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Institute of Mathematics, Gdańsk University
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1. Introduction. Effective methods for calculating the topological degree for a con-
tinuous mapping are very useful. In this paper we present an algebraic method which
applies to polynomial mappings. We shall show that in this case the topological degree
can be expressed in terms of signatures of some effectively defined bilinear forms (see
Theorem 4.1).

The method may be derived from the theory of bilinear forms on finite intersection
algebras given by Scheja & Storch [10], Eisenbud & Levine [5], Khimshiashvili [8], Kunz
[7] and Cardinal [4]. All facts needed for the proof of Theorem 4.1 are presented in [2].

The complete proof requires some advanced facts concerning complete intersection
algebras. In this paper we explain the method for polynomial mappings having only
non-degenerate roots. This way we may avoid difficult details and make the main idea of
the method to be more clear.

In the case of the local topological degree there is a similar formula (so called Eisenbud
& Levine formula). One can find its proof in [1], [2], [5], [8]. In [9] one may find a
description of an algorithm which has been used to create a computer program which
can calculate the local topological degree.
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74 A.  LȨCKI AND Z. SZAFRANIEC

2.Preliminaries. In this section we shall collect some useful facts concerning bilinear
forms and polynomial algebras.

Let R (resp. C) denote the field of real (resp. complex) numbers. Let V be a finite
dimensional real vector space and let Φ : V × V → R be a bilinear symmetric form. Let
V+ (resp. V−) denote a maximal subspace of V on which Φ is positive (resp. negative)
definite, i.e. if x ∈ V+ − {0} (resp. x ∈ V− − {0}) then Φ(x, x) > 0 (resp. Φ(x, x) < 0).
We define

signature Φ = dimV+ − dimV−.

We shall say that Φ is non-degenerate if its matrix is non-singular.

Lemma 2.1. Let ϕ : R → R be an R-linear functional and let Φ : R × R → R be
the bilinear form given by Φ(x, y) = ϕ(xy).Then signature Φ = signϕ(1). Moreover Φ is
non-degenarate if and only if ϕ(1) 6= 0.

P r o o f. Since ϕ is R-linear then for every x ∈ R − {0} we have Φ(x, x) = ϕ(x2) =
ϕ(x2 · 1) = x2ϕ(1). Because x2 > 0 then signature Φ = signϕ(1).

Lemma 2.2. Let ϕ : C → R be an R-linear functional and let Φ : C × C → R be the
bilinear form given by Φ(z, w) = ϕ(zw). Then signature Φ = 0.

P r o o f. Let V+ ⊂ C denote a maximal R-subspace on which Φ is positive definite,
i.e. Φ(z, z) = ϕ(z2) > 0 for every z ∈ V+−{0}. Then

√
−1 V+ is an R-subspace of C

and if w =
√
−1 z ∈

√
−1 V+ − {0} then Φ(w,w) = ϕ(w2) = ϕ(−z2) = −ϕ(z2) < 0.

Hence dimV− ≥ dim
√
−1 V+ = dimV+.

By similar arguments dimV+ ≥ dimV− . Hence dimV+ = dimV− and
signature Φ = 0.

Let

B = R⊕ · · ·⊕R⊕C ⊕ · · ·⊕C =
m
⊕
1
R

r
⊕
1
C.

Then B is a finite dimensional R-algebra. Let ϕ : B → R be an R-linear functional.
Denote

s1 = ϕ(1⊕ 0⊕ · · ·⊕ 0),
...

sm = ϕ(0⊕ · · ·⊕ 1⊕ · · ·⊕ 0).
From previous lemmas we get

Proposition 2.3. Let Φ : B×B → R be the bilinear form given by Φ(f, g) = ϕ(fg).
Then

signature Φ = #{1 ≤ i ≤ m : si > 0} −#{1 ≤ i ≤ m : si < 0}.
Moreover if Φ is non-degenerate then s1 6= 0, . . . , sm 6= 0.

Let f1, . . . , fn ∈ R[x1, . . . , xn], let FR = (f1, . . . , fn) : Rn → Rn and let FC : Cn →
Cn be its complexification. Let

J =
∂(f1, . . . , fn)
∂(x1, . . . , xn)
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denote the determinant of the Jacobian matrix. Let A = R[x1, . . . , xn] / I, where I is the
ideal in R[x1, . . . , xn] generated by polynomials f1, . . . , fn. Then A is an R-algebra.

From now on we shall assume that d = dimA < ∞ and that FC has only non-
degenerate complex roots, i.e. if z ∈ F−1

C (0) then J (z) 6= 0.
The next two facts generalize the Fundamental Theorem of Algebra. They follow

immediately from Corollary 1 in [6], p.57.

Theorem 2.4. #{z ∈ Cn : FC(z) = 0} = dimA = d.

So there are d complex roots for FC and we may assume that

F−1
C (0) = {p1, . . . , pm, q1, q̄1, . . . , qr, q̄r},

where p1, . . . , pm ∈ Rn, q1, . . . , qr ∈ Cn − Rn and q̄i is the complex conjugate of qi.
Clearly m+ 2r = d.

If f ∈ I then f = 0 on F−1
C (0). Then there is an R-homomorphism of algebras

Ψ : A → B =
m
⊕
1
R

r
⊕
1
C

given by Ψ(f) = f(p1)⊕ · · ·⊕ f(pm)⊕ f(q1)⊕ · · ·⊕ f(qr). It is easy to see that dimB =
m+ 2r = d = dimA.

Theorem 2.5. If f = 0 on F−1
C (0) then f ∈ I. Hence Ψ : A → B is an isomorphism of

R-algebras. Thus g = h in A if and only if g(pi) = h(pi) for 1 ≤ i ≤ m and g(qj) = h(qj)
for 1 ≤ j ≤ r.

3. The construction of bilinear forms. Denote x = (x1, . . . , xn), y = (y1, . . . , yn).
Define A2 = R[x, y] / I2, where I2 is the ideal in R[x, y] generated by f1(x), . . . , fn(x),
f1(y), . . . , fn(y). One may check that A2 is isomorphic to A⊗A.

For 1 ≤ i, j ≤ n define

Tij(x, y) =
fi(y1, . . . , yj−1, xj , . . . , xn)− fi(y1, . . . , yj , xj+1, . . . , xn)

xj − yj
It is easy to see that each Tij extends to a polynomial, thus we may assume that Tij ∈
R[x, y]. Define

T (x, y) = det [Tij(x, y)].
It is easy to see that J (x) = T (x, x).

Theorem 3.1. For any polynomial q(x) we have

q(x)T (x, y) = q(y)T (x, y) in A2.

P r o o f. Note Bj the j-th column of [ Tij(x, y)]. Then

(xj − yj)Bj =

 f1(y1, . . . , yj−1, xj , . . . , xn)− f1(y1, . . . , yj , xj+1, . . . , xn)
...

fn(y1, . . . , yj−1, xj , . . . , xn)− fn(y1, . . . , yj , xj+1, . . . , xn)


We do not change the determinant if we add to this column a linear combination of the
form ∑

k 6=j

(xk − yk)Bk.
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The j-th column then becomes

n∑
k=1

(xk − yk)Bk =

 f1(x1, . . . , xn)− f1(y1, . . . , yn)
...

fn(x1, . . . , xn)− fn(y1, . . . , yn)


Developing this determinant relatively to the j-th column we get an element of the

ideal I2. Hence

(xj − yj)T (x, y) = 0 in A2,

and then xjT (x, y) = yjT (x, y) in A2. Hence

xkxjT (x, y) = xkyjT (x, y) = ykyjT (x, y) in A2

and by induction

xa1
1 · · ·xan

n T (x, y) = ya1
1 · · · yan

n T (x, y) in A2.

So the theorem is true if q(x) is a monomial. One gets the general case by linearity.

Proposition 3.2. Suppose that p, q∈F−1
C (0). If p = q then T (p, q) = T (p, p) = J (p),

if p 6= q then T (p, q) = 0.

P r o o f. We have already proved that T (p, p) = J (p). Suppose that p 6= q. There is a
polynomial Q(x) ∈ C[x] such that Q(p) 6= 0 and Q(q) = 0. Applying the same arguments
as in the proof of the previous theorem one can see that there are h1, . . . , hn , g1, . . . , gn ∈
C[x, y] such that

Q(x)T (x, y) = Q(y)T (x, y) +
n∑
i=1

hi(x, y)fi(x) +
n∑
j=1

gj(x, y)fj(y).

Since f1(p) = . . . = fn(p) = f1(q) = . . . = fn(q) = 0 then Q(p)T (p, q) = Q(q)T (p, q) = 0,
and then T (p, q) = 0.

Suppose that e1(x), . . . , ed(x) form a basis in A. Since A2 is isomorphic to A⊗A then
ei(x)ej(y) for 1 ≤ i, j ≤ d form a basis in A2. Hence there are tij ∈ R such that

T (x, y) =
d∑

i,j=1

tijei(x)ej(y) =
d∑
i=1

ei(x)êi(y) in A2,

where êi =
d∑
j=1

tijej .

Theorem 3.3. ê1, . . . , êd form a basis in A.

P r o o f. According to Theorem 2.5, A is isomorphic to the product B =
m
⊕
1
R

r
⊕
1
C.

Let E1, . . . , Ed be the basis given by

E1 = 1⊕ 0⊕ · · ·⊕ 0, E2 = 0⊕ 1⊕ · · ·⊕ 0, . . . ,
Em+1 = 0⊕ · · ·⊕ 1⊕ · · ·⊕ 0, Em+2 = 0⊕ · · ·⊕

√
−1⊕ · · ·⊕ 0, . . . ,

Ed−1 = 0⊕ · · ·⊕ 0⊕ 1, Ed = 0⊕ · · ·⊕ 0⊕
√
−1.
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Using Proposition 3.2 it is easy to see that elements Ê1, . . . , Êd constructed as above
form a basis. Moreover, since e1, . . . , ed are non-singular combinations of E1, . . . , Ed then
ê1, . . . , êd are non-singular combinations of Ê1, . . . , Êd, and then they form a basis.

Then there are a1, . . . , ad ∈ R such that 1 = a1ê1 + · · · + adêd in A. Hence if
p ∈ F−1

C (0) then

a1ê1(p) + · · ·+ adêd(p) = 1.

Definition. Let ϕ : A → R be the linear functional given by

ϕ(f) = a1b1 + · · ·+ adbd,

for f = b1e1 + · · ·+ bded ∈ A.

Lemma 3.4. If pi ∈ F−1
R (0) for 1 ≤ i ≤ m and Ti(x) = T (x, pi) ∈ A then

ϕ(Ti) = 1.

P r o o f. Since T (x, y) =
d∑
j=1

ej(x)êj(y) in A2 then there are hk, gk ∈ R[x, y] such

that

T (x, y) =
d∑
j=1

ej(x)êj(y) +
n∑
k=1

(hk(x, y)fk(x) + gk(x, y)fk(y)).

Because f1(pi) = . . . = fn(pi) = 0 then

Ti(x) =
d∑
j=1

ej(x)êj(pi) +
n∑
k=1

hk(x, pi)fk(x),

and then Ti = ê1(pi)e1(x)+· · ·+êd(pi)ed(x) in A. So ϕ(Ti) = a1ê1(pi)+· · ·+adêd(pi) =
1.

Take pi∈F−1
R (0). We have assumed that J (p) 6=0 for every p∈F−1

C (0), so J (pi) 6= 0.
Let ti = Ti / J (pi) ∈ A. From Proposition 3.2, ti(pi) = 1 and ti(q) = 0 for every
q ∈ F−1

C (0) , q 6= pi. Let Ψ : A → B be the isomorphism of algebras defined before.
Then Ψ(ti) = 0⊕ · · ·⊕ 1⊕ · · ·⊕ 0, where 1 is in the i-th factor.

Let Φ : A×A → R be the bilinear form given by Φ(f, g) = ϕ(fg).

Lemma 3.5. signature Φ =
m∑
i=1

signJ (pi).

P r o o f. From Lemma 3.4, ϕ(ti) = ϕ(Ti / J (pi)) = J (pi)−1ϕ(Ti) = J (pi)−1 for
1 ≤ i ≤ m. Then sign ϕ(ti) = sign J (pi). Now it is enough to apply Proposition 2.3.

Let M : Rn → R be a polynomial, let ϕM : A → R be the linear functional
given by ϕM (f) = ϕ(Mf), let ΦM : A × A → R be the bilinear form given by
ΦM (f, g) = ϕM (fg) = ϕ(Mfg).

Lemma 3.6. signature ΦM =
m∑
i=1

signM(pi)J (pi). If ΦM is non-degenerate then

M(pi) 6= 0 for every 1 ≤ i ≤ m.
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P r o o f. Using the same arguments as in the proof of the previous lemma one can
show that ϕM (ti) = M(pi) / J (pi). From Proposition 2.3,

signature ΦM =
m∑
i=1

signM(pi)J (pi).

Moreover, if ΦM is non-degenerate then 0 6= ϕM (ti) = M(pi) / J (pi).

4. A formula for the topological degree. Let FR = (f1, . . . , fn) : Rn → Rn be a
polynomial mapping, let M : Rn → R be a polynomial and let B = { x ∈ Rn : M(x) >
0 }. If B is bounded and ∂B ∩F−1

R (0) = ∅ then deg(FR, B, 0) will denote the topological
degree of FR with respect to B and 0 ∈ Rn.

Let A = R[x1, . . . , xn] / I, where I is the ideal in R[x1, . . . , xn] generated by f1, . . . , fn.
If dimA <∞ then one may define bilinear forms Φ and ΦM : A×A → R the same way
as in Section 3.

Theorem 4.1 (A formula for the topological degree). If ΦM is non-degenerate then
∂B ∩ F−1

R (0) = ∅. So if B is bounded then deg(FR, B, 0) is defined and

deg(FR, B, 0) =
1
2

(signature Φ + signature ΦM ).

In this paper we shall give the proof under the additional assumption that all complex
roots are non-degenerate, i.e. if p ∈ F−1

C (0) then J (p) 6= 0. We want to point out that
this assumption is not necessary.

P r o o f. From Lemma 3.6, M−1(0) ∩ F−1
R (0) = ∅. Since ∂B ⊂ M−1(0) then ∂B ∩

F−1
R (0) = ∅. According to Theorem 2.4, F−1

R (0) is finite. In that case

deg(FR, B, 0) =
∑
i∈P

signJ (pi),

where P = {1 ≤ i ≤ m : M(pi) > 0 }. From Lemmas 3.5 and 3.6 it is easy to deduce
that

deg(FR, B, 0) =
1
2

(signature Φ + signature ΦM ).

Using the same arguments one can prove

Theorem 4.2. Let D ⊂ Rn be an open bounded set containing all F−1
R (0). Then

deg(FR, D, 0) = signature Φ.

5. The algorithm and computations. In this section we will present a method
of calculating the matrix of the bilinear form presented in previous sections, and we will
illustrate the method on one simple example.

First of all, we will briefly describe a notion of a Gröbner basis. In this article we
only present some of the aspects of a Gröbner basis, the reader can find more details
in [3]. A Gröbner basis of an ideal I is a set of its special generators which is useful
to express the residue class of a polynomial in R[x]/I. Gröbner bases also enable to
find the dimension of R[x]/I (as a vector space) and its basis. We also describe the
Buchberger algorithm for calculating Gröbner bases. In many computer algebra systems
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there exist implementations of that algorithm, for example in Axiom, Macsyma, MAS,
Maple, Mathematica, Reduce.

Let us denote x = (x1, x2, . . . , xn) and N = {0, 1, 2, . . .}. For α, β ∈ Rn let αβ denote
the standard scalar product. Let ≤ be a semigroup ordering in the set of monomials
T = {xα : α ∈ Nn}. That means ≤ is a linear ordering and

xα ≤ xβ implies xαxγ ≤ xβxγ for any γ ∈ Nn.

Any such ordering can be obtained by a matrix A ∈ GL(n,R) in the following way: if
a1, . . . , an are the rows of the matrix A, then xα ≤ xβ iff α = β or there exists i such
that aiα < aiβ and ajα = ajβ for all j < i. That means that Aα is lexicographically
smaller than Aβ as a column vector in Rn. Two of the most important and commonly
used orderings are:
(a) the lexicographical ordering obtained by the identity matrix.

(b) the total degree ordering obtained by the matrix


1 1 . . . 1 1
1

1
. . .

1 0

 .
We also assume that the ordering ≤ satisfies

1 ≤ xα for any α ∈ Nn.

That means that in the corresponding matrix in each column the first nonzero element is
positive. This condition also implies that if xα | xβ , then xα ≤ xβ . Thus ≤ is an extension
of the partial ordering | to a linear ordering. Because for the ordering | we have:

Lemma 5.1. (Dickson’s lemma) For every set A⊂T there exists a finite subset B⊂A
such that for every xα ∈ A there is xβ ∈ B with xβ | xα.

Therefore ≤ is a wellordering.
For the fixed ordering ≤ and for any polynomial f =

∑
aαx

α we define: the set of
terms T (f), the head term HT (f) and the head monomial HM(f)

T (f) = {xα : aα 6= 0}

HT (f) = maxT (f)

HM(f) = aαx
α where xα = HT (f).

For a set P ⊂ R[x] we define the set of head terms

HT (P ) = {HT (f) : f ∈ P}.

For S ⊂ T we define

mult(S) = {t ∈ T : s | t for some s ∈ S}.

For f, g ∈ R[x] we define the s-polynomial

spol(f, g) =
HM(g)f −HM(f)g
lcm(HT (f), HT (g))

where lcm(xα, xβ) = xγ and γ = (min(α1, β1), . . . ,min(αn, βn)).
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The set of head terms of an ideal I is also a kind of ideal. That means that if s ∈
HT (I), then st ∈ HT (I) for any t ∈ T . A Gröbner basis is a set of generators of HT (I).

Definition 5.2. A Gröbner basis of an ideal I is a finite set G ⊂ I such that HT (I) =
mult(HT (G)).

By Dickson’s lemma, Gröbner bases of an ideal I exist. It is proper to add that the
set of head terms depends on the choice of ordering, so it may happen that a set of
polynomials being a Gröbner basis with respect to one ordering cannot be a Gröbner
basis with respect to another ordering.

Consider the following algorithm:

h:=NFBuchberger(f,G);

BEGIN

h:=f;

WHILE HT(h) ∈ mult(HT(G)) DO

choose any g ∈ G such that HT(g) | HT(h)
h := h - HM(h)

HM(g) g;

END

END

The while-loop in this algorithm terminates because the head term of the polynomial
h becomes smaller and smaller and ≤ is a wellordering. If G is a Gröbner basis of an ideal
I, then the algorithm finds a polynomial of the smallest head term in the residue class of
f . In particular, if f ∈ I, then the result is 0. This shows that if G is a Gröbner basis of
an ideal I, then the ideal generated by G equals I and the monomials T −HT (I) form a
basis of R[x]/I. The following algorithm finds the presentation of a polynomial f in the
basis of monomials:

h := Presentation(f, G);

BEGIN

h:=0; f:=NFBuchberger(f,G);

WHILE f 6= 0 DO

h := h + HM(f);

f := f - HM(f);

f := NFBuchberger(f,G);

END

END.

The next proposition shows a method of calculating a Gröbner basis:

Proposition 5.3. A finite set G ⊂ R[x] is a Gröbner basis of an ideal I iff G ⊂ I

and NFBuchberger(spol(g1, g2), G) = 0 for every g1, g2 ∈ G.

And here is the Buchberger algorithm for finding a Gröbner basis of the ideal generated
by S:
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G := Gröbner (S);

BEGIN

G:=S;

P:= { (u,v) : u, v ∈ S };
WHILE P 6= ∅ DO

choose any (u,v) ∈ P

P := P - {(u, v)};
h := NFBuchberger( spol(u,v) , G);

IF h 6= 0 THEN

P := P ∪{(h, g) : g ∈ G };
G := G ∪ {h}

END

END

END.

Note that some of the polynomials which are outputs of that algorithm are redundant.
Their head terms are divided by other head terms from the Gröbner basis G, so they
can be deleted. It shows that a Gröbner basis of an ideal I is not determined. But even
if we remove all redundant polynomials, then two Gröbner bases can be different. For
example, for a fixed ordering ≤ in the presented algorithm we can get various Gröbner
bases, if we change the order of calculating s-polynomials of the pairs from the set P
(called critical pairs). The choices of polynomials from G in NFBuchberger also influence
outputs of the algorithm. The choices we make during computations have also effect on
the time of calculations. There exist selecting strategies to make computations faster.

Most of existing algorithms for finding Gröbner bases use two criteria of deleting
some critical pairs. The reader can find this powerful method of reducing the number of
calculations together with the algorithm in [3].

It is also proper to add that the choice of term order influences the time of calculations
of a Gröbner basis. From the two described orderings, i.e. the lexicographical and the
total degree, the first one is slower in most of examples.

The next example shows a method of calculating a matrix of the bilinear form using
Gröbner bases. We used Maple to calculate it but it can also be done by hand. Let
F : R2 → R2 be a map given by the formula

F (x1, x2) = (f1, f2) = (x1x
2
2 − x1, x

3
2 − x1x2 + 1).

Polynomials

x1 − x4
2 − x2 , x

5
2 − x3

2 + x2
2 − 1

are a Gröbner basis of I = (f1, f2) with respect to the lexicographical ordering. Thus
T −HT (I) = {1, x2, x

2
2, x

3
2, x

4
2} and e1 = 1, e2 = x2, e3 = x2

2, e4 = x3
2, e5 = x4

2 are a basis
of R[x]/(f1, f2). We have

T (x, y) =
[

x2
2 − 1 −x2

x2y1 + y1y2 x2
2 + x2y2 + y2

2 − y1

]
= x4

2 + x3
2y2 + x2

2y
2
2 − x2

2 − x2y2 − y2
2 + y1 + x2y1y2
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≡ (y2 − y2
2 + y4

2) + x2(1− y2 + y3
2) + x2

2(−1 + y2
2) + x3

2y2 + x4
2.

Thus the dual basis is equal to ê1 = x2−x2
2 +x4

2, ê2 = 1−x2 +x3
2, ê3 = −1+x2

2, ê4 = x2,
ê5 = 1. Since 1 = ê5, we have ϕ(xi2) = 0 for i = 0, 1, 2, 3 and ϕ(x4

2) = 1. It is easy to
verify the following congruences in I

x5
2 ≡ x3

2 − x2
2 + 1

x6
2 ≡ x4

2 − x3
2 + x2

x7
2 ≡ −x4

2 + x3
2 + 1

x8
2 ≡ x4

2 − x3
2 + x2

2 + x2 − 1.
Thus ϕ(x5

2) = 0, ϕ(x6
2) = ϕ(x8

2) = 1, ϕ(x7
2) = −1, and the matrix of the bilinear form

Φ(g, h) = ϕ(gh) in the basis ei equals
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 1 0 1 −1
1 0 1 −1 1

 .
Its signature is 1 and by Proposition 4.2 the degree of the map F on a bounded set
containing all zeros equals 1.

Let M = 4− x2
1 − x2

2. Because

M = 4− x2
1 − x2

2 ≡ 4− (x4
2 + x2)2 − x2

2 ≡ −x4
2 − x3

2 − x2
2 − x2 + 3,

then
ϕM (1) = ϕ(M) = −1.

We also have

Mx2 ≡ x2(−x4
2 − x3

2 − x2
2 − x2 + 3) ≡ −x4

2 − 2x3
2 − x2 − 2

Thus
ϕM (x2) = ϕ(Mx2) = −1.

In the same way we can calculate

ϕM (x2
2) = ϕ(−2x4

2 − x3
2 + 4x2

2 − x2 − 1) = −2.

ϕM (x3
2) = ϕ(−x4

2 − 2x3
2 + x2

2 − x2 − 2) = −1.

ϕM (x4
2) = ϕ(2x4

2 − x2 − 1) = 2.
Thus the matrix of ΦM is equal to

−1 −1 −2 −1 2
−1 −2 −1 2 0
−2 −1 2 0 2
−1 2 0 2 −4
2 0 2 −4 1

 .
Its signature is −1 and by Proposition 4.1 the degree of the map F on the ball of radius
2 centered at the orgin equals 1

2 (signature Φ + signature ΦM ) = 0.
The reader can also verify that F has two real zeros (2, 1), (0,−1). Their multiplicities

are 1, 2 and the local topological degrees at these points are 1, 0.



CALCULATING TOPOLOGICAL DEGREE 83

References

[1] V. I. Arnold, A. N. Varchenko and S. M. Gusein-Zade, Singularities of differentiable
maps, vol. 2, Birkhäuser 1988.
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[9] A.  L ȩcki and Z. Szafraniec, Applications of the Eisenbud & Levine’s theorem to real

algebraic geometry , in Computational Algebraic Geometry (Progr. in Math. 109)
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