TOPOLOGY IN NONLINEAR ANALYSIS
BANACH CENTER PUBLICATIONS, VOLUME 35
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 1996

UPPER SEMICONTINUOUS PERTURBATIONS
OF m-ACCRETIVE OPERATORS AND
DIFFERENTIAL INCLUSIONS
WITH DISSIPATIVE RIGHT-HAND SIDE

DIETER BOTHE
Fachbereich 17 der Universitit Paderborn
D-33095 Paderborn, Germany
E-mail: dieterb@uni-paderborn.de

1. Introduction. Let X be a real Banach space and A : D(A) C X — 2%\ {0}
be m-accretive. In applications one often has to deal with operators of the type A 4+ F'.
Therefore it is of interest to have sufficient conditions guaranteeing that this sum is
m-accretive again. This problem has attracted many people; see [1], [10], [13] and [14],
the references given there and also [2], [4] and [12].

Of particular interest to us is Theorem 1 in [1], saying that A + F is m-accretive if
F : X — X is continuous and accretive. In the first part of this paper, we extend this and
related results to the case of multivalued perturbations. More precisely, we prove that
if F: D(A) — 2%\ {0} is upper semicontinuous with compact convex values such that
A+ F is accretive, then A+ F' is m-accretive. This result proves useful in the second part
of this paper where we obtain existence of strong solutions of the initial value problem

(1) u € F(t,u) on J = [0,a], u(0) = xo,

if, among other assumptions, the F(¢, - ) are usc with compact convex values and satisfy
a condition of dissipative type.

2. Preliminaries. In the sequel, X will always be a real Banach space with norm
| - |. Then 2% \ 0 denotes the set of all nonempty subsets of X, B,.(x) is the open ball
in X with center x and radius 7, B,.(x) denotes its closure and p(z, B) is the distance
from z to the set B C X. Given J = [0,a] C R, we let Cx(J) be the Banach space
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of all continuous u : J — X and L% (J) the Banach space of all strongly measurable,
Bochner-integrable w : J — X, both equipped with the usual norms which we denote by
| - |o, respectively | - |;. Given an operator A : X — 2% welet D(A) = {z € X | Az # 0},

R(A)= U Az andgr(4) ={(z,y) | z € D(A), y € Az} denote the domain, range
z€D(A)
and graph of A, respectively.

(i) Recall that A : X — 2% is m-accretive if R(A+ AI) = X for all A > 0 and A is

accretive, i.e.
(u—v,z—7y)r >0 for all z,y € D(A), u € Az and v € Ay.
Here (-, - )+ denotes one of the semi-inner products (-, - )1 defined by

ly| — |y — tx|

3

_ .yt =yl B .
(r,y)+—|y\t£%1+f and (zyy)——lyltlgggl+ ,

properties of (-, - )4 can be found e.g. in §4.4 of [7]. If A is m-accretive, the resolvents
Jy = (I +2A)7! 1 X — D(A) and the Yosida-approximations Ay = A71(I — J,) :
X — X are well defined for all A > 0. In particular, Ayx € A(Jyz) on X, all Jy are
nonexpansive mappings and A£%1+ Jyx = x for every x € D(A).

We shall use the following characterization of m-accretivity.

LEMMA 1. Let A be an accretive operator in X. Then A is m-accretive if and only if
gr(A) is closed and

(2) lim k™ 'p(z + hz, R(I + hA)) =0 for all z € D(A) and all z € X.
h—0+
This is Theorem 5.2 in [10]. More about m-accretive operators on Banach spaces can
be found e.g. in [2] or [4]; in the latter reference one can also find Lemma 1 which is
Theorem 16.2 there.

(ii) Let us also recall some facts about u.s.c. multivalued maps; for more details see
[7]. A multivalued map F : D C X — 2% \ () is called upper semicontinuous (u.s.c. for
short), if F7Y(B) := {z € D | F(z) N B # 0} is closed in D, for all closed B C X.
If F' has compact values, u.s.c. is equivalent to: for every € > 0 and zg € D there is
d = d(e,xg) > 0 such that F(z) C F(zo) + B:(0) on Bs(zo) N D. A multivalued map is
said to be continuous if it is continuous w.r. to the Hausdorff metric dy which is given
by

dir(A, B) = max{sup p(z, B), sup p(z, A)}
T€A z€B

for bounded A, B C X.

In case D is compact and F is u.s.c. with convex values, for every ¢ > 0, there exists
a continuous f. : D — X such that

fe(z) € F(B:(x) N D) + B(0) on D;

see Proposition 1.1 in [7]. Finally, the following fixed point theorem is a special case of
Theorem 11.5 in [7].
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LEMMA 2. Let X be a real Banach space, ) # D C X compact convex and F : D —
2P\ 0 be w.s.c. with closed convex values. Then F has a fized point.

(iii) We also need the following criterion for weak relative compactness in L% (.J).

LEMMA 3. Let X be a Banach space, J = [0,a] C R and W C L% (J) be uniformly
integrable. Suppose that there exist weakly relatively compact sets C(t) C X such that
w(t) € C(t) a.e. on J, for allw € W. Then W is weakly relatively compact in L (J).

This is Corollary 2.6 in [8] specialized to Lebesgue measure.

3. Upper semicontinuous perturbations.

THEOREM 1. Let X be a real Banach space, A : D(A) C X — 2%\ () be m-accretive
and F : D(A) — 2%\ 0 be w.s.c. with compact convex values such that A+ F is accretive.
Then A+ F is m-accretive.

Proof. Let B=A+F with D(B) := D(A). Then B has closed graph, since (2., y,) €
gr(B) means y,, = un+v, with u, € Az, and v, € F(z,), hence (z,,y,) — (z,y) implies
vy, € F(x) + B:(0) for all n > n. and therefore v,, — v € F(z) for some subsequence
(Un,) of (vy), hence also u,, — u:=y—v and u € Az by closedness of gr(A).

Next, notice that in order to get (2) we may assume z = 0, since for any z € X the map
F,, defined by F,(x) := F(x) — {#} on D(A), has the same properties as F'. So we are
done by Lemma 1, if

(3) lim h~'p(z,R(I+hB))=0  on D(B).
h—0+

Fix x € D(B), let h > 0, C := F(z) and G(2) := F(Jy(x — hz)) for z € X where
Jn = (I +hA)~!. Evidently, G is u.s.c. with compact convex values. Hence, given ¢ > 0,
the approximation result mentioned in 2. (ii) yields a continuous g, : C' — X such that
g:(2) € G(B:(2) N C) 4+ B:(0) on C. Let Ge(z) = Pc(g:(2)) for z € C, where Po(-) is
the metric projection onto C| i.e.

Pe(e)={yeC | =yl = p(x,C)}  on X.

Then G. : C — 29\ 0 is also u.s.c. with compact convex values, since Pc has this
properties. Therefore, G, has a fixed point z. € C' by Lemma 2. Given h, \, 0 and
€n "\, 0 we repeat the previous arguments to obtain fixed points z, of the corresponding
G.,, i.e. we get a sequence (z,) C C such that

zn € Po(yn) and Yn € F(Jn, (x — hp(Be, (z,) N C))) + Be, (0).
In particular, there are e,, €, € Be, (0) such that
(4) Yn — €n € F(Jn, (x — hnZy)) with 2, = 2z, + ¢, € C.

Now x,, := Jp, (€ — hpZy) satisfies |, — x| < hy|Zn|+|Jh, () — x|, i.e. 2, — 2 asn — oc.
We may therefore assume y, — y for some y € F(x). Without loss of generality we also
have z, — z for some z € C, z, € Pc(yy) implies z € Po(y), hence Po(y) = {y} yields
Yn — zn — 0. Together with (4) this means z,, € F(x,) + €, for some &, — 0, hence
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& — hpZp = Jp, (€ — hpZy) + hp A, (x — hypZ,) implies
X € Xy + hp(Azxy, + F(zy,) + €,),
i.e. (3) holds. i

Remarks 1. Specialized to the case of single-valued perturbations, the conditions
on F become “F : D(A) — X continuous such that A+ F is accretive”. In this situation
the result is known and, using Lemma 1, it was first proved in [10] where it is Theorem 5.3.
Independently, the same result was obtained in [13] Theorem II, by means of locally
Lipschitz approximations of F. The first result about continuous perturbations of m-
accretive operators is Theorem 1 in [1], where the assumptions on F are F' : X — X
continuous and accretive. In the proof given there, it is shown that such an F is in fact
s-accretive, which means

(F(z) - F(y),z—y)—>0  foralz,y€ X,

hence A + F' is accretive. Let us note that s-accretivity of F' follows from the fact that
v = —F(u), u(0) = x has a unique C'-solution on R, for every x € X. Hence —F
generates a semigroup of nonexpansive operators S(t), given by S(t)x := wu(t;x), and
therefore

S(h)x —x N S(h)y —vy

(F(z) - Fy),z —y)- = lim (-—— L T Y)-
> lim A7tz —yl(le =yl = [S(h)z = S(h)yl) > 0.

h—0+

In case F': D(A) — X is continuous, accretive and satisfies the subtangential condition

lim h~lp(z + hF(x), D(A) =0 on D(A),
h—0+

the same argument can be used to show that F is s-accretive, since v’ = —F (u), u(0) =
has a unique C'-solution for every x € D(A); see Remark 3 below. Hence A + F is m-
accretive, given that A has this property. This is Theorem 2.8.17 in [12]. Without this

additional boundary condition the result is not true; a counterexample is given in [13].

In the case of multivalued F' the situation is worse, since accretivity of F' is not sufficient
then even if F' is defined on all of X. This is shown by the following

EXAMPLE 1. Let X = R? with |z|o = max{|z1], |z2|} and A : D(A) — 2%\ 0 be
given by Az = R x {0} on D(A) = {(s,s) | s € R}. Obviously, R(I + AA) = X for all
A > 0. Moreover A is accretive, since x,y € Da, u € Az, v € Ay means x —y = (s, 8)
and u — v = (h,0) for some s, h € R, hence

(u—v,2—y)r =|s] tlir51+ t~ Y (max{|s + thl, |s|} — |s|) > 0.

Let F: X — 2%\ () be defined by
{(1,—1)} if 1 > X2,
F(z)=1< {(s,—5) | s€[-1,1]} ifx; =z,
{(_17 1)} if 21 < @o.
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Evidently, F is u.s.c. with compact convex values. Accretivity of F' can also be checked
in a straight forward way, but we omit the details, since this F is a special case of an
example considered in [6]; see p. 296 there.

Now A+ F = R x [-1,1] on D(A) which is not accretive, since e.g. = = (1,1),
y=(0,0), u=—z,v=yyield (u—v,x —y)y = —|z]3 = —1.

2. For concrete applications, it would be useful to weaken the assumptions on F', since
the values will often be only weakly compact and convex. We do not know how to prove
a corresponding version of Theorem 1 in this case. If F' itself is m-accretive one can of
course try to apply results about the sum of m-accretive operators like Theorem 3 in [14],
saying that A 4+ F is m-accretive given that A and F' have this property, X and X* are
uniformly convex and D(A)Nint (D(F)) # 0.

4. Differential inclusions with dissipative right-hand side. By means of The-
orem 1 we are going to obtain strong solutions of (1) if, among other assumptions, the
F(t, -) are u.s.c. and satisfy a condition of dissipative type. Here u is called strong solu-
tion of (1), if u is absolutely continuous with u(0) = z¢ and a.e. differentiable such that
u'(t) € F(t,u(t)) a.e. on J.

Let us first consider the special case when F is given by F(t,x) = —G(x) + w(t) on
J x X, where w € L% (J) and G : X — 2%\ ) is accretive and w.s.c. with compact
convex values. By Theorem 1 with A = 0 we know that G is m-accretive, hence (1) has
a unique mild solution by Theorem 4.6 in [4]; see Remark 4 below for the definition of
“mild solution”. But in this situation w is in fact a strong solution. This follows from the
Proposition in [3], saying that every mild solution of u’ € —G(u) + w(t) is also a strong
solution if w € L% (J) and G is weakly u.s.c. with closed domain and convex, weakly
compact values; here weakly u.s.c. means G~1(A) closed for all weakly closed A C X.
The same conclusion holds if G is only w-accretive, i.e.

(y -7,z — %) > —w|z — 7| forall 2,7 € X, y € G(z), y € G(T)

with some w € R. Notice that the result mentioned above can be applied with G 4+ wI
instead of G and therefore the usual fixed point approach yields a strong solution for (1)
with F(t,z) = —G(x) + w(t). Let us record this information for later use.

LEMMA 4. Let X be a real Banach space, G : X — 2% \ () be w-accretive for some
w € R and u.s.c. with compact convexr values, J = [0,a] C R and w € L% (J). Then the
Cauchy problem

u' € —G(u) + w(t) on J, u(0) = xg
has a unique strong solution, for every xg € X.

We shall use Lemma 4 to prove a more general result which allows the right-hand
side F' to depend on (¢,z) in a more complicated way. But still we need a rather strong
assumption concerning the t-dependence. In the subsequent theorem we suppose that
for every n > 0 there exists a closed J, C J with u(J \ J,) < n such that the family
{F(- ,x)|J" | € X} is locally equicontinuous, i.e. for every zp € X thereis § = §(n, zo) >



144 D. BOTHE

0 such that the F(- ,x)|J
n
{F(-,z) |z € X} is almost locally equicontinuous. Now we can prove

are equicontinuous for all € Bs(zo). If this holds we say that

THEOREM 2. Let X be a real Banach space, J = [0,a] C R and let F : J x X — 2%\ ()
have compact conver values such that the following conditions hold.

(a) |[F(t,x)|| :=sup{ly| |y € F(t,2)} < c(t)(1+|z|) on J x X with c € L*(J).
(b) (y—7,x—7)_ <k(t)|lx—7|? forallt € J, 2,T € X, y € F(t,z),y € F(t,T) with
ke L'(J).
(¢) F(t,-) is us.c. for almost allt € J.
(d) The family of maps {F(-,x):x € X} is almost locally equicontinuous.
Then initial value problem (1) has a unique strong solution on J.

Proof. (1). Let us first reduce to the case ¢(t) = k(¢) = 1. For this purpose define

o € LY(J) by ¢ = max{l,¢,k}. The map t — f(f ©o(s)ds from J to J := [0, ]|p|1] is

continuous and strictly increasing. Let ¢ be its inverse and define F:JxX —2X \ @ by
~ 1

F(t,z) = ———

p(o(t))

Evidently, u is a solution of (1) iff v(t) := u(é(t)) is a solution of (1) with F and J

replaced by F" and J, respectively. It is easy to check that " has properties (a)—(c) with

c(t) = k() =1on J x X. To see that F' also satisfies (d), let n > 0 be given. Then there

is 0 = o(n) > 0 such that p(A) < o implies [, p(t) dt < n for every Lebesgue measurable

A C J. Exploitation of condition (d) for F' yields a closed J, C J with u(J\J,) < o such

that the family {F'(- ,x)|J | z € X} is locally equicontinuous and F\(¢, - ) is u.s.c. for all

t € J,. Since ¢ has the Lusin property, we may also assume that @, is continuous. Let

j,, := ¢~ 1(J,). Using the fact that .J, is closed it is easy to check that ,u(jn) = fJn o(t) dt,

hence p(.J \ jn) < 7. Now we are done, since

~ ~ 1 1
du(F(t,2), F(s,)) < | 20505 = oia()

{F(¢(-),x) |~ | z € X} islocally equicontinuous and (m) |~ is uniformly continuous.
J 7,

F(o(t),z)  for (t,z) € J x X.

IN

(1+ |z]) + du (F(o(t), x), F(¢(s), ),

n 1

In the sequel we will denote Fand J by F and J again.

(2). Givenn > 0, let J,, C J be closed with p(J\ J,) < n such that the family of maps

{F(- ,:c)|J | z € X} is locally equicontinuous, where we may assume {0,a} C J,. Then
n
I\ Iy =U,>1(an, Bn) for disjoint (o, 8,) C J, since J \ Jy, is open. Let £, : J x X —
2%\ () be defined by
[ F(tx) ift e Jy,
Fyt,z) = {F(an,x) if t € (e, Bn) for some n > 1.

Then F), has compact convex values, satisfies (a), (b) with ¢(t) = k(t) =1 and F,(¢, -) is
us.c. for all ¢t € J. We want to show that (1) with F,, instead of F' has a strong solution.
For this purpose let us first prove that (1) with F replaced by F;, has an e-approximate
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solution u = u, for every € € (0,1), by which we mean

u(t) = xo + /t w(s)ds on J with w € L (J)

(5) 0 a

such that / p(w(t), Fy(t,u(t))) dt < ea.
0

This will be done by using Zorn’s Lemma. But notice first that there is R > 1 such that
every u satisfying (5) for some ¢ € (0,1) has |u|p < R — 1. Therefore, we can obtain
approximate solutions such that also |u/(¢)] < R a.e. on J. Consider the set

M ={(u,h) | h € (0,al], u:[0,h] — X satisfies (5) with
J replaced by [0, k] such that |w(t)| < R a.e. on [0, h]},

equipped with the partial ordering (u,h) < (@,h) if h < h and u(t) = w(t) on [0,h].
Let us show M # (. There is § = 6(n,zp) > 0 such that {F(-,m)bn | x € Bs(zo)}
is equicontinuous. Hence there is hg > 0 such that dg(F(0,z), F(t,z)) < ¢ for every
t € [0, ho] N J,, and every x € Bjs(zo). By the definition of F,, this implies

(6) du(F,(0,2), F,)(t,x)) <e¢ for every ¢ € [0, ho|, = € Bs(zo).
Let u be the strong solution of the initial value problem
u' € F,(0,u) on J, u(0) = xp,

which exists due to Lemma 4 with G := —F},(0,-) and w := 0. Since there is h € (0, ho]
such that |u(t) — 2| < & on [0, k], estimate (6) implies

h h
/0 p(u' (t), Fy(t, u(t))) dt < /0 dp (Fp(0,u(t)), F,(t,u(t))) dt < eh.

Hence |u(t)] < R —1 on [0, h], which implies |[v/(t)| < ||F,(0,u(t))|] < R a.e. on [0, k],
and therefore (u,h) € M. It is obvious that every ordered subset of M has an upper
bound, hence M has a maximal element (u*, h*) by Zorn’s Lemma. Moreover h* = a
since otherwise we may repeat the argument given above with (h*,u*(h*)) instead of
(0,x0) to get an e-approximate solution on [0, h* + h| which extends u*, a contradiction.

(3). Now let () C (0,1) satisfy e — 0+ and uy be ex-approximate solutions of (1)
for F,,. Then, for fixed m and n, ¥(t) = |u,(t) — u, (t)| satisfies (0) = 0 and

PO (1) = (ug (8) = s (1), un (8) = wm(8)) = < (pa(t) + pn(D)D(t) +9(1)*  ae. on J,

where pg(t) = p(u)(t), F,(t,ux(t))) on J. This implies e~ 1o < |pn|1 + |pm|1 < alen +
€m). Consequently, (ug) is a Cauchy sequence in Cx(J), hence |ur, — ulp — 0 for some
u € Cx(J) with u(0) = xo; notice that (uy) is equicontinuous. Since F(t, -) is u.s.c.
with compact values for all t € J, the sets Fy (¢, {ux(t) | k > 1}) are compact. By Lemma
3 we may therefore assume wy, = uj, — w for some w € L% (J). Together with uy — u
in Cx(J) this implies u(t) = o + fot w(s)ds on J. By Mazur’s Theorem there are
wy, € conv{w; | j > k} with W, — w in L (J), hence w.lo.g. wi(t) — w(t) a.e. on J
by passing to a certain subsequence. Let Jo = {t € J | wy(t) € F,(t,ur(t)) for all k > 1,
Wy (t) — w(t)} and t € Jy. Then, given o > 0, we have wy(t) € Fy(t,u(t)) + B, (0) for all
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large k, hence the same for wy(t). Evidently, this implies w(t) € F,(t, u(t)) on Jy, hence
a.e. on J and therefore u is a strong solution of (1) with F,,.

4. Let ni \, 0 and Jy, := Jy, , Fy, := I}, be given as in step 2, where we may assume
Ji C Ji41 for k > 1. By the previous step, initial value problem (1) with F} instead of
F has a solution uy, for every k > 1. Moreover, |ug|o < R for all k£ > 1 with some R > 0,
since all F}, satisfy (a) with ¢(¢t) = 1. For fixed m > 1, we have F,, = F on J,,, x X for all
n > m, hence ¥ (t) := |u,(t) — um(¢)| has

() < P(O)Xg, (1) +2(1+ R)Xp\ g, (t)  ae. on J, 4(0) =0,

for those n. Therefore, application of Gronwall’s Lemma shows that (uy) is Cauchy in
Cx (J). Hence |ur — ulp — 0 for some u € Cx(J) with u(0) = zg, and /(t) € F(¢t,u(t))
a.e. on J can be seen as in step 3. So, we have shown that (1) has a strong solution.
Evidently we are done, since uniqueness is an obvious consequence of (b). a

Additional information is contained in the following

Remarks 3. If X is a real Hilbert space condition (d) can be replaced by “F(-,x)
has a strongly measurable selection” and the values of F' need only be closed convex.
This is Theorem 10.5 in [7], and Theorem 2 is a first step to extend this result to general
Banach spaces. Therefore this gives a partial answer to Problem 10.6 in [7].

Let us also mention that, specialized to the single-valued case, conditions (a) and (d)
hold in case F' is almost continuous, which is the same as “F' is measurable in ¢ and
continuous in z” for separable X. For continuous single-valued F' a corresponding version
of Theorem 2 holds even if the maps F(t, -) are only defined on time-dependent sets
D(t) C X, given that gr(D) is closed from the left and F' also satisfies the subtangential
condition

lim A~ 'p(z +hE(t,z),D(t+h)) =0  forallt€ [0,a), x € D(t);

h—0+
see Theorem 3 in [9]. For multivalued and almost u.s.c. right-hand sides, such an existence
result under time-dependent constraints holds if the condition (b) of dissipative type is
replaced by a certain compactness assumption. The details concerning the latter case can
be found in [5].

4. A different approach to prove a result like Theorem 2 is to get first the existence of
a mild solution and then to show that it is in fact a strong solution; remember the proof
of Lemma 4. By a mild solution u of (1) one means u € Cx(J) being the uniform limit of
a sequence of approximate solutions w,, (corresponding to a sequence €,, — 0+) which
solve an implicit difference scheme. More precisely, v is such an approximate solution
corresponding to € > 0 if there are z1,...,2,4+1 € X and a partition 0 =ty < t;1 < ... <
t, < tp+1 = a of J such that, for all £ =0,...,n, one has:

tea1 — tr < ¢, v(t) =z on [tg,tg+1) and

Tk41 — Tk c F(

tht1, Thoyt) + 2k with |zx| < e.
ter1 — tk

Now, under the conditions of Theorem 2 where w.l.o.g. k(t) = w, it is easy to see that we
get such approximate solutions, since almost all —F (¢, -) are m-w-accretive. In fact one
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only needs condition (3) with B replaced by F(t + h, -); see e.g. Chapter 1.3.5 in [12].
Then the main problem is to obtain the uniform convergence of (v,,), and one may
try to apply results about time-dependent w-accretive operators like Theorem 3.5 in [11].
Specialized to the situation under consideration, this theorem guarantees that |v,, —ulo —
0 for some u € Cx(J), given that

(Y@ —T)- + (-G o —T)- <wle —T* + o(t, D)z — 7]

forallt,t € J, z,7 € X,y € F(t,z) and y € F(¢,T) with some w > 0 and a bounded
upper semicontinuous symmetric function ¢ : J x J — R satisfying

h%l-i- sup{p(t,t) | [t =t <r} =0 on J x J.

It is sufficient that this condition holds locally, i.e. for all z,Z € Bs(Z) for every T € X
and some § = §(Z) > 0, where w and ¢ may depend on Bs(Z). In the situation described
in Theorem 2 it is not clear if this condition is satisfied, but it holds if k(t) = w in
(b) and the maps F(-,z) are locally equicontinuous. In this case, once the existence of
mild solutions of (1) is established, the proof is easily finished: given v,, — u in Cx (J),
consider functions u,, being linear on each [t}*, }", ] with um, (') := v, (t]'). Evidently
|y, — ulo — 0. Then u), — w in LY (J) and «/(t) = w(t) € F(t,u(t)) a.e. on J can be
proved similar to step 3 of the proof of Theorem 2.
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