ · + ϕ0( · , 0)], A),

which, by (i) is equal to:

IndK1(r1[2 · IdK1 ], A) = deg(−IdE1 ,K, 0) = (−1)j ,

where deg denotes the Brouwer topological degree, K is a sufficiently small ball in E1

and j indicates the dimension of E1 (finite under the hypothesis).
We are now in a position to write the following equality:

(2) IndK1×K2((r1ϕT , r2ψT ),R) = (−1)j .

By the existence property of the fixed point index, the result follows.

R e m a r k 1. Theorem 3 is also valid if we replace the assumption of E1 to be fi-
nite dimensional by the compactness of the map ϕ. In both cases E2 must be finite
dimensional.
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4. Multi-valued Poincaré operator. In this section we proceed with the study of
the existence of periodic solutions to the problem:

(3)
{
x′(t) ∈ S(t, x(t)),
x(0) = x(T ),

where S : [0, T ]×Rn → Rn is a multivalued mapping (cf. [6], [10], [12]).
By the solution of (3) we mean the solution in the sense of Carathéodory, i.e. the abso-

lutely continuous function x : [0, T ]→ Rn, satisfying x′(t) ∈ S(t, x(t)) almost everywhere
in t ∈ [0, T ] and such that x(0) = x(T ).

Consider the map P : Rn → C([0, T ], Rn):

P (x0) = {x ∈ C([0, T ], Rn) | x is a solution of: x′(t) ∈ S(t, x(t)), x(0) = x0}

for x0 ∈ Rn.
Below we present a generalization of the well-known theorem due to Aronszajn, deal-

ing with the case of differential inclusions (see [10], [12]).

Theorem 4. If S is bounded , u.s.c. map with nonempty , compact , convex values,
then P is u.s.c. with Rδ values.

We define the evaluation map: et : C([0, T ], Rn)→ Rn, t ∈ [0, T ],

et(x) = x(t), x ∈ C([0, T ], Rn)

and have the following diagram:

(4) Rn
P−→C([0, T ], Rn) et−→Rn.

The composition Qt = etP is called the Poincaré translation operator. Assuming that
the conditions of Theorem 3 are satisfied and taking a compact, convex set K ⊂ Rn and
a retraction r : Rn → K onto K such that:

(5) r(Rn \K) ⊂ ∂K,

we obtain the decomposable map rQT : K → K, to which we can apply the fixed point
index theory, described in Section 2. Namely, by the existence property, we have:

Theorem 5. If A ⊂ K is such that ∂A∩ ∂K = ∅ (the boundaries with respect to Rn)
and IndK(rQT , A) is defined and different from 0, then (3) has a solution x with x(0) ∈ A.

Consider a system of differential inclusions, given by a multivalued map S : [0, T ] ×
Rn × [0, 1]→ Rn,

(6)
{
x′(t) ∈ S(t, x(t), λ),
x(0) = x(T ),

with λ ∈ [0, 1]. For every λ ∈ [0, 1] we can set the map Pλ:

Pλ(x0) = {x ∈ C([0, T ], Rn) | x is a solution of: x′(t) ∈ S(t, x(t), λ), x(0) = x0}

for x0 ∈ Rn, and the map Qλt = etPλ, which is the Poincaré operator for (6) and λ ∈ [0, 1].
The following theorem (see [10]) corresponds to Theorem 4:
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Theorem 6. If S is bounded , u.s.c. with nonempty , compact , convex values, then the
map P : Rn × [0, 1]→ C([0, T ], Rn),

P (x0, λ) = Pλ(x0),

is u.s.c. with Rδ values.

Assume that S is as in Theorem 4 and that P1 splits in the following way:

P1(x0) = P11(x0)× P12(x0),

P11 : Rn → C([0, T ], Rj), P12 : Rn → C([0, T ], Rk), j + k = n,

where P11 and P12 have Rδ values.
Define ϕ(t, x0) = etP11(x0) and ψ(t, x0) = etP12(x0), x0 ∈ Rn, t ∈ [0, 1]. Then, under

the assumptions (ii)–(iv) of Theorem 2, one can obtain:

(7) IndK1×K2((r1ϕT , r2ψT ),R) = (−1)j .

(K1, K2, r1, r2, R are as in Theorem 2).
The proof of this fact is exactly the same as the one of Theorem 2, although the maps

ϕ and ψ are no more u.s.c. with Rδ values. Still, they are the compositions of such maps
with the evaluation mappings, that makes the homotopies H and H decomposable in the
sense of the fixed point index, as it was before.

Now, we reformulate (7):

(−1)j = IndK1×K2(r(ϕT , ψT ),R) = IndK(rQ1
T ,R),

where r : Rn → K = K1×K2 is a retraction for which (5) is valid. Let H : K×[0, 1]→ K,

H(x, λ) = rQλT (x).

In view of Theorem 5, H is a decomposable homotopy, linking rQ0
T with rQ1

T . If for each
λ ∈ [0, 1) and every x ∈ ∂R, x 6∈ QλT (x), then by the homotopy invariance we obtain:

IndK(rQ0
T ,R) = (−1)j ,

which implies, in view of Theorem 4, that the inclusion x′(t) ∈ S(t, x(t), 0) has at least
one T -periodic solution with the initial value in R.

Using the “a priori estimates” technique (see [10]), we can avoid the assumption of
boundedness of the map S. Namely, let S satisfy all the assumptions above with the
integrable boundedness instead of the boundedness condition.

Recall that S is said to be integrably bounded if there exists a Lebesgue integrable
function µ ∈ L1([0, T ], R) such that:

∀t ∈ [0, T ] ∀x0 ∈ Rn ∀λ ∈ [0, 1] ∀y ∈ S(t, x0, λ) : ‖y‖ < µ(t).

We define S : [0, T ]×Rn × [0, 1]→ Rn by putting:

S(t, x, λ) =
{
S(t, x, λ) if ‖x‖ ≤M , t ∈ [0, T ], λ ∈ [0, 1],
S(t,M · x/‖x‖, λ) if ‖x‖ ≥M , t ∈ [0, T ], λ ∈ [0, 1],

for a constant M > 0. Then S is as it was considered before. Moreover, one can prove
(see [10]), that if M is large enough then the Poincaré operator P for the problem (6)
coincides with the Poincaré operator for that system with S replaced by S. Consequently,
the inclusion x′(t) ∈ S(t, x(t), 0) has a T -periodic solution x with x(0) ∈ R.
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Now, we turn to the case when S is no longer an u.s.c. map, but l.s.c. instead. In what
follows, we will employ the result due to A. Bressan (cf. [6]).

Theorem 7. Let A be a closed subset of R × Rn and let G : A → Rn be a bounded ,
l.s.c. multifunction with nonempty , closed values. Then there exists an u.s.c., bounded
map F : A → Rn with nonempty , compact , convex values such that every solution of
x′(t) ∈ F (t, x(t)) is also a solution of x′(t) ∈ G(t, x(t)).

Consider system (6) with S : [0, T ]×Rn × [0, 1]→ Rn l.s.c., bounded and nonempty,
closed-valued. From the proof of Theorem 7 (see [6]) it follows, that we can find a mul-
tivalued map S : [0, T ] × Rn × [0, 1] → Rn u.s.c., bounded with nonempty, compact,
convex values such that the Poincaré operator P (defined in Theorem 6) for the system
(6) with S replaced by S is a selector of the Poincaré operator P for (6). Assume that
the previous conditions for P hold and, additionally, P 1 splits in the same way as P1.
Then P 0 has a fixed point, which implies the existence of a T -periodic solution to the
inclusion x′(t) ∈ S(t, x(t), 0). An example of such a situation will be given in Section 5.

5. Applications to ordinary differential equations and inclusions. The main
difficulty in applying the results obtained in Section 4 lies in giving the sufficient con-
ditions for the right-hand side map of the system (6) to make the Poincaré operator P1

split. Below we present three possible examples.

Example 1 (Uniqueness case). S is such that the uniqueness of solutions to the
problem: {

x′(t) ∈ S(t, x(t), λ),
x(0) = x0

is guaranteed for every λ ∈ [0, 1] and every initial value x0 ∈ Rn. This case, with the
additional restriction imposed on S to be single-valued is considered in details in [2], [4].

For the application to the large-period forced oscillations of the systems and higher-
order equations see [1], [3], where the sufficient conditions, imposed on the right-hand
sides, have been obtained in an effective way.

Example 2 (U.s.c. splitting case). The mulivalued map S (u.s.c. with compact,
convex, nonempty values) splits itself when λ = 1, that is:

S(t, (u, v), 1) = S1(t, u)× S2(t, v) t ∈ [0, T ], u ∈ Rj , v ∈ Rk,
where S1 : [0, T ]×Rj → Rj , S1 : [0, T ]×Rk → Rk.

This case will be treated in more general setting, with respect to obtaining the effective
conditions, by the authors elsewhere.

Example 3 (L.s.c. splitting case). S : [0, T ]× Rj+k → Rj+k, S1 : [0, T ]× Rj → Rj ,
S2 : [0, T ]×Rk → Rk,

S(t, (u, v)) = S1(t, u)× S2(t, v) t ∈ [0, T ], u ∈ Rj , v ∈ Rk,
S is l.s.c. with nonempty, closed values. In such a case the Poincaré operators, namely
the one for the inclusion x′(t) ∈ S(t, x(t)) and another for the inclusion corresponding to
the above in the sense of Theorem 7, split. Also this case will be treated in details by the
authors elsewhere.



PARTIALLY DISSIPATIVE PERIODIC PROCESSES 117

In order to overcome the mentioned difficulties in a more general situation practically,
the best tool seems to us the application of two bounding functions, one guaranteeing
the partial retraction, while the second partial repulsivity, both on the boundary of R
(see Theorem 5). This has also a lot to do with the so called “viability theory”, where
such models are under intensive study, today.

The second possibility consists in the application of two guiding functions giving the
same asymptotically (for a big multiple of the period T ), but this time only the existence
of subharmonics can be proved, because the appropriate fixed-point theorem in section
3 cannot be so easily modified as in [4].
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