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1. Introduction. Let X be a real Banach space and A : D(A) ⊂ X → 2X \ {∅}
be m-accretive. In applications one often has to deal with operators of the type A+ F .
Therefore it is of interest to have sufficient conditions guaranteeing that this sum is
m-accretive again. This problem has attracted many people; see [1], [10], [13] and [14],
the references given there and also [2], [4] and [12].

Of particular interest to us is Theorem 1 in [1], saying that A + F is m-accretive if
F : X → X is continuous and accretive. In the first part of this paper, we extend this and
related results to the case of multivalued perturbations. More precisely, we prove that
if F : D(A) → 2X \ {∅} is upper semicontinuous with compact convex values such that
A+F is accretive, then A+F is m-accretive. This result proves useful in the second part
of this paper where we obtain existence of strong solutions of the initial value problem

(1) u′ ∈ F (t, u) on J = [0, a], u(0) = x0,

if, among other assumptions, the F (t, · ) are usc with compact convex values and satisfy
a condition of dissipative type.

2. Preliminaries. In the sequel, X will always be a real Banach space with norm
| · |. Then 2X \ ∅ denotes the set of all nonempty subsets of X, Br(x) is the open ball
in X with center x and radius r, Br(x) denotes its closure and ρ(x,B) is the distance
from x to the set B ⊂ X. Given J = [0, a] ⊂ IR, we let CX(J) be the Banach space
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of all continuous u : J → X and L1
X(J) the Banach space of all strongly measurable,

Bochner-integrable w : J → X, both equipped with the usual norms which we denote by
| · |0, respectively | · |1. Given an operator A : X → 2X , we let D(A) = {x ∈ X | Ax 6= ∅},
R(A) =

⋃
x∈D(A)

Ax and gr(A) = {(x, y) | x ∈ D(A), y ∈ Ax} denote the domain, range

and graph of A, respectively.

(i) Recall that A : X → 2X is m-accretive if R(A + λI) = X for all λ > 0 and A is
accretive, i.e.

(u− v, x− y)+ ≥ 0 for all x, y ∈ D(A), u ∈ Ax and v ∈ Ay.

Here ( · , · )+ denotes one of the semi-inner products ( · , · )± defined by

(x, y)+ = |y| lim
t→0+

|y + tx| − |y|
t

and (x, y)− = |y| lim
t→0+

|y| − |y − tx|
t

;

properties of ( · , · )± can be found e.g. in §4.4 of [7]. If A is m-accretive, the resolvents
Jλ := (I + λA)−1 : X → D(A) and the Yosida-approximations Aλ := λ−1(I − Jλ) :
X → X are well defined for all λ > 0. In particular, Aλx ∈ A(Jλx) on X, all Jλ are
nonexpansive mappings and lim

λ→0+
Jλx = x for every x ∈ D(A).

We shall use the following characterization of m-accretivity.

Lemma 1. Let A be an accretive operator in X. Then A is m-accretive if and only if
gr(A) is closed and

(2) lim
h→0+

h−1ρ(x+ hz,R(I + hA)) = 0 for all x ∈ D(A) and all z ∈ X.

This is Theorem 5.2 in [10]. More about m-accretive operators on Banach spaces can
be found e.g. in [2] or [4]; in the latter reference one can also find Lemma 1 which is
Theorem 16.2 there.

(ii) Let us also recall some facts about u.s.c. multivalued maps; for more details see
[7]. A multivalued map F : D ⊂ X → 2X \ ∅ is called upper semicontinuous (u.s.c. for
short), if F−1(B) := {x ∈ D | F (x) ∩ B 6= ∅} is closed in D, for all closed B ⊂ X.
If F has compact values, u.s.c. is equivalent to: for every ε > 0 and x0 ∈ D there is
δ = δ(ε, x0) > 0 such that F (x) ⊂ F (x0) + Bε(0) on Bδ(x0) ∩D. A multivalued map is
said to be continuous if it is continuous w.r. to the Hausdorff metric dH which is given
by

dH(A,B) = max{sup
x∈A

ρ(x,B), sup
x∈B

ρ(x,A)}

for bounded A,B ⊂ X.

In case D is compact and F is u.s.c. with convex values, for every ε > 0, there exists
a continuous fε : D → X such that

fε(x) ∈ F (Bε(x) ∩D) +Bε(0) on D;

see Proposition 1.1 in [7]. Finally, the following fixed point theorem is a special case of
Theorem 11.5 in [7].
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Lemma 2. Let X be a real Banach space, ∅ 6= D ⊂ X compact convex and F : D →
2D \ ∅ be u.s.c. with closed convex values. Then F has a fixed point.

(iii) We also need the following criterion for weak relative compactness in L1
X(J).

Lemma 3. Let X be a Banach space, J = [0, a] ⊂ IR and W ⊂ L1
X(J) be uniformly

integrable. Suppose that there exist weakly relatively compact sets C(t) ⊂ X such that
w(t) ∈ C(t) a.e. on J , for all w ∈W . Then W is weakly relatively compact in L1

X(J).

This is Corollary 2.6 in [8] specialized to Lebesgue measure.

3. Upper semicontinuous perturbations.

Theorem 1. Let X be a real Banach space, A : D(A) ⊂ X → 2X \ ∅ be m-accretive
and F : D(A)→ 2X \∅ be u.s.c. with compact convex values such that A+F is accretive.
Then A+ F is m-accretive.

P r o o f. Let B=A+F with D(B) := D(A). Then B has closed graph, since (xn, yn) ∈
gr(B) means yn = un+vn with un ∈ Axn and vn ∈ F (xn), hence (xn, yn)→ (x, y) implies
vn ∈ F (x) + Bε(0) for all n ≥ nε and therefore vnk → v ∈ F (x) for some subsequence
(vnk) of (vn), hence also unk → u := y − v and u ∈ Ax by closedness of gr(A).
Next, notice that in order to get (2) we may assume z = 0, since for any z ∈ X the map
Fz, defined by Fz(x) := F (x) − {z} on D(A), has the same properties as F . So we are
done by Lemma 1, if

(3) lim
h→0+

h−1ρ(x,R(I + hB)) = 0 on D(B).

Fix x ∈ D(B), let h > 0, C := F (x) and G(z) := F (Jh(x − hz)) for z ∈ X where
Jh = (I +hA)−1. Evidently, G is u.s.c. with compact convex values. Hence, given ε > 0,
the approximation result mentioned in 2. (ii) yields a continuous gε : C → X such that
gε(z) ∈ G(Bε(z) ∩ C) + Bε(0) on C. Let Gε(z) = PC(gε(z)) for z ∈ C, where PC( · ) is
the metric projection onto C, i.e.

PC(x) = {y ∈ C | |x− y| = ρ(x,C)} on X.

Then Gε : C → 2C \ ∅ is also u.s.c. with compact convex values, since PC has this
properties. Therefore, Gε has a fixed point zε ∈ C by Lemma 2. Given hn ↘ 0 and
εn ↘ 0 we repeat the previous arguments to obtain fixed points zn of the corresponding
Gεn , i.e. we get a sequence (zn) ⊂ C such that

zn ∈ PC(yn) and yn ∈ F (Jhn(x− hn(Bεn(zn) ∩ C))) +Bεn(0).

In particular, there are en, ên ∈ Bεn(0) such that

(4) yn − en ∈ F (Jhn(x− hnẑn)) with ẑn = zn + ên ∈ C.

Now xn := Jhn(x−hnẑn) satisfies |xn−x| ≤ hn|ẑn|+ |Jhn(x)−x|, i.e. xn → x as n→∞.
We may therefore assume yn → y for some y ∈ F (x). Without loss of generality we also
have zn → z for some z ∈ C, zn ∈ PC(yn) implies z ∈ PC(y), hence PC(y) = {y} yields
yn − zn → 0. Together with (4) this means ẑn ∈ F (xn) + ẽn for some ẽn → 0, hence
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x− hnẑn = Jhn(x− hnẑn) + hnAhn(x− hnẑn) implies

x ∈ xn + hn(Axn + F (xn) + ẽn),

i.e. (3) holds.

R e m a r k s 1. Specialized to the case of single-valued perturbations, the conditions
on F become “F : D(A)→ X continuous such that A+F is accretive”. In this situation
the result is known and, using Lemma 1, it was first proved in [10] where it is Theorem 5.3.
Independently, the same result was obtained in [13] Theorem II, by means of locally
Lipschitz approximations of F . The first result about continuous perturbations of m-
accretive operators is Theorem 1 in [1], where the assumptions on F are F : X → X

continuous and accretive. In the proof given there, it is shown that such an F is in fact
s-accretive, which means

(F (x)− F (y), x− y)− ≥ 0 for all x, y ∈ X,

hence A + F is accretive. Let us note that s-accretivity of F follows from the fact that
u′ = −F (u), u(0) = x has a unique C1-solution on IR+, for every x ∈ X. Hence −F
generates a semigroup of nonexpansive operators S(t), given by S(t)x := u(t;x), and
therefore

(F (x)− F (y), x− y)− = lim
h→0+

(−S(h)x− x
h

+
S(h)y − y

h
, x− y)−

≥ lim
h→0+

h−1|x− y|(|x− y| − |S(h)x− S(h)y|) ≥ 0.

In case F : D(A)→ X is continuous, accretive and satisfies the subtangential condition

lim
h→0+

h−1ρ(x+ hF (x), D(A)) = 0 on D(A),

the same argument can be used to show that F is s-accretive, since u′ = −F (u), u(0) = x

has a unique C1-solution for every x ∈ D(A); see Remark 3 below. Hence A + F is m-
accretive, given that A has this property. This is Theorem 2.8.1’ in [12]. Without this
additional boundary condition the result is not true; a counterexample is given in [13].

In the case of multivalued F the situation is worse, since accretivity of F is not sufficient
then even if F is defined on all of X. This is shown by the following

Example 1. Let X = IR2 with |x|0 = max{|x1|, |x2|} and A : D(A) → 2X \ ∅ be
given by Ax = IR × {0} on D(A) = {(s, s) | s ∈ IR}. Obviously, R(I + λA) = X for all
λ > 0. Moreover A is accretive, since x, y ∈ DA, u ∈ Ax, v ∈ Ay means x − y = (s, s)
and u− v = (h, 0) for some s, h ∈ IR, hence

(u− v, x− y)+ = |s| lim
t→0+

t−1(max{|s+ th|, |s|} − |s|) ≥ 0.

Let F : X → 2X \ ∅ be defined by

F (x) =

 {(1,−1)} if x1 > x2,
{(s,−s) | s ∈ [−1, 1]} if x1 = x2,
{(−1, 1)} if x1 < x2.
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Evidently, F is u.s.c. with compact convex values. Accretivity of F can also be checked
in a straight forward way, but we omit the details, since this F is a special case of an
example considered in [6]; see p. 296 there.

Now A + F ≡ IR × [−1, 1] on D(A) which is not accretive, since e.g. x = (1, 1),
y = (0, 0), u = −x, v = y yield (u− v, x− y)+ = −|x|20 = −1.

2. For concrete applications, it would be useful to weaken the assumptions on F , since
the values will often be only weakly compact and convex. We do not know how to prove
a corresponding version of Theorem 1 in this case. If F itself is m-accretive one can of
course try to apply results about the sum of m-accretive operators like Theorem 3 in [14],
saying that A+ F is m-accretive given that A and F have this property, X and X∗ are
uniformly convex and D(A)∩ int (D(F )) 6= ∅.

4. Differential inclusions with dissipative right-hand side. By means of The-
orem 1 we are going to obtain strong solutions of (1) if, among other assumptions, the
F (t, · ) are u.s.c. and satisfy a condition of dissipative type. Here u is called strong solu-
tion of (1), if u is absolutely continuous with u(0) = x0 and a.e. differentiable such that
u′(t) ∈ F (t, u(t)) a.e. on J .
Let us first consider the special case when F is given by F (t, x) = −G(x) + w(t) on
J × X, where w ∈ L1

X(J) and G : X → 2X \ ∅ is accretive and u.s.c. with compact
convex values. By Theorem 1 with A = 0 we know that G is m-accretive, hence (1) has
a unique mild solution by Theorem 4.6 in [4]; see Remark 4 below for the definition of
“mild solution”. But in this situation u is in fact a strong solution. This follows from the
Proposition in [3], saying that every mild solution of u′ ∈ −G(u) + w(t) is also a strong
solution if w ∈ L1

X(J) and G is weakly u.s.c. with closed domain and convex, weakly
compact values; here weakly u.s.c. means G−1(A) closed for all weakly closed A ⊂ X.
The same conclusion holds if G is only ω-accretive, i.e.

(y − y, x− x)+ ≥ −ω|x− x|2 for all x, x ∈ X, y ∈ G(x), y ∈ G(x)

with some ω ∈ IR. Notice that the result mentioned above can be applied with G + ωI

instead of G and therefore the usual fixed point approach yields a strong solution for (1)
with F (t, x) = −G(x) + w(t). Let us record this information for later use.

Lemma 4. Let X be a real Banach space, G : X → 2X \ ∅ be ω-accretive for some
ω ∈ IR and u.s.c. with compact convex values, J = [0, a] ⊂ IR and w ∈ L1

X(J). Then the
Cauchy problem

u′ ∈ −G(u) + w(t) on J, u(0) = x0

has a unique strong solution, for every x0 ∈ X.

We shall use Lemma 4 to prove a more general result which allows the right-hand
side F to depend on (t, x) in a more complicated way. But still we need a rather strong
assumption concerning the t-dependence. In the subsequent theorem we suppose that
for every η > 0 there exists a closed Jη ⊂ J with µ(J \ Jη) ≤ η such that the family
{F ( · , x)|Jη | x∈X} is locally equicontinuous, i.e. for every x0 ∈ X there is δ = δ(η, x0) >
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0 such that the F ( · , x)|Jη are equicontinuous for all x ∈ Bδ(x0). If this holds we say that
{F ( · , x) | x ∈ X} is almost locally equicontinuous. Now we can prove

Theorem 2. Let X be a real Banach space, J = [0, a] ⊂ IR and let F : J×X → 2X \∅
have compact convex values such that the following conditions hold.

(a) ‖F (t, x)‖ := sup{|y| | y ∈ F (t, x)} ≤ c(t)(1 + |x|) on J ×X with c ∈ L1(J).
(b) (y − y, x− x)− ≤ k(t)|x− x|2 for all t ∈ J , x, x ∈ X, y ∈ F (t, x), y ∈ F (t, x) with

k ∈ L1(J).
(c) F (t, · ) is u.s.c. for almost all t ∈ J .
(d) The family of maps {F ( · , x) : x ∈ X} is almost locally equicontinuous.

Then initial value problem (1) has a unique strong solution on J .

P r o o f. (1). Let us first reduce to the case c(t) ≡ k(t) ≡ 1. For this purpose define
ϕ ∈ L1(J) by ϕ = max{1, c, k}. The map t →

∫ t
0
ϕ(s) ds from J to J̃ := [0, |ϕ|1] is

continuous and strictly increasing. Let φ be its inverse and define F̃ : J̃ ×X → 2X \ ∅ by

F̃ (t, x) =
1

ϕ(φ(t))
F (φ(t), x) for (t, x) ∈ J̃ ×X.

Evidently, u is a solution of (1) iff v(t) := u(φ(t)) is a solution of (1) with F and J

replaced by F̃ and J̃ , respectively. It is easy to check that F̃ has properties (a)–(c) with
c(t) ≡ k(t) ≡ 1 on J̃ ×X. To see that F̃ also satisfies (d), let η > 0 be given. Then there
is σ = σ(η) > 0 such that µ(A) ≤ σ implies

∫
A
ϕ(t) dt ≤ η for every Lebesgue measurable

A ⊂ J . Exploitation of condition (d) for F yields a closed Jσ ⊂ J with µ(J \Jσ) ≤ σ such
that the family {F ( · , x)|Jσ | x ∈ X} is locally equicontinuous and F (t, · ) is u.s.c. for all
t ∈ Jσ. Since ϕ has the Lusin property, we may also assume that ϕ|Jσ is continuous. Let

J̃η := φ−1(Jσ). Using the fact that Jσ is closed it is easy to check that µ(J̃η) =
∫
Jη
ϕ(t) dt,

hence µ(J̃ \ J̃η) ≤ η. Now we are done, since

dH(F̃ (t, x), F̃ (s, x)) ≤
∣∣∣∣ 1
ϕ(φ(t))

− 1
ϕ(φ(s))

∣∣∣∣(1 + |x|) + dH(F (φ(t), x), F (φ(s), x)),

{F (φ( · ), x)|
J̃η
| x ∈ X} is locally equicontinuous and ( 1

ϕ(φ( · )) )|
J̃η

is uniformly continuous.

In the sequel we will denote F̃ and J̃ by F and J again.

(2). Given η > 0, let Jη ⊂ J be closed with µ(J \Jη) ≤ η such that the family of maps
{F ( · , x)|Jη | x ∈ X} is locally equicontinuous, where we may assume {0, a} ⊂ Jη. Then
J \ Jη =

⋃
n≥1(αn, βn) for disjoint (αn, βn) ⊂ J , since J \ Jη is open. Let Fη : J ×X →

2X \ ∅ be defined by

Fη(t, x) =
{
F (t, x) if t ∈ Jη,
F (αn, x) if t ∈ (αn, βn) for some n ≥ 1.

Then Fη has compact convex values, satisfies (a), (b) with c(t) ≡ k(t) ≡ 1 and Fη(t, · ) is
u.s.c. for all t ∈ J . We want to show that (1) with Fη instead of F has a strong solution.
For this purpose let us first prove that (1) with F replaced by Fη has an ε-approximate
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solution u = uε for every ε ∈ (0, 1), by which we mean

(5)
u(t) = x0 +

∫ t

0

w(s) ds on J with w ∈ L1
X(J)

such that
∫ a

0

ρ(w(t), Fη(t, u(t))) dt ≤ εa.

This will be done by using Zorn’s Lemma. But notice first that there is R > 1 such that
every u satisfying (5) for some ε ∈ (0, 1) has |u|0 ≤ R − 1. Therefore, we can obtain
approximate solutions such that also |u′(t)| ≤ R a.e. on J . Consider the set

M ={(u, h) | h ∈ (0, a], u : [0, h]→ X satisfies (5) with

J replaced by [0, h] such that |w(t)| ≤ R a.e. on [0, h]},

equipped with the partial ordering (u, h) ≤ (u, h) if h ≤ h and u(t) = u(t) on [0, h].
Let us show M 6= ∅. There is δ = δ(η, x0) > 0 such that {F ( · , x)|Jη | x ∈ Bδ(x0)}
is equicontinuous. Hence there is h0 > 0 such that dH(F (0, x), F (t, x)) ≤ ε for every
t ∈ [0, h0] ∩ Jη and every x ∈ Bδ(x0). By the definition of Fη this implies

(6) dH(Fη(0, x), Fη(t, x)) ≤ ε for every t ∈ [0, h0], x ∈ Bδ(x0).

Let u be the strong solution of the initial value problem

u′ ∈ Fη(0, u) on J, u(0) = x0,

which exists due to Lemma 4 with G := −Fη(0, ·) and w := 0. Since there is h ∈ (0, h0]
such that |u(t)− x0| ≤ δ on [0, h], estimate (6) implies∫ h

0

ρ(u′(t), Fη(t, u(t))) dt ≤
∫ h

0

dH(Fη(0, u(t)), Fη(t, u(t))) dt ≤ εh.

Hence |u(t)| ≤ R − 1 on [0, h], which implies |u′(t)| ≤ ||Fη(0, u(t))|| ≤ R a.e. on [0, h],
and therefore (u, h) ∈ M . It is obvious that every ordered subset of M has an upper
bound, hence M has a maximal element (u∗, h∗) by Zorn’s Lemma. Moreover h∗ = a

since otherwise we may repeat the argument given above with (h∗, u∗(h∗)) instead of
(0, x0) to get an ε-approximate solution on [0, h∗ + h] which extends u∗, a contradiction.

(3). Now let (εk) ⊂ (0, 1) satisfy εk → 0+ and uk be εk-approximate solutions of (1)
for Fη. Then, for fixed m and n, ψ(t) = |un(t)− um(t)| satisfies ψ(0) = 0 and

ψ(t)ψ′(t) = (u′n(t)− u′m(t), un(t)− um(t))− ≤ (ρn(t) + ρm(t))ψ(t) + ψ(t)2 a.e. on J,

where ρk(t) = ρ(u′k(t), Fη(t, uk(t))) on J . This implies e−a|ψ|0 ≤ |ρn|1 + |ρm|1 ≤ a(εn +
εm). Consequently, (uk) is a Cauchy sequence in CX(J), hence |uk − u|0 → 0 for some
u ∈ CX(J) with u(0) = x0; notice that (uk) is equicontinuous. Since Fη(t, · ) is u.s.c.
with compact values for all t ∈ J , the sets Fη(t, {uk(t) | k ≥ 1}) are compact. By Lemma
3 we may therefore assume wk = u′k ⇀ w for some w ∈ L1

X(J). Together with uk → u

in CX(J) this implies u(t) = x0 +
∫ t
0
w(s) ds on J . By Mazur’s Theorem there are

wk ∈ conv {wj | j ≥ k} with wk → w in L1
X(J), hence w.l.o.g. wk(t) → w(t) a.e. on J

by passing to a certain subsequence. Let J0 = {t ∈ J | wk(t) ∈ Fη(t, uk(t)) for all k ≥ 1,
wk(t)→ w(t)} and t ∈ J0. Then, given σ > 0, we have wk(t) ∈ Fη(t, u(t)) +Bσ(0) for all
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large k, hence the same for wk(t). Evidently, this implies w(t) ∈ Fη(t, u(t)) on J0, hence
a.e. on J and therefore u is a strong solution of (1) with Fη.

4. Let ηk ↘ 0 and Jk := Jηk , Fk := Fηk be given as in step 2, where we may assume
Jk ⊂ Jk+1 for k ≥ 1. By the previous step, initial value problem (1) with Fk instead of
F has a solution uk for every k ≥ 1. Moreover, |uk|0 ≤ R for all k ≥ 1 with some R > 0,
since all Fk satisfy (a) with c(t) ≡ 1. For fixed m ≥ 1, we have Fn = F on Jm×X for all
n ≥ m, hence ψ(t) := |un(t)− um(t)| has

ψ′(t) ≤ ψ(t)χJm(t) + 2(1 +R)χJ\Jm(t) a.e. on J, ψ(0) = 0,

for those n. Therefore, application of Gronwall’s Lemma shows that (uk) is Cauchy in
CX(J). Hence |uk − u|0 → 0 for some u ∈ CX(J) with u(0) = x0, and u′(t) ∈ F (t, u(t))
a.e. on J can be seen as in step 3. So, we have shown that (1) has a strong solution.
Evidently we are done, since uniqueness is an obvious consequence of (b).

Additional information is contained in the following

R e m a r k s 3. If X is a real Hilbert space condition (d) can be replaced by “F ( · , x)
has a strongly measurable selection” and the values of F need only be closed convex.
This is Theorem 10.5 in [7], and Theorem 2 is a first step to extend this result to general
Banach spaces. Therefore this gives a partial answer to Problem 10.6 in [7].
Let us also mention that, specialized to the single-valued case, conditions (a) and (d)
hold in case F is almost continuous, which is the same as “F is measurable in t and
continuous in x” for separable X. For continuous single-valued F a corresponding version
of Theorem 2 holds even if the maps F (t, · ) are only defined on time-dependent sets
D(t) ⊂ X, given that gr(D) is closed from the left and F also satisfies the subtangential
condition

lim
h→0+

h−1ρ(x+ hF (t, x), D(t+ h)) = 0 for all t ∈ [0, a), x ∈ D(t);

see Theorem 3 in [9]. For multivalued and almost u.s.c. right-hand sides, such an existence
result under time-dependent constraints holds if the condition (b) of dissipative type is
replaced by a certain compactness assumption. The details concerning the latter case can
be found in [5].

4. A different approach to prove a result like Theorem 2 is to get first the existence of
a mild solution and then to show that it is in fact a strong solution; remember the proof
of Lemma 4. By a mild solution u of (1) one means u ∈ CX(J) being the uniform limit of
a sequence of approximate solutions um (corresponding to a sequence εm → 0+) which
solve an implicit difference scheme. More precisely, v is such an approximate solution
corresponding to ε > 0 if there are x1, . . . , xn+1 ∈ X and a partition 0 = t0 < t1 < . . . <

tn ≤ tn+1 = a of J such that, for all k = 0, . . . , n, one has:

tk+1 − tk ≤ ε, v(t) = xk on [tk, tk+1) and
xk+1 − xk
tk+1 − tk

∈ F (tk+1, xk+1) + zk with |zk| ≤ ε.

Now, under the conditions of Theorem 2 where w.l.o.g. k(t) ≡ ω, it is easy to see that we
get such approximate solutions, since almost all −F (t, · ) are m-ω-accretive. In fact one
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only needs condition (3) with B replaced by F (t+ h, · ); see e.g. Chapter 1.3.5 in [12].
Then the main problem is to obtain the uniform convergence of (vm), and one may
try to apply results about time-dependent ω-accretive operators like Theorem 3.5 in [11].
Specialized to the situation under consideration, this theorem guarantees that |vm−u|0 →
0 for some u ∈ CX(J), given that

(y, x− x)− + (−y, x− x)− ≤ ω|x− x|2 + ϕ(t, t)|x− x|

for all t, t ∈ J , x, x ∈ X, y ∈ F (t, x) and y ∈ F (t, x) with some ω ≥ 0 and a bounded
upper semicontinuous symmetric function ϕ : J × J → IR+ satisfying

lim
r→0+

sup{ϕ(t, t) | |t− t| ≤ r} = 0 on J × J.

It is sufficient that this condition holds locally, i.e. for all x, x ∈ Bδ(x̂) for every x̂ ∈ X
and some δ = δ(x̂) > 0, where ω and ϕ may depend on Bδ(x̂). In the situation described
in Theorem 2 it is not clear if this condition is satisfied, but it holds if k(t) ≡ ω in
(b) and the maps F (·, x) are locally equicontinuous. In this case, once the existence of
mild solutions of (1) is established, the proof is easily finished: given vm → u in CX(J),
consider functions um being linear on each [tmk , t

m
k+1] with um(tmk ) := vm(tmk ). Evidently

|um − u|0 → 0. Then u′m ⇀ w in L1
X(J) and u′(t) = w(t) ∈ F (t, u(t)) a.e. on J can be

proved similar to step 3 of the proof of Theorem 2.
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