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1. Introduction. In recent years, the following semilinear elliptic Neumann problem
has been studied extensively

(1.1)λ

{
−∆u+ λu = up, u > 0 in Ω
∂u
∂ν = 0 on ∂Ω

where Ω ⊂ RN is a bounded domain with smooth boundary, λ > 0 and p > 1 are
constants and ν is the unit outer normal to ∂Ω.

Concerning the existence, multiplicity, and qualitative properties of solutions of (1.1)λ
many interesting results have appeared; especially after Ni and Takagi ([NT1]) first dis-
covered the spike-layer structure on the shape of least energy solutions for the subcritical
problems, a lot of work has been devoted to the study of qualitative properties of so-
lutions of (1.1)λ. For more references, we refer to [NT2] and [Wz5], in which both the
subcritical exponent case (i.e. 1 < p < N+2

N−2 ) and the critical exponent case (i.e. p = N+2
N−2 )

are surveyed.
In this paper, we shall focus on the case where Ω is a spherically symmetric domain,

especially on the case where Ω is a ball domain. We are mainly interested in the existence
and the shape of nonradial solutions of (1.1)λ. When we replace the Neumann boundary
condition by the Dirichlet boundary condition the well known Gidas-Ni-Nirenberg result
([GNN]) asserts that any positive solutions must be radially symmetric. However, we shall
see that contrary to its Dirichlet counterpart, (1.1)λ possesses many nonradial solutions
when Ω is a ball domain.

In [Wz6], we have presented an approach to this problem to construct multi-peaked
solutions for (1.1)λ with the critical Sobolev exponent when Ω is a symmetric domain. We
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shall review the main ideas and methods from our work [Wz6] in Section 2 and present
some extensions of our results using similar methods.

Let us start with some preliminaries here. We define an energy functional associated
with (1.1)λ

(1.2) Eλ(u) =
∫

Ω

(|∇u|2 + λu2)dx, u ∈ V (Ω),

where

(1.3) V (Ω) = {u ∈W 1,2(Ω)|
∫

Ω

|u|p+1dx = 1}.

It is easy to check that positive critical points of Eλ(u) correspond to solutions of (1.1)λ. In
fact, if u is a critical point of Eλ(u) in V (Ω) and u is positive in Ω, then w = [Eλ(u)]

1
p−1u

is a solution of (1.1)λ.
A natural idea of finding critical points of Eλ(u) would be to minimize the functional

in a suitable space. This turns out to be the case for single-peaked solutions (e.g. [AM],
[Wx], [Wz1-2]) as one minimizes the functional Eλ(u) in V (Ω). This idea also can be
carried out for double-peaked solutions ([Wz4]) when one minimizes Eλ(u) in Ve(Ω) :=
{u ∈ V (Ω) | u(−x) = u(x)} when Ω is an antipodal invariant domain. However, in order
to find more nonradial solutions (basically we shall distinguish solutions by the number
of peaks of the solutions), when we work in some more general symmetric subspaces this
global minimization method does not seem to work as well as in the above mentioned
situations. This will be demonstrated in Section 4 (see Proposition 4.1 and Remark 4.1).

In order to get multi-peaked solutions in a class of symmetric domains including
ellipsoid domains, we have presented an approach to the problem in [Wz6]. The idea is
to seek a “local minimum” of the energy functional instead of a global minimum. By
carefully constructing some special subsets in V (Ω) we are able to target the solutions we
want to obtain. Our new approach has several advantages. We can locate the peaks of
the solutions from the construction that we use. We can get multiplicity results of multi-
peaked solutions for (1.1)λ by distincting the location of the peaks. Also the procedure
of proving multi-peakedness is simpler than that we used in [Wz4] for proving double-
peakedness. Moreover, we do not need any dimensional restrictions like in [Wz4] for
double-peaked solutions.

In Section 2, we shall concentrate on the critical exponent case, presenting some
results from [Wz6] with extensions. Then we shall prove in Section 3 that the same
methods would also apply to the subcritical exponent problem to construct multi-peaked
solutions. Finally we close up the paper in Section 4 by making several remarks about
symmetry properties of some minimization problems related to (1.1)λ.

2. The critical exponent case. From now on we shall assume that Ω = B1(0) := B,
the unit ball in RN centered at 0. We are interested in nonradial solutions of

(2.1)λ

{
−∆u+ λu = up, u > 0 in B
∂u
∂ν = 0 on ∂B
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where p is, in this section, the critical Sobolev exponent, i.e. p = N+2
N−2 . We assume N ≥ 3

in this section. We shall seek nonradial symmetric solutions of (2.1)λ.
First we introduce some symmetries in RN . We write

(2.2) RN = R2 ×RN−2.

Let k ≥ 2 be an integer and let Zk be the cyclic group of order k. We let G′1 =
{Id, T, T 2, . . . , T k−1} be a representation of Zk in O(2) ⊂ O(N) (i.e. T is the generator
of the action). We make the following assumption.

(S1). FixG′1 = {0} ×RN−2, and for any x ∈ RN \ ({0} ×RN−2), the G′1-orbit of x
contains exactly k points.

Then without loss of generality we may assume

(2.3) T (x1, x2, x3, · · · , xN ) = T (z, x3, · · · , xN ) = (ei
2π
k z, x3, · · · , xN )

where we have written (x1, x2) as z ∈ C.
Let G

′′

1 be the representation of Z2 in O(2) ⊂ O(N) given by G
′′

1 = {Id,R} with

(2.4) R(x1, x2, x3, · · · , xN ) = (x1,−x2, x3, · · · , xN )

i.e. the reflection with respect to the plane perpendicular to (0, 1, 0, · · · , 0). We define
G1 := G′1 ×G

′′

1 . Finally let G2 := O(N − 2) ⊂ O(N) such that FixG2 = R2 × {0}, and
define a representation of a subgroup of O(N) by

(2.5) G := G1 ×G2.

R e m a r k 2.1. Under the assumption (S1), for any x ∈ RN , the G-orbit of x contains
at least k points, and indeed there are points in R2×{0} whose orbits contain exactly k
points.

Theorem 2.1. Let G be given as above satisfying (S1). Then there exists λk > 0 such
that for all λ > λk , (2.1)λ possesses a nonconstant solution uλ satisfying the following.
(i). uλ is exactly G−invariant , i.e. for any g ∈ O(N), uλ(gx) = uλ(x) for any x ∈ B if
and only if g ∈ G.
(ii). Let S be the best Sobolev constant , then

(2.6) lim
λ→∞

Eλ

(
uλ

||uλ||Lp+1(B)

)
= k

2
N 2−

2
N S.

(iii). uλ is k-peaked on ∂B in the sense that it attains its maximum over B at exactly k
points in B which all lie on ∂B ∩ (R2 × {0}). In fact , these k points are given by T jP
for j = 1, ..., k with the G-orbit of P containing exactly k points.
(iv).

(2.7) lim
λ→∞

||∇uλ −
k∑
j=1

∇Uελ,T jP ||L2(B) = 0,

where P is given in (iii), ελ = [uλ(P )]−
p−1
2 , and Uε,P (x) = ε−

N−2
2 U(x−yε ) with U(x) =

[ N(N−2)
N(N−2)+|x|2 ]

N−2
2 being the positive solution of

(2.8) −∆u = up in RN .
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R e m a r k 2.2. When k = 2 we may use a real representation of Z2 as G1, given by
G1 := {Id, T} with

T (x1, x2, · · · , xN ) = (−x1, x2, · · · , xN ).

Define G2 := O(N−1) and G := G1×G2. Then we may have a similar result to Theorem
2.1 above concluding that for λ large there exists a nonconstant solution uλ and that this
solution is exactly G−invariant and 2−peaked on ∂B ∩ (R1 × {0}) which contains exact
two points. The solutions also satisfy (ii) and (iv) with obvious modifications.

R e m a r k 2.3. In [Wz6] more general symmetric domains including ellipsoid domains
have been treated. But here we give more information on the symmetry properties of the
solutions by proving the exact symmetry property for the solutions.

R e m a r k 2.4. The problem of studying symmetry properties of solutions for non-
linear Neumann problems is a very interesting one, but yet still widely open. Here we are
able to construct some special symmetric solutions for (2.1)λ and more importantly we
are able to prove some exact symmetry properties for these solutions.

In order to prove Theorem 2.1, let us first define

W 1,2
G (B) = {u ∈W 1,2(B) | u(gx) = u(x), a.e. in B, ∀g ∈ G },

and

(2.9) VG(B) = V (B) ∩W 1,2
G (B) = {u ∈W 1,2

G (B) | ||u||p+1 = 1}.

By the symmetric criticality principle ([P]), any critical points of Eλ(u) in VG(B) are
critical points of Eλ(u) in V (B). Though Eλ(u) is bounded from below over VG(B) the
infimum of Eλ(u) over VG(B) may not be achieved or may not give rise to k−peaked
solutions (see Remark 4.1 in Section 4). The idea in [Wz6] of finding critical points of
Eλ(u) in VG(B) is to look for local minima in some special subsets of VG(B) where we
believe the desired solutions may live. Let us introduce an auxiliary function here, for
any u ∈ VG(B),

(2.10) γ(u) =
∫
B

|u|p+1|Px|dx,

where P : RN → R2 is the linear projection, i.e. Px = (x1, x2, 0, · · · , 0), and |Px| =√
|x1|2 + |x2|2 is the Euclidean norm of Px. Then it is easy to check that γ(u) is a

continuous function of u in VG(B) and that γ(u) ∈ (0, 1). Next, we introduce a family of
special subsets of VG(B). We define for any δ ∈ (0, 1) the following open sets in VG(B)

(2.11) Kδ := {u ∈ VG(B) | γ(u) > δ},

and consider the infimum of Eλ(u) in these sets,

(2.12) cλ,δ := inf
u∈Kδ

Eλ(u).

The strategy of proving Theorem 2.1 now is to show that cλ,δ is attained by an interior
point of Kδ for some suitable δ, and to prove that the local minimizers have the desired
properties. Before giving a sketch of the proof of Theorem 2.1, we need a few technical
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results from [Wz6]. Let

(2.13) δk :=
k

k + 1
.

The following estimates are crucial in our proof ([Wz6]).

Lemma 2.1. For any δ ∈ (0, 1), cλ,δ < k
2
N 2−

2
N S.

Lemma 2.2. Let δ ∈ (δk, 1) be fixed. Let un ∈ Kδ and λn →∞ be such that Eλn(un) ≤
k

2
N 2−

2
N S. Then

(a) limn→∞Eλn(un) = k
2
N 2−

2
N S.

(b) There exist yn ∈ ∂B ∩ (R2 × {0}), such that ∀ε > 0,∃R > 0

(2.14) lim
n→∞

∫
B R√

λn

(yn)∩B
|un|p+1dx ≥ 1

k
− ε.

(c) limn→∞ γ(un) = 1.

Lemma 2.3. Let λ > 0 be fixed. Let un ≥ 0 be a (P − S)c sequence for Eλ in VG(B)
(i.e. as n→∞, Eλ(un)→ c and E′λ(un)→ 0). Then there exist integers l1 ≥ 0, l2 ≥ 0,
a solution u0 ≥ 0 of

(2.15)
{
−∆u+ λu = cup, in B
∂u
∂ν = 0 on ∂B,

and xn,j ∈ B, εn,j → 0, as n→∞, for j = 1, 2, ..., l1 + l2, such that

(2.16)

∣∣∣∣∣∣
∣∣∣∣∣∣un − u0 − c

1
1−p

l1+l2∑
j=1

Uεn,j ,xn,j

∣∣∣∣∣∣
∣∣∣∣∣∣
W 1,2(B)

→ 0, as n→∞,

and

(2.17) c =
∫
B

(|∇u0|2 + λu2
0)dx+ l1c

2
1−p

∫
RN

|∇U |2dx+ l2c
2

1−p

∫
RN

+

|∇U |2dx.

Lemma 2.4. Let δ ∈ (δk, 1) be fixed. Then there exist λ0 > 0, β0 > 0, such that for all
λ ≥ λ0 , if {uλn} is a minimizing sequence of Eλ(u) in Kδ,

(2.18) lim
n→∞

γ(uλn) ≥ δ + β0.

The following lemma is essentially from [Wz3].

Lemma 2.5. Let T (Zk) be a representation of Zk in O(N) such that for any x ∈
RN \ FixT (Zk) the orbit of x contains exactly k points. Let λn > 0 and un ∈ W 1,2(B)
be such that un(x) are solutions of (2.1)λn and that as n→∞, λn →∞ and

(2.19) lim
n→∞

Eλn

(
un

||un||p+1

)
= k

2
N 2−

2
N S.

Assume that un are invariant functions with respect to T (Zk). Assume that there exist
ε0 > 0 and yn ∈ ∂B such that dist(yn, FixT (Zk)) ≥ ε0 > 0 as n→∞ and such that for
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any ε > 0 there exists R > 0 with

(2.20)

∫
B R√

λn

(yn)∩B |un|
p+1dx

||un||p+1
p+1

≥ 1
k
− ε.

Then for n large, un attains its maximum over B only at k points on ∂B: Pn, TPn, ...,
T k−1Pn for some Pn ∈ ∂B. Moreover , letting εn = [un(Pn)]−

p−1
2 , we have

(2.21) lim
n→∞

||∇un −
k∑
j=1

∇Uεn,T jPn ||L2(B) = 0.

Sketch of the proof Theorem 2.1. We fix δ ∈ (δk, 1) throughout the proof. For any λ ≥ λ0

(given in Lemma 2.4), we consider a minimizing sequence {uλn} for cλ,δ, i.e.

cλ,δ ≤ Eλ(uλn) ≤ cλ,δ + o(1), as n→∞.

For simplicity, we omit λ and simply write uλn as un. Also we may assume un ≥ 0.
Note first that by Lemma 2.4, un does not approach to the boundary of Kδ. By

Ekeland’s variational principle (e.g. [MW]), we may assume that limn→∞E′λ(un) → 0
as n→∞, i.e. {un} is a (P − S)cλ,δ sequence. If un has a convergent subsequence (still
denoted by un) such that un → u0 ∈Kδ as n → ∞, then u0 gives rise to a solution of
(2.1)λ by rescaling. Thus it suffices to show that un has a convergent subsequence. To that
end, first by Lemma 2.3, we get integers l1 ≥ 0, l2 ≥ 0, a nonnegative solution u0 of (2.15)
with c being replaced by cλ,δ, and xn,j ∈ B, εn,j → 0, as n → ∞, for j = 1, 2, ..., l1 + l2,
such that

(2.22)

∣∣∣∣∣∣
∣∣∣∣∣∣un − u0 − c

1
1−p
λ,δ

l1+l2∑
j=1

Uεn,j ,xn,j

∣∣∣∣∣∣
∣∣∣∣∣∣
W 1,2(B)

→ 0, as n→∞,

and

(2.23) cλ,δ =
∫
B

(|∇u0|2 + λu2
0)dx+ l1c

2
1−p
λ,δ

∫
RN

|∇U |2dx+ l2c
2

1−p
λ,δ

∫
RN

+

|∇U |2dx.

We distinguish two cases:
(a). There exists some j0, 1 ≤ j0 ≤ l1 + l2, such that

(2.24) lim sup
n→∞

dist(xn,j0 , {0} ×RN−2)
εn,j0

=∞, as n→∞;

(b). For all j = 1, ..., l1 + l2,

(2.25) lim sup
n→∞

dist(xn,j , {0} ×RN−2)
εn,j

<∞, as n→∞.

Case (a). Since un ∈ VG(B), from the symmetry and the proof of Lemma 2.3 (e.g.
[S]), we can conclude that Txn,j0 , T 2xn,j0 ,. . ., T k−1xn,j0 are all among the xn,j ’s. This
implies either l1 ≥ k or l2 ≥ k. Then from (2.23)

cλ,δ ≥ kc
2

1−p
λ,δ

∫
RN

+

|∇U |2dx,

and cλ,δ ≥ k
2
N 2−

2
N S, a contradiction to Lemma 2.1. So case (a) is impossible.



NONRADIAL SOLUTIONS 91

Case (b). With a lengthy but straight forward calculation (see [Wz6]), we may con-
clude that u0 6= 0 and

(2.26) lim
n→∞

γ(un) ≤ ||u0||p+1
p+1γ

(
u0

||u0||p+1

)
.

Next, by un ⇀ u0 as n→∞ and a result in [BL],

1 =
∫
B

|un|p+1dx =
∫
B

|un − u0|p+1dx+
∫
B

|u0|p+1dx+ o(1), as n→∞.

This implies ||u0||p+1 ≤ 1. Then from (2.26) and Lemma 2.4, γ( u0
||u0||p+1

) ≥ δ + β0 > δ,
i.e. u0

||u0||p+1
∈ Kδ.

Finally, we assert l1 = l2 = 0. By Lemma 2.1, cλ,δ < k
2
N 2−

2
N S. If l1 + l2 ≥ 1, by

(2.23) and the definition of cλ,δ,

cλ,δ =
∫
B

(|∇u0|2 + λu2
0)dx+ l1c

2
1−p
λ,δ S

N
2 + l2c

2
1−p
λ,δ

S
N
2

2

≥||u0||2p+1Eλ(
u0

||u0||p+1
) + c

2
1−p
λ,δ

S
N
2

2

≥||u0||2p+1cλ,δ +
1
k
k

2
N 2−

2
N S.

We get

||u0||2p+1 ≤
k − 1
k

.

By (2.26) again,

k

k + 1
= δk < δ ≤ lim

n→∞
γ(un) ≤ ||u0||p+1

p+1γ(
u0

||u0||p+1
) ≤ k − 1

k
γ(

u0

||u0||p+1
)

and this implies

γ(
u0

||u0||p+1
) ≥ k2

k2 − 1
> 1,

a contradiction. So l1 = l2 = 0, and un → u0 in W 1,2(B).
So we conclude that for λ≥λ0, cλ,δ is achieved by an interior point wλ of Kδ, therefore

a critical point of Eλ(u) in VG(B). By rescaling wλ we get a solution uλ of (2.1)λ. By
comparing energies with constant solutions, we see that for λ large, uλ is a nonconstant
solution. Therefore we have proved that there is a nonconstant solution of (2.1)λ which is
at least G−invariant and satisfies (iii) using Lemma 2.1 and the assertion (a) of Lemma
2.2. By Lemma 2.5 we may prove (ii) and (iv), and we refer to [Wz6] for details.

Finally, to prove that uλ is exactly G−invariant, let us observe first that uλ is at
least G−invariant, i.e. ∀g ∈ G, uλ(gx) = uλ(x). Because we know that uλ has exactly
k maximum points over B which are achieved at a G−orbit: {T jP | j = 1, ..., k} with P

given in the assertion (iii), any g ∈ G which is such that uλ(gx) = uλ(x) for ∀x ∈ B must
satisfy g ∈ O(2)×O(N − 2), i.e. g has R2 × {0} as an invariant subspace. Let us write
g = g1 × g2 with g1 ∈ O(2) and g2 ∈ G2 = O(N − 2). We want to prove that g1 ∈ G1.
If k is odd the reflection with respect to the x1-axis can not be a part of g1 because
otherwise the orbit of P contains 2k points. If k is even, the reflection with respect to
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the x1-axis belongs to G1. Concerning the rotation part, if g1 contains a rotation that
does not belong to G

′

1 we get that the orbit of P would contain more than k points again
and that uλ would have more than k maxima. Thus g1 ∈ G1. This finishes the proof of
Theorem 2.1. ut

3. The subcritical exponent case. In this section, we shall show that the methods
used in Section 2 apply also to the subcritical exponent problems though some necessary
technical modifications have to be made. Recall that we are interested in the existence
of nonradial solutions of

(3.1)λ

{
−∆u+ λu = up, u > 0 in B
∂u
∂ν = 0 on ∂B

where p satisfies 1 < p < N+2
N−2 if N ≥ 3 and 1 < p <∞ if N = 2.

While in Section 2, Uε,y(x) (the solution of (2.8)) plays an important role in the
estimates there, the ground state solution of the following problem plays the role for the
subcritical exponent problem

(3.2) −∆w + w = wp, w > 0, lim
|x|→∞

w(x) = 0, in RN .

By the results in [CL] and [KZ], up to translations there is a unique solution to this
problem and we shall use w to denote the solution satisfying w(0) = maxx∈RN w(x). By
the result in [GNN], w is radially symmetric and there exist constants C0 > 0 and µ > 0
such that

(3.3) |w(x)|+ |Dw(x)| ≤ C0e
−µ|x| for all x ∈ RN .

The notations Eλ, G1, G2, G, and δk will be used in this section with the same mean-
ings as in the preceding section. And assuming 1 < p < N+2

N−2 , we may similarly define
VG(B), γ(u),Kδ and cλ,δ as before. Then we have the following lemmas.

Lemma 3.1. For any δ ∈ (0, 1),

(3.4) lim
λ→∞

λ−α0cλ,δ ≤ k
p−1
p+1 2−

p−1
p+1m,

where α0 := 2N−(p+1)(N−2)
2(p+1) > 0, and

(3.5) m :=

∫
RN (|∇w|2 + w2)dx
||w||2

Lp+1(RN )

= inf
u∈W 1,2(RN )

∫
RN (|∇u|2 + u2)dx
||u||2

Lp+1(RN )

.

Sketch of the proof of Lemma 3.1. Taking P0 ∈ ∂B∩ (R2×{0}) such that the G-orbit
of P0 contains exactly k points, and defining

wλ(x) =
k∑
j=1

λ
N

2(p+1)w(λ
1
2 (x− T jP0))

we get wλ
||wλ||Lp+1(B)

∈ VG(B). Then direct computation shows that there exists σ0 > 0
such that as λ→∞

(3.6) ||∇wλ||2L2(B) = λα0

(∫
RN

+

|∇w|2dx+ o(1)

)
+O(λ

N+(p+1)
p+1 e−µσ0λ)
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(3.7) λ||wλ||2L2(B) = λα0

(∫
RN

+

w2dx+ o(1)

)
+O(λ

N+(p+1)
p+1 e−µσ0λ)

and

(3.8) ||wλ||p+1
Lp+1(B) =

(∫
RN

+

wp+1dx

)
+ o(1) +O(λ

N
2 e−

µσ0(p+1)λ
2 ).

Then (3.4) follows from (3.5), (3.6), (3.7) and (3.8). ut

Lemma 3.2. Let δ ∈ (δk, 1) be fixed. Let un ∈ Kδ and λn →∞ be such that
limn→∞Eλn(un) ≤ k

p−1
p+1 2−

p−1
p+1m. Then there exists a subsequence (still denoted by un)

satisfying
(a) limn→∞ λ−α0

n Eλn(un) = k
p−1
p+1 2−

p−1
p+1m.

(b) There exist yn ∈ ∂B ∩ (R2 × {0}), such that ∀ε > 0,∃R > 0

(3.9) lim
n→∞

∫
B R√

λn

(yn)∩B
|un|p+1dx ≥ 1

k
− ε.

(c) limn→∞ γ(un) = 1.

The proof of Lemma 3.2 is rather similar to the proof of Lemma 2.2 though obvious
changes need to be made. We refer to [Wz6] for details.

With the help of Lemma 3.2, we have

Lemma 3.3. Let δ ∈ (δk, 1) be fixed. Then there exist λ0 > 0, β0 > 0, such that for all
λ ≥ λ0 , if {uλn} is a minimizing sequence of Eλ(u) in Kδ,

(3.10) lim
n→∞

γ(uλn) ≥ δ + β0.

Proof of Lemma 3.3. If the conclusion is not true, there exist λn →∞, βn → 0, and
minimizing sequences for Eλn(u) in Kδ: {uλnj }, such that

lim
j→∞

Eλn(uλnj ) = cλn,δ,

and

lim
j→∞

γ(uλnj ) ≤ δ + βn.

By Lemma 3.1, limλ→∞ λ−α0cλ,δ ≤ k
p−1
p+1 2−

p−1
p+1m. Then for each n we can find jn and an

with jn →∞ and an →∞ such that

λ−α0
n Eλn(uλnjn ) ≤ k

p−1
p+1 2−

p−1
p+1m+

1
an
,

γ(uλnjn ) ≤ δ + 2βn.

Calling wn = uλnjn we get a sequence satisfying the condition of Lemma 3.2. Then we get

lim
n→∞

γ(wn) = 1 > δ,

a contradiction. Lemma 3.3 is proved. ut
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Theorem 3.1. Let G be given as above satisfying (S1). Then there exists λk > 0 such
that for all λ > λk , (3.1)λ possesses a nonconstant solution uλ satisfying the following.
(i). uλ is exactly G−invariant , i.e. for any g ∈ O(N), uλ(gx) = uλ(x) for any x ∈ B if
and only if g ∈ G.
(ii).

(3.11) lim
λ→∞

λ−α0Eλ

(
uλ

||uλ||Lp+1(B)

)
= k

p−1
p+1 2−

p−1
p+1m.

(iii). uλ is k-peaked on ∂B in the sense that uλ has exactly k local maxima over B which
all lie on ∂B ∩ (R2 × {0}) and are given by T jP for j = 1, ..., k with the G-orbit of P
containing exactly k points.

Sketch of the proof of Theorem 3.1. Let δ ∈ (δk, 1) and λ > λk be fixed. Let un ∈ Kδ

be a minimizing sequence for cλ,δ in Kδ. By Lemma 3.3, limn→∞ γ(un) ≥ δ+β0, i.e. {un}
does not approach to the boundary of Kδ. By Ekeland’s variational principle ([MW]), we
may assume E′λ(un)→ 0 as n→∞. Since {un} are uniformly bounded, we may assume
that un weakly converges to u ∈ W 1,2(B). Then un → u in Lp+1(B) by the Sobolev
Embedding Theorem. Then ||u||Lp+1(B) = 1, i.e. u ∈ VG(B). Since Eλ(u) is weakly lower
semicontinuous, cλ,δ is achieved at an interior point of Kδ. So we obtain a nonconstant
solution uλ for (3.1)λ for λ large. The assertion (a) of Lemma 3.2 proves (ii) of Theorem
3.1. The last part of the proof for Theorem 2.1 proves that uλ has exact G-symmetry.
To prove (iii) we use the same idea in the proof of the assertion (iii) of Theorem 2.1 and
some arguments in [NT1] and [Wz1] (note that here we prove that uλ possesses exactly
k local maxima over B, while in Theorem 2.1 the statement is that uλ possesses k global
maxima over B ). ut

4. Further remarks. Note that we have essentially used “local minimization” argu-
ments in Section 2 and Section 3. One would ask what happens with the “global mini-
mizations”. We give a few remarks here and complete answer will be reported elsewhere.

For the critical exponent problem we believe that the infimum of Eλ(u) over VG(B) is
not achieved for k ≥ 3. Here we just give a weaker result in this regard, which we proved
in [Wz6].

Proposition 4.1. Let k = 4. Define

(4.1) mλ := inf
u∈VG(B)

Eλ(u).

Assume mλ is achieved at uλ. Then for λ large, uλ is not four-peaked on ∂B (see (iii)
in Theorem 2.1 ).

R e m a r k 4.1. For the subcritical problems, we may state a similar result to the
above proposition, i.e. the global minimizer of Eλ(u) in VG(B) does not give a multi-
peaked solution for our problem (3.1)λ when λ is large. However, in this case mλ is always
achieved because we do have compactness for the subcritical exponent problems. We tend
to believe the minimizers in this case are radial functions. This and the proposition above
indicate that in general the global minimization would not yield multi-peaked solutions
with boundary spike-layers.
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R e m a r k 4.2. In regard to condition (S1), in general a Zk action may have different
orbit types. Modifying our arguments slightly (mainly in the proof of Lemma 2.2 and 3.2),
we may get the existence of a k′-peaked solution uλ for λ large, where k′ = min{ the
number of points in G1(x) | x ∈ (R2 × {0}) \ {0}}.

R e m a r k 4.3. In [Wz6] more general symmetric domains have been treated by
putting some geometric conditions on the boundary of the domain.

R e m a r k 4.4. All solutions we obtain so far share one common feature: the orbits
of peaks for the solutions are planer. It would be interesting to see solutions with other
type of peaks. Some results will be reported in [MSW].

R e m a r k 4.5. We should mention that radial solutions have been studied in [LN],
[N], [AY] and [BKP] when the domain is a standard ball domain. Our results imply that
for both the subcritical and the critical exponent problems, for each k ≥ 1 there exists
λk > 0, such that for all λ ≥ λk the problem has at least k nonradial solutions which are
not rotationally equivalent. It should be interesting to study the symmetry properties
of all positive solutions for our problem. Here we prove the existence of solutions with
prescribed exact symmetry.

R e m a r k 4.6. Problem (1.1)λ may be viewed as a prototype of pattern formation
in mathematical biology and is related to the steady state problem for a chemotactic
aggregation model by Keller and Segel([KS]). Our results indicate that some solutions
tend to be more and more concentrated around a finite number of points on the boundary
as the parameter λ tends to infinity.
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