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1. Introduction. A major progress in the calculus of variations since ten years is
a systematic treatment of problems with lack of compactness. Our aim is to give an
elementary approach to four typical cases. The methods are perhaps more important
than the results. Lack of compactness is well understood when the problem is invariant
under a non-compact group. Sections 2 and 3 are devoted to problems on R¥. In this
case, the problem is invariant under translations. Sections 4 and 5 are devoted to critical
exponents. The problem is then invariant under dilations. We try to emphazise the sim-
ilarities between the two cases. In sections 2 and 4, problems are solved because of their
symmetry. In sections 3 and 5, problems are solved by a symmetry breaking. Although
the results are known, the proofs, specially of theorem 4.4, are simpler.

We will use the following functional spaces.

DEFINITION 1.1. The space
HYRY):={uec L*(RY) : Vu e L*(RN)}
with the inner product

(u,v)1 := /RN[VU'VU-F’LLU]

9 9 1/2
lulle = ([ 1Val? + 1uf?)
RN

is a Hilbert space. Let Q be an open subset of RY. The space H{ () is the closure of
D(Q) in HY(RY).

and the corresponding norm
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Let N > 3 and 2* := 2N/(N — 2). The space
DY2(RN) :={ue L* (RN): Vue L2RN)}
with the inner product
/ Vu - Vv
RN

([ 7u)”

is a Hilbert space. The space Dy?(€2) is the closure of D(€) in DH2(RN). For the sim-
plicity of notations, we shall write 2* = co when N =1 or N = 2.

and the corresponding norm

For the following results, see [3] or [9].

THEOREM 1.2. (Sobolev imbedding theorem). The following embeddings are con-
tinuous:

H'RYN) c LP(RV), 2<p<oo,N=1,2,
H'RM)c LP(RY), 2<p<2* N >3,
DYRN) c L¥ (RN), N >3.
In particular, the Sobolev inequality holds:
S:= inf _ |Vul3>0.

THEOREM 1.3. (Rellich imbedding theorem). If |Q| < oo, the following embeddings
are compact:
H}(Q) C LP(Q), 2<p<?2%.
COROLLARY 1.4. (Poincaré inequality). If || < oo, then
A1(Q) = ian) |Vul3 >0

u€Hg(
[ul2=1

is achieved.

Remarks 1.5. a) It is clear that H{ () € Dy*().
b) If |Q] < oo, Poincaré inequality implies that Hg (€2) = Dy*(5).

2. Subcritical Sobolev inequalities. Let N > 2 and 2 < p < 2*. Sobolev theorem

implies that
S, = inf ul|? > 0.
b= el
Julp=1

In order to prove that the infimum is achieved, we consider a minimizing sequence
(un) C HY(RN)
(1) aly =1, luall? = Spy 1 — oo,
Going if necessary to a subsequence, we may assume u,, — u in H*(R"), so that

[Jullf < lim[[uy || = S,
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Thus « is a minimizer provided |u|, = 1. But we know only that |u|, < 1. Indeed, for
any v € H! and y € RY the translated function

V(@) = oz + )
satisfies
] = [lv[l1s [vY]p = [v]p.

Hence the problem is invariant by the noncompact group of translations. In order to
overcome this difficulty, we will use the following result.

LEMMA 2.1. (Brezis-Lieb, 1983). Let Q be an open subset of RN and let (u,) C
LP(), 1 <p < oo. If
a) (up) is bounded in LP(S2),
b) un — u almost everywhere on ), then
tm (fualf — s — uff) = [ul?.

Proof. See [4], [9] or [10].

Remarks 2.2. a) The preceding lemma is a refinement of Fatou’s lemma.

b) Under the assumptions of the lemma, u, — u weakly in LP(§2). However, weak
convergence in LP(2) is not sufficient to obtain the conclusion, except when p = 2.

¢) In any Hilbert space

Uy — u = lim (Jup|? — |u, —ul?) = |ul?.
LEMMA 2.3. Let r > 0 and 2 < q < 2*. If (uy,) is bounded in H'(RY) and if

sup / |un|? — 0,n — oo,
yERN JB(y,r)

then u, — 0 in LP(RYN) for 2 < p < 2*.
Proof. See [7].

THEOREM 2.4. (P.L. Lions, 1984). Let (u,) C HY(RY) be a minimizing sequence
satisfying (1). Then there exists a sequence (y,) C RN such that u¥" contains a conver-
gent subsequence. In particular there exists a minimizer for S,.

Proof. Since |u,|, = 1, lemma 2.3 implies that

6:= lim sup / |un|2 > 0.
B(y,r)

n—oo yERN

Going if necessary to a subsequence, we may assume the existence of (y,) C R¥ such

that
/ [un |2 > /2.
B(ynv"')

Let us define v, := u¥". Hence |v,|, = 1, ||v,||? — S, and

(2) / [vn|? > 8/2.
B(0,r)
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Since (v,,) is bounded in H*(R”), we may assume, going if necessary to a subsequence
v, = v in HY(RY),
Up — U in LfOC(RN),
Up — U a.e. on RY.
By Brezis-Lieb lemma,
1= |v[b + lim |wy, [},
where w,, := v,, — v. Hence we have
Sp = lim ||v, |} = [[v|[F + lim [Jw, I}
> Sp[([0f5)*7 + (1 = [v[p)*/7].
Since, by (2), v # 0, we obtain |v[b = 1, so that [|v]|? =S, = lim [|v,]|3.
THEOREM 2.5. There exists a radially symmetric, positive, C* minimizer for S,.

Proof. 1) By the preceding theorem, there exists a minimizer u € H!(RY) for S,,.
Using symmetrization ([6]), we may assume that v is radially symmetric. Replacing u by
|u|, we may also assume that u is non-negative.

2) Tt follows from Lagrange multiplier rule ([9]) that, for some A > 0, u is a solution
of

—Au+u =Pl
By Brezis-Kato theorem, u € C?(R”). The strong maximum principle implies that u is
positive.

3. Subcritical problem. Motivated by a nonlinear Schrédinger equation, we consider
the following minimization problem:

Sy =  inf / (Vul? + V(2)u]dz,
ueHY(RY) JRN
lulp=1
where N > 2 and 2 < p < 2*. We assume that V € C(RY) satisfies
(3) 0< inf V(z)< sup V(z)= lim V(z)=1.
z€ERN z€RN || —o0

By scaling, it is easy to replace 1 by any positive number. On H*(R”), we define the
equivalent norm

Jul|? = / (IVuf? + V(z)u?]dz.
RN
We consider a minimizing sequence (u,) C H'(RY) satisfying
(4) unlp =1, [unll* = Sy, n— oo

THEOREM 3.1. Let (u,) C HY(RYN) be a minimizing sequence satisfying (4). Under
assumption (3), (un) contains a convergent subsequence. In particular, there exists a
minimizer for Sy .

Proof. 1) Let u > 0 be a minimizer for S,. Assumption (3) implies that

Sv < [Pl* <l = Sp.



MINIMIZATION PROBLEMS 101

2) Since (uy) is bounded in H'(RY), we may assume, going if necessary to a subse-
quence,

Up — U in H'(R"),
u, —»u  in LY _(RM),
Up — U a.e. on RYV.

Brezis-Lieb lemma leads to
1= |ulf) + lim [w, [},
where w,, := u,, — u. Hence we have
Sv = lim [Ju||* = [[ul[* + lim [Jw, ||
= [Jul|* + lim [Jwy ||}
> S luf2 + S, (1 — ul2)?".
Since, by the first step, Sy < S, we obtain |u|, = 1, so that

[Jull* = Sy = Tim | |u||*.

4. Critical Sobolev inequality. Let N > 3. The optimal constant in Sobolev in-

equality is given by
S = inf |Vul3 > 0.
ueDV2(RN)
[ulox =1

In order to prove that the infimum is achieved, we consider a minimizing sequence (u,,) C
DL2(RN):
(5) |t
Going if necessary to a subsequence, we may assume u,, — u in D»2(RY), so that

2% = 1,|Vun|g — S7n — 0.

Thus u is a minimizer provided |u|e» = 1. But we know only that |u
any v € DV2, y € RY and X > 0, the rescaled function

v x) = A=A 2\ 4 y)

o+ < 1. Indeed, for

satisfies
(Vo Ay = [Volp, o

Hence the problem is invariant by translations and dilations. In order to exclude non-
compactness, we will use some results from measure theory (see [9]).

2* = |U 2% .

DEFINITION 4.1. Let © be an open subset of RY and define
K(Q) :={u e C(Q): supp u is a compact subset of Q},
BC(Q) :={u € C(Q) : |u|oo := sup |u(z)| < oo}.
€N

The space Co(2) is the closure of () in BC(§) with respect to the uniform norm. A
finite measure on € is a continuous linear functional on Cy(€2). The norm of the finite
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measure u is defined by
lpll == sup (s, u)].
u€Cy(2)
|u]oo=1

We denote by M(Q) (resp. M (£2)) the space of finite measures (resp. positive finite
measures) on 2. A sequence (p,) converges weakly to p in M(2), written
M — s
provided
<1u'n7u> - <M7u>7vu € CO(Q)

THEOREM 4.2. a) Fvery bounded sequence of finite measures on §2 contains a weakly
convergent subsequence.
b) If pn, — w in M(Q) then (uy,) is bounded and

[l < L[ g2 |-
¢) If w € M*T(Q) then
lpll = (1) = sup {u, u).
weBC(Q)
|u|oo=1

Following P.L. Lions [8], Bianchi, Chabrowski, Szulkin [2] and Ben Naoum, Troestler,
Willem [1], we describe the lack of compactness of the injection DV2(RN) ¢ L?" (RN).

LEMMA 4.3. (Concentration-compactness lemma). Let (u,,) CDV2(RYN) be a sequence
such that

Up — U, in DV2(RN),
IV (uy, — w)|* = p, in M(RN),
up —u|* = v, in M(RN),
Uy — U, a.e. on RN
and define
fioo = lim Tim Vunl?, voo = lim Tim Junf*".

R— 00 n—o0

Then it follows that
(6)

|z| >R

n—oo

.
3 =lu

R—o00 n—o0

|lz|>R

P27 < 57 |ull,
ng* < S_lﬂoov

i (Vi[5 = [Vul3 + [|ul] + poo,
n— 00

3+ Il + veo.

Moreover, if w=0 and ||v||>/? = S~|u||, then v is concentrated at a single point.

Proof. Inequality (6) is proved in [8] and inequality (7) in [2]. Equalities (8) and (9)

are proved in [1]. (See also [9] and [10]).



MINIMIZATION PROBLEMS 103

THEOREM 4.4. (P.L. Lions, 1985). Let (u,) C DY2(RYN) be a minimizing sequence
satisfying (5). Then there exists a sequence (Yn, \n) C RN x]0,00[ such that (uln>~)
contains a convergent subsequence. In particular there exists a minimizer for S.

Proof. Define the Lévy concentration functions

Qn(N) := sup / |un|2*.
B(y,\)

yeRN

Since, for every u,
/\ligh Qn(A) = 0, )\ILHOIO Qn()\) = 1;

there exists A, > 0 such that Q,()\,) = 1/2. Moreover, there exists y,, € R" such that

/ = QM) = 1/2,
B(yna)\n)

since

lim lun|?> = 0.
lyl—o0 JB(y,An)

0 Yo An _ 2
Let us define v,, := u¥"*n. Hence |v, |2+ = 1, |Vu,|53 — S and

1 . .
(10) 5= / [v,]|?" = sup / [vn|?.
B(0,1) yeRN JB(y,1)
Since (v,,) is bounded in DV2(RY), we may assume, going if necessary to a subsequence,
Up — v, in DM2(RY),

V(g =) = p,  in MRY),
E— in M(RY),

Vp — 0, a.e. on RV.

|vp, — v

By the preceding lemma,

(11) S =1im [Vo,[3 = [Vol3 + [l + froo,
(12) 1= [onl3: = [0l3< + V]| + Voo,
where
foo = lim lim \an|2, Voo := lim lim |vn 2

R—o0 n—oo |z|>R R—o0 n—oo lz|>R

We deduce from (11), (6), (7) and Sobolev inequality,
5 S0P + WP +022).

It follows from (12) that |v|3., ||v|| and ve, are equal either to 0 or to 1. By (10),
Voo < 1/2 50 that vy = 0. If ||v]| = 1 then v = 0 and ||v|[*/?" > S~1||u||. The preceding
lemma implies that v is concentrated at a single point z. We deduce from (10) the

contradiction
1 . .
R N R M e
yeRN JB(y,1) B(z,1)

)
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Thus |v|3. = 1 and so
IVol3 = S = lim |Vu,|3.
THEOREM 4.5. (Aubin, Talenti, 1976). The instanton
[NV —2)] =2/
[+ )72

U(z) :=

is a minimizer for S.

Proof. 1) By the preceding theorem, there exists a minimizer u € DV2(RY) for S.
Using symmetrization ([6]), we may assume that u is radially symmetric. Replacing u by
|u|, we may also assume that u is non-negative.

2) It follows from Lagrange multiplier rule ([9]) that, for some A > 0, u is a solution
of

N+2
—Au = Au~N-2,
By Brezis-Kato theorem, u € C2(R”). The strong maximum principle implies that u is
positive.
3) After scaling, we may assume

N+2
—Au=uN-2.

Moreover we can choose € > 0 such that
U(z) := e@=M2y(z/e)
satisfies
U:(0) = u(0).
But then u and U, are solutions of the problem
0. (rN=19,w) = rN_lv%,r > 0,
{ v(0) = u(0) 0rv(0) = 0.
It follows easily that v = U.. By invariance, U is a minimizer for S.
PROPOSITION 4.6. For every open subset 0 of RV,

S(Q):= inf |Vul3=S
1,2 Q)

u€Dy " (

lul2«=1
and S(Q) is never achieved except when = RN.
Proof. 1) It is clear that S < S(Q). Let (u,) € D(RY) be a minimizing sequence
for S. We can choose y, C RY and ), > 0 such that
ulnr € D(Q).
Hence we obtain S(Q2) < S.
2) Assume that Q # RN and u € Dy*() is a minimizer for S(Q). By the preceding
step, u is also a minimizer for S. We may assume that u > 0, so that u is a solution of
N+2

—Au = Au~-2.

By the strong maximum principle, v > 0 on RY. This is a contradiction, since u €
Dy 2 ().
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5. Critical exponents. This section is devoted to the Brezis-Nirenberg minimization
problem

Sy:= inf /(\Vu|2 + Mu?)dx
w€HF () Ja
[ul2x =1

where N > 2, Q is a bounded open subset of RY and —A;(2) < A < 0. On HE(Q), we
define the equivalent norm

lalP = [ (Vuf? + Xa?)da.
Q
We consider a minimizing sequence (u,,) C H}(Q) satisfying

(13) [unlo- =1, ||un]|> = Sy, n — oo.

THEOREM 5.1. (Brezis-Nirenberg, 1983). Let (u,) C H}(Q)) be a minimizing sequence
satisfying (13). If N > 4 and =\ () < A < 0, then (u,) contains a convergent subse-
quence. In particular, there exists a minimizer for Sy.

Proof. Since (u,) is bounded in H}(Q), we may assume, going if necessary to a
subsequence,
Up — U in H}(Q),
Up — U in L*(Q),
Up — U a.e. on (.

Brezis-Lieb lemma leads to

1= |ul2: + lim |w, |2
where w,, := u,, — u. Hence we obtain
Sx = lim [Jup[|? = [ful|* + lim ||w,,||*

= [[ul|* + lim |Vw, |3

> Salul3. +5(1 —[uf3.)*".

Since, by the next lemma, Sy < S, we obtain |u|s- = 1, and so
[Jul[* = Sx = Tim [|uy||*.
If U is the instanton, we have, for A < 0,

Ul _ [VUB+ U3 _ [VUI3

=5
U3- U3- U3-

Since U ¢ H{ (), it is necessary to “concentrate” U near a point of  after multiplication
by a trunction function.

LEMMA 5.2. Under the assumption of theorem 5.1, there exists a nonnegative v €
HYHQ)\{0} such that

2
2* < S.

[lv][?/1v




106 M. WILLEM

Proof. We may assume that 0 € Q. Let ¢ € D(Q) be a nonnegative function such
that ¢¥» =1 on B(0, p), p > 0, and define, for ¢ > 0,

Ue(z) :=e®™NM20(x/e),
ue () := P(x)Ue ().
It follows from theorem 4.5 that

VU2 = |U.|2- = SN2,

2% =

As e — 0T, we have that

/ Ve |* = / IVU* + O(eN72) = SN2 + O(eN72),
Q RN

/Iuef*:/ U|* + O0(eN) = SN2 + 0(eM),
Q RN

/ e = / U2 + 0(N2)
Q B(0,p)

[N(N —2)e* 77 / IN(N=2)?77" )y
> + + O(e
/Bm,g) et iy IR S

_ [ de?tne| + O(e?), if N =4,
T de?+0(@ENT?),  if N > 5,

where d is a positive constant. If N = 4, we obtain
[|ue||? < S? + \de?|fne| + O(g?)
AN e
= S+ Mde?|lne|S™H+ 0(?) < S,
for € > 0 sufficiently small. And similarly, if N > 5, we have
[|uel||? < SN/2 4 \de? + O(eN—2)
g* - (SN/2 + O(eN))2/2*
=85+ Mde28E N2 L oEN2) < 8,

|u

|ue

for € > 0 sufficiently small.
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