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Introduction. The goal of this paper is at least two-fold. First we attempt to give
a survey of some recent (and developed up to the time of the Banach Center workshop
Parameter Spaces, February ’94 (2)) applications of the theory of symmetric polynomials
and divided differences to intersection theory. Secondly, taking this opportunity, we com-
plement the story by either presenting some new proofs of older results (and this takes
place usually in the Appendices to the present paper) or providing some new results
which arose as by-products of the author’s work in this domain during last years.

Being in the past a good part of the classical algebraic knowledge (related for instance
to the theory of algebraic equations and elimination theory), the theory of symmetric
functions is rediscovered and developed nowadays (see, for example, the monograph [M1]
of I. G. Macdonald or the booklet [L-S1] of A. Lascoux and M.-P. Schützenberger). Here,
we discuss only some geometric applications of symmetric polynomials which are related
to the present interest of the author. In particular, the theory of polynomials universally
supported on degeneracy loci ([P3]) is surveyed in Section 1.

Divided differences appeared already in the interpolation formula of I. Newton [N,
Liber III, p. 582, Lemma V: “Invenire lineam curvam generis parabolici, quæ per data
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quotcunque puncta tran
∫
ibit.”]. Their appearance in intersection theory is about twenty

years old starting with the papers [B-G-G] of I. N. Bernstein, I. M. Gelfand and S. I.
Gelfand and [D1,2] of M. Demazure. A recent work [F2] of W. Fulton has illuminated
the importance of divided differences to flag degeneracy loci. This was possible thanks
to the algebraic theory of Schubert polynomials developed recently by A. Lascoux and
M.-P. Schützenberger ([L-S 2-6]).

The geometrical objects we study are: (ample) vector bundles, degeneracy loci of vec-
tor bundle homomorphisms, flag varieties, Grassmannians including isotropic Grassman-
nians, i.e. the parameter spaces for isotropic subspaces of a given vector space endowed
with an antisymmetric or symmetric form, Schubert varieties and the parameter spaces
of complete quadrics.

The algebro-combinatorial tools we use are: Schur polynomials including supersym-
metric and Q-polynomials, binomial determinants and Pfaffians, divided differences,
Schubert polynomials of Lascoux and Schützenberger, reduced decompositions in the
Weyl groups and Young-Ferrers’ diagrams.

The content of the article is as follows:
1. Polynomials universally supported on degeneracy loci,
2. Some explicit formulas for Chern and Segre classes of tensor bundles with applica-

tions to enumerative geometry,
3. Flag degeneracy loci and divided differences,
4. Gysin maps and divided differences,
5. Fundamental classes, diagonals and Gysin maps,
6. Intersection rings of spaces G/P , divided differences and formulas for isotropic de-

generacy loci — an introduction to [P-R 2-5],
7. Numerically positive polynomials for ample vector bundles with applications to Schur

polynomials of Schur bundles and a vanishing theorem.

Apart of surveyed results, the paper contains also some new ones. Perhaps the most
valuable contribution, contained in Section 5, is provided by a method of computing
the fundamental class of a subscheme using the class of the diagonal of the ambient
scheme. The class of the diagonal can be determined with the help of Gysin maps (see
Section 5). This method has been applied successfully in [P-R5] and seems to be useful
also in other settings. Other results that appear to be new are contained in Proposition
1.3(ii), Proposition 2.1 and Corollary 7.2. Moreover, the paper is accompanied by a series
of appendices which contain an original material but of more technical nature than the
main text of the paper. Some proofs in the Appendices use an operator approach and
the operators involved are mostly divided differences. This point of view leads to more
natural proofs of many results than the ones known before, and we hope to develop it in
[L-L-P-T].

The following is the list of appendices:

A.1. Proof of Proposition 1.3(ii).

A.2. Proof of Proposition 2.1.

A.3. Recursive linear relations for ((J)) and [J ].

A.4. A Gysin map proof of the formula from Example 3.5.

A.5. An operator proof of the Jacobi-Trudi identity.
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A.6. A Schur complex proof of the Giambelli-Thom-Porteous formula.

A.τ . Corrigenda and addenda to some former author’s papers.

Several open problems are stated throughout the text.
We use the opportunity to complete or correct some surveyed results. Moreover, we

give, in Appendix A.τ , an errata to some former author’s papers.

Acknowledgement. This paper, being a revised and substantially extended version
of the Max-Planck-Institut für Mathematik Preprint No. 92-16 Geometric applications
of symmetric polynomials; some recent developments, is also an expanded version of two
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by Alain Lascoux to whom the present paper owes a lot. At first, it was Lascoux who
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directly from Lascoux. These are: the divided-differences interpretation of the symmetriz-
ing operators in Propositions 4.1–4.4 and the content of Appendix A.3. I thank for his
permission to include this material here.
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last Appendix.

The material surveyed in Section 6 stems mainly from a recent series of papers written
in collaboration with J. Ratajski.

I thank also I. G. Macdonald for pointing me out some errors in the previous version.

1. Polynomials universally supported on degeneracy loci. This section sum-
marizes mainly a series of results from [P1-5], [P-P1,2] and [P-R1].

Let Matm×n(K) be the affine space of m× n matrices over a field K. The subvariety
Dr of Matm×n(K) consisting of all matrices of rank 6 r is called a determinantal variety
(of order r). Algebro-geometric properties of these varieties were widely investigated in
the seventies and eighties. The prototype of the results of this section is, however, an older
result — a formula of Giambelli [G3] (1903) (see also [G1] and [G4]) for the degree of the
projective determinantal variety (i.e. the class of Dr \ {0} in P(Matm×n(C)) ). In order
to perform his computations Giambelli used the machinery of symmetric polynomials
developed mainly by the 18th- and 19th-century elimination theory.

Determinantal varieties are a particular case of degeneracy loci

Dr(ϕ) =
{
x ∈ X | rankϕ(x) 6 r

}
r = 0, 1, 2, . . . associated with a homomorphism ϕ : F → E of vector bundles on algebraic
(or differentiable) variety X. This concept overlaps many interesting situations like va-
rieties of special divisors (called also Brill-Noether loci) in Jacobians, Thom-Boardmann
singularities, variations of Hodge structures in families of Riemann surfaces — just to
mention a few; for more details and examples consult [Tu].

One of the fundamental problems in the study of concrete subscheme D of a given
(smooth) scheme X is the computation of its fundamental class in terms of given gen-
erators of the cohomology or Chow ring of X. For instance, Giambelli’s formula men-
tioned above gives the fundamental class of the (projective) determinantal variety in
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H∗
(
P(Matm×n(C)),Z

)
(3). In 1957 R. Thom ([T]) proved that for sufficiently general

homomorphisms ϕ : F → E, there exists a polynomial, depending solely on the Chern
classes ci(E), cj(F ) of E and F , which describes the fundamental class of Dr(ϕ) (4). This
polynomial has been found subsequently by Porteous:

(∗) Det
[
cn−r−p+q(E − F )

]
16p,q6m−r

where ck(E − F ) is defined by:

1 + c1(E − F ) + c2(E − F ) + · · · = (1 + c1(E) + c2(E) + . . . )/(1 + c1(F ) + c2(F ) + . . . ).

Different variants and generalizations of (*) were considered later in [K-L], [L1],
[J-L-P], [H-T1], [P5] and recently in [F2] (compare Section 3). In particular, note that
(*) can be rewritten using the Segre classes of E and F as the determinant:

Det
[
sm−r−p+q(E − F )

]
16p,q6n−r

where sk(E − F ) is defined by:

1 + s1(E − F ) + s2(E − F ) + · · · = (1 + s1(E) + s2(E) + . . . )/(1 + s1(F ) + s2(F ) + . . . ).

and sk(E) is here the k-th complete symmetric polynomial ([M1]) in the Chern roots
of E. (Note that this definition differs by a sign from that for the Segre class of a bundle,
used in [F1].)

Today’s formulation of the Giambelli-Thom-Porteous formula uses much weaker as-
sumptions than the transversality conditions in [Po] thanks to the work of Kempf and
Laksov [K-L] and Fulton-MacPherson’s intersection theory [F1]. (We refer the reader to
[F1] for the notions of algebraic geometry used in the present article.)

Theorem 1.0. If X is a pure-dimensional Cohen-Macaulay scheme and the degeneracy
locus Dr(ϕ), endowed with the scheme structure defined by the ideal generated by r + 1-
minors of ϕ, is of pure codimension (m− r)(n− r) in X or empty, then

[Dr(ϕ)] = Det
[
sm−r−p+q(E − F )

]
16p,q6n−r

∩ [X].

(In a modern treatment of intersection theory of [F1], one constructs, for every vector
bundle homomorphism ϕ over a pure-dimensional scheme X, a degeneracy class Dr(ϕ) ∈
AdimX−(m−r)(n−r)

(
Dr(ϕ)

)
whose image in A∗(X) is given by the right-hand side of the

formula of the theorem. If Dr(ϕ) is of pure codimension (m− r)(n− r) then Dr(ϕ) is a

(3) More precisely, Giambelli calculated the degree of Dr(ϕ) for a general map ϕ : O(m1)⊕
O(m2)⊕ · · · → O(n1)⊕O(n2)⊕ . . . . His expression, in the notation introduced a bit later, is∑

sI(E) · s
I
(F∨) where the sum is taken over all partitions I whose diagram is contained in the

rectangle (n− r)× (m− r) and the diagram of the partition I complements the one of I∼ in the
rectangle (m− r)× (n− r); in today’s language, explained in the sequel, this expression equals
s(m−n)n−r (E −F ). We refer the reader to the article by D. Laksov [La] about Giambelli’s work
and life. This article contains also a complete bibliography of Giambelli overlapping his work on
degeneracy loci formulas. Perhaps it is worth mentioning that several of Giambelli’s formulas
have been recently rediscovered using the Gröbner bases technique — see e.g. [He-T].

(4) As Lascoux points out, there is a little step, by combining this result of Thom and the
above mentioned computation of Giambelli, to arrive at the formula from Theorem 1.0.
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positive cycle whose support is Dr(ϕ); if, moreover X is Cohen-Macaulay then Dr(ϕ) is
also Cohen-Macaulay and Dr = [Dr(ϕ)].) (5)

The second domain of research concerning nonsingular degeneracy loci in nonsingular
ambient spaces, is the calculation of their Chern numbers (see [H], [Na] and [H-T2]). Here,
one deals with complex varieties and the problem is to find expressions depending solely
on ci(E), cj(F ) and ck(TX) for such numbers. A natural extension of this question is to
ask about similar universal formulas for the topological Euler-Poincaré characteristic of
Dr(ϕ), or, even more, for the Chern-Schwartz-MacPherson classes of these varieties, now
without the smoothness assumption on X and Dr(ϕ).

Finally, the third kind of problems stems from a study of different type homology of
degeneracy loci (compare [Tu]).

It turns out that all these questions are closely related with the following problem
whose investigation started with the author’s papers [P1,3].

P r o b l e m. Which polynomials in the Chern classes of E and F are universally sup-
ported on the r-th degeneracy locus?

To state this problem precisely, assume that a homology theory H(−) is given which
is a covariant functor for proper morphisms and is endowed with Chern classes associated
with vector bundles on a given variety X, acting as operators on H(X). Then also the
polynomials in the Chern classes of vector bundles act as operators onH(X). For example,
the Chow homology, the singular homology and the Borel-Moore homology have these
properties (see [P-R1] for more on that).

Let ιr : Dr(ϕ) → X be the inclusion and let (ιr)∗ : H
(
Dr(ϕ)

)
→ H(X) be the

induced morphism of the homology groups. Fix integers m,n > 0 and r > 0. Introduce
m + n variables c1, . . . , cn; c′1, . . . , c

′
m such that deg(ci) = deg(c′i) = i. Let Z[c., c′.] =

Z[c1, . . . , cn, c′1, . . . , c
′
m] be the polynomial algebra. Following [P1,3] we say that P ∈

Z[c., c′.] is universally supported on the r-th degeneracy locus if

P
(
c1(E), . . . , cn(E), c1(F ), . . . , cm(F )

)
∩ α ∈ Im(ιr)∗

for any homomorphism ϕ : F → E of vector bundles on X such that n = rankE,
m = rankF and any α ∈ H(X). Denote by Pr the set (which is, in fact, an ideal)
of all polynomials universally supported on the r-th degeneracy locus. Of course, the
Giambelli-Thom-Porteous polynomials (*) describing Di(ϕ) for i 6 r belong to Pr, but
they do not generate this ideal if r > 1. An analogous problem can be stated for symmetric

(5) Recall that if D ⊂ X is a (closed) subscheme then [D] ∈ A∗(X) is the class of the
fundamental cycle associated with D, i.e., if D = D1 ∪ . . . ∪ Dn is a minimal decomposition
into irreducible components then

[D] =
n∑
i=1

(lengthOD,Di)[Di],

where OD,Di is the local ring of D along Di. Recall also that if f : X → Y is a proper
morphism then it induces a morphism of abelian groups f∗ : A∗(X) → A∗(Y ) such that
f∗[V ] = deg(f

∣∣
V

)[f(V )] if dim f(V ) = dimV and 0 — otherwise. In particular, if f estab-
lishes a birational isomorphism of V and f(V ) then f∗[V ] = [f(V )]. If X and Y are nonsingular
then a morphism f : X → Y induces a ring homomorphism f∗ : A∗(Y ) → A∗(X). If X, Y are
possibly singular and f is flat (or regular embedding) then there exists a group homomorphism
f∗ : A∗(Y )→ A∗(X).
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(resp. antisymmetric) morphisms: F = E∨, ϕ∨ = ϕ (resp. ϕ∨ = −ϕ). In this case the
corresponding ideal Psr (resp. Pasr r-even) is contained in Z[c1, . . . , cn] = Z[c.].

It follows from the “main theorem on symmetric polynomials” that for a sequence of
variables A = (a1, . . . , an), where deg(ai) = 1, the assignment

ci 7→ (i-th elementary symmetric polynomial in A)

defines an isomorphism of Z[c.] and SP(A) — the ring of symmetric polynomials in A.
Similarly, by considering an analogous assignment for the c′j ’s and a second sequence of
variables B = (b1, . . . , bm), we get an isomorphism of Z[c., c′.] with SP(A|B) = SP(A)⊗
SP(B) — the ring of symmetric polynomials in A and B separately.

A precise description of the ideals Pr, Psr and Pasr requires two families of symmetric
polynomials.
(i) Let I = (i1, . . . , ik) be a sequence of integers. We define

sI(A−B) = Det
[
sip−p+q(A−B)

]
i6p,q6k

,

where si(A−B) is a homogeneous polynomial of degree i such that
∞∑

i=−∞
si(A−B) =

n∏
i=1

(1− ai)−1
m∏
j=1

(1− bj).

Observe that the corresponding polynomials sI(c./c′.) in the variables c. and c′. are
determined by

si(c./c′.) = si − si−1c
′
1 + · · ·+ (−1)i−1s1c

′
i−1 + (−1)ic′i,

where
si = si−1c1 − si−2c2 + . . .+ (−1)i−2s1ci−1 + (−1)i−1ci

for i > 0 and si = 0 for i < 0, s0 = 1.
Moreover, we put sI(A) = sI(A − B) for B = (0, . . . , 0) and similarly sI(c.) =

sI(c./c′.) for c′j = 0, j = 1, . . . ,m.
(ii) Let Qi(A) be a symmetric polynomial defined by the expansion

∞∑
i=−∞

Qi(A)ti =
n∏
i=1

(1 + tai)(1− tai)−1.

Given nonnegative integers i, j, we set

Qi,j(A) = Qi(A) Qj(A) + 2
j∑
p=1

(−1)pQi+p(A)Qj−p(A).

Finally, if I = (i1, . . . , ik) is a sequence of positive integers then for odd k we put

QI(A) =
k∑
p=1

(−1)k−1Qip(A) Qi1,... ,ip−1,ip+1,... ,ik(A),

and for even k,

QI(A) =
k∑
p=2

(−1)kQi1,ip(A) Qi2,... ,ip−1,ip+1,... ,ik(A).
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Observe that the corresponding polynomials QI(c.) in the variables c. are determined
by

Qi(c.) = si + si−1c1 + · · ·+ s1ci−1 + ci

for i > 0 and Q0(c.) = 1, Qi(c.) = 0 for i < 0.
The polynomials sI(A) and sI(c.) are called Schur polynomials or S-polynomials. The

polynomials sI(A−B) and sI(c./c′.) are often called supersymmetric Schur polynomials
— for an account to their properties we refer to [P4] and [P-T]. The polynomials QI(A)
are called Schur Q-polynomials — for an account to their properties we refer to [H-H]
and [P4]. For another expression of QI(A) in the form of a quadratic polynomial in the
sJ(A)’s, see [La-Le-T1].

Now, let E and F be two vector bundles on X. Then sI(E − F ) is obtained from
sI(c./c′.) via the specialization ci := ci(E), i = 1, . . . , n; c′j := cj(F ), j = 1, . . . ,m; and
sI(E) – from sI(c.) by the substitution ci := ci(E). Similarly we define QI(E) as the
specialization of QI(c.) with ci := ci(E).

Recall that by a partition (of n) we understand a sequence of integers I = (i1, . . . , ik),
where i1 > i2 > · · · > ik > 0 and

∑
ip = n. A partition with strictly decreasing parts

is called strict. For partitions I, J we write I ⊃ J if i1 > j1, i2 > j2, . . . ; the partition
(i, . . . , i) (r-times) is denoted by (i)r; finally the partition (k, k − 1, . . . , 2, 1) is denoted
by ρk.

Note that for every strict partition I = (i1 > · · · > ik > 0), one has QI(c.) = 2kPI(c.)
for some polynomial PI(c.) with integer coefficients. These polynomials are called Schur
P-polynomials. At first, the ideals Pr, Psr and Pasr were described for the Chow homology.
Let us give first a coarse description:

Theorem 1.1 [P1,3]. Assume that H(−) = A∗(−) is the Chow homology theory. Then
(i) The ideal Pr is generated by sI(c./c′.), where I runs over all partitions

I ⊃ (m− r)n−r.
(ii) The ideal Psr is generated by QI(c.), where I runs over all partitions I ⊃ ρn−r.

(iii) The ideal Pasr (r-even) is generated by PI(c.), where I runs over all partitions
I ⊃ ρn−r.

Observe that the “positive” generator of the ideal Pr agrees with the Segre class
version of the Giambelli-Thom-Porteous polynomial from Theorem 1.0. The analogous
generators of the ideals Psr and Pasr are of different (Pfaffian) form than the determinantal
expressions given in [J-L-P], [H-T1] and [P5].

To prove that the quoted polynomials belong to Pr, Psr and Pasr , the key tools are
certain factorization formulas and formulas for the Gysin map for Grassmannian bundles.

In the sequel, having two partitions I and J with l(I) 6 k and l(J∼) 6 i (6), by
(i)k + I, J we denote the partition (i+ i1, . . . , i+ ik, j1, j2, . . . ).

(6) For a given partition I, l(I) = card{p : ip > 0} denotes its length and I∼ denotes the
partition conjugate to I, i.e., (h1, h2, . . . ) where hp = card{q : iq > p}.
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Proposition 1.2 (Factorization Formula). Let I, J be two partitions such that l(I) 6
n and l(J∼) 6 m. Then (7)

s(m)n+I,J(A−B) =sI(A) s(m)n(A−B) sJ(−B)(i)

=(−1)|J| sI(c.) s(m)n(c./c.′) sJ∼(c.′)
Qρn−1+I(A) =Qρn−1(A) sI(A).(ii)

(Formula (ii) is due to Stanley; for the history of (i) we refer to [L3]. Both the formulas
are just special instances of much more general identities for which we refer the interested
reader to [P4, 1.3], [P-T] and [La-Le-T1].)

Proposition 1.3. Let π = πE : G = Gq(E) → X be the Grassmannian bundle
parametrizing q-quotients of E. Write r = n− q. Let

0← Q = QE ← EG ← R = RE ← 0

be the tautological exact sequence of vector bundles on G. Let α ∈ A∗(X).
(i) [J-L-P], [P3]. For every vector bundle F on X and any sequences of integers I =

(i1, . . . , iq), J = (j1, . . . , jr),

(πE)∗
[
sI(Q− FG) sJ(R− FG) ∩ π∗Eα

]
= si1−r,... ,iq−r,j1,... ,jr (E − F ) ∩ α,

(ii) Let I = (i1, . . . , ik), J = (j1, . . . , jh) be two sequences of positive integers, k 6 q,
h 6 r. Then

(πE)∗
[
ctop(Q⊗R) PIQ PJR ∩ π∗Eα

]
= dPI,J(E) ∩ α,

where d is zero if (q−k)(r−h) is odd, and (−1)(q−k)r
(

[(n−k−h)/2]
[(q−k)/2]

)
— otherwise (8).

For a proof of (ii), see Appendix A.1.

Propositions 1.2 and 1.3 allow one to prove the following algebraic result providing
finite sets of generators of the ideals in question.

Proposition 1.4 [P3].
(i)

(
sI(c./c′.), I ⊃ (m− r)n−r

)
=
(
s(m−r)n−r+I(c./c′.), I ⊂ (r)n−r

)
,

(ii)
(
QI(c.), I ⊃ ρn−r

)
=
(
Qρn−r+I(c.), I ⊂ (r)n−r

)
,

(iii)
(
PI(c.), I ⊃ ρn−r−1

)
=
(
Pρn−r−1+I(c.), I ⊂ (r)n−r

)
, r — even.

— thus these ideals are generated by
(
n
r

)
elements.

Note that it is still an open problem to show that these sets form minimal sets of
generators of the corresponding ideals (in case (i), we assume that m > n).

For an explicit Z-basis of the ideal in (i), see [P3, Proposition 6.2]. It would be valuable
to have a similar result for the ideals in (ii) and (iii). Moreover, the ideal in (i) is prime
([P2,4]), and is a set-theoretical complete intersection (is equal to the radical of an ideal
generated by a regular sequence of length r + 1 (loc.cit.)).

(7) For a given partition I, we write |I| :=
∑

ip — the sum of parts of I, i.e. the number
partitioned by I.

(8) I, J denotes here and in Appendix A.1 the juxtaposition of I and J .
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As shown in loc.cit., the ideal in (i) gives a generalization of the resultant of two
polynomials in one variable. Let

A(x) = xn +
n∑
i=1

cix
n−i, B(x) = xm +

m∑
j=1

c′jx
m−j

be two polynomials in one variable with generic coefficients. It follows from the classical
algebra, that there exists a polynomial in {ci}, {c′i} called the resultant, whose vanish-
ing (after a specialization of {ci}, {c′i} to an algebraically closed field) implies that the
corresponding polynomials have a common root (see, e.g., [L3] for an approach to the
resultant via the symmetric polynomials).

Now, let Tr be the ideal of all P ∈ Z[c., c′.], which vanish if, after a specialization of
{ci}, {c′i} to a field, A(x) and B(x) have r + 1 common roots. Surprisingly (or not) we
have

Theorem 1.5 [P2,4]. Tr =
(
s(m−r)n−r+I(c./c′.), I ⊂ (r)n−r

)
.

In other words Tr = Pr in the above notation. It would be interesting to have an
intrinsic proof of this equality. It is shown in [L-P] that an analogous ideal defined in the
ring Z[AB] of all polynomials in A and B is just generated by Tr ⊂ SP(A|B) ⊂ Z[AB].
A similar interpretation is given in [P4] (and correspondingly in [L-P]) for the ideals Psr
and Pasr generated by Q- and P -polynomials respectively.

Let us come back to Theorem 1.1. The proof that the ideal Pr is actually gener-
ated by the above polynomials is based on the investigation of the tautological deter-
minantal variety Dr ⊂ Hom(F,E) (the fibre of Dr over a point x ∈ X is equal to
{f ∈ Hom

(
F (x), E(x)

)
| rank(f) 6 r}). The bundles E and F occurring in this construc-

tion are some “universal enough” vector bundles over the product GG of two Grassman-
nians (see [P3]). In fact, in [P3], two proofs of this assertion are given. One of them [P3,
pp. 441–445] is by induction on r with the help of an exact sequence of Chow groups

A∗(Dr−1)→ A∗(Dr)→ A∗(Dr \Dr−1)→ 0

and a detailed analysis of A∗
(
Dr \Dr−1

)
. The second one [P3, pp. 428–432] uses a certain

desingularization of Dr and has been ameliorated in [P-R1] to give the assertion also for
the Borel-Moore homology and the singular homology.

Theorem 1.6 [P-R1]. The statement of Theorem 1.1 is true also for H(−) being the
Borel-Moore homology (both, the classical one and that defined by Laumon in character-
istic p) as well as for the singular homology (with integer coefficients).

Since the same applies to Proposition 1.3, when appropriately formulated, the proof
that the quoted polynomials belong to Pr is the same.

On the other hand, the proof that the ideal Pr is generated by the above polynomials
uses the following compactification of Dr. Let us embed the above Hom(F,E) into a
Grassmannian bundle X= Gm(F ⊕ E) by assigning fibrewise to f ∈ Hom

(
F (x), E(x)

)
its (graph of f)∈ Gm

(
F (x)⊕E(x)

)
, x belonging to the base space GG. On X there exists

a natural tautological extension of the universal homomorphism on Hom(F,E) and its
degeneracy loci serve to prove the assertion.

An important advantage of the above compactification as well as a certain natural
desingularization Z of it is the vanishing of their odd homology groups — this is not
the case of Dr and its analogous desingularization (see [P-R1]). Here Z is the subscheme
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of zeros of the homomorphism FG → EG → Q on G = Gr(E) where the first map
is the pullback to G of ϕ. Let η : Z → Dr be the restriction of π : G → X to Z,
and let j be the closed immersion of Z into G. Then by using the rank-stratification
{Dk \Dk−1} of Dr, the induced stratification Zk \Zk−1 of Z (Zk = η−1Dk), and proving
(for the Borel-Moore homology) that clDk

and clZk are isomorphisms, one shows that
the induced push-forward map η∗ : H(Z)→ H(Dr) is surjective. Also, by analyzing the
geometry of Z, one shows that j∗ is surjective. This implies, by the projection formula,
that Im j∗ is a principal ideal in H(G) generated by the fundamental class [Z]. It follows
then, from the commutative diagram

H(Z)
j∗−−−−→ H(G)

η∗

y π∗

y
H(Dr)

ι∗−−−−→ H(X),

that Im ι∗ = π∗
(
[Z]H(G)

)
. This identity together with some algebra of symmetric poly-

nomials (which allows one to express explicitly [Z]H(G)) yields the desired assertion
about Im ι∗. In this way we obtain a proof which is valid both for Chow homology and
other homology theories simultaneously.

In a similar way, though overcoming some additional difficulties, one can prove the
analogous theorem in the symmetric and antisymmetric cases.

Theorem 1.1 allows us to calculate the Chow groups of some degeneracy loci. A
prototype of these results is the following result from [B]. Let R be a normal noetherian
ring, M — a m×n matrix of indeterminates, I — the ideal generated by all (r+1)-minors
of M . Then, the divisor class groups satisfy: Cl(R[M ]/I) ∼= Cl(R)⊕ Z.

The geometric analogue of Cl is A1 (the Chow group of codimension 1 cycles modulo
rational equivalence). Keeping the above notation for the tautological degeneracy loci in
Hom-bundle one has (Ai(−) denotes below the Chow group of codimension i algebraic
cycles modulo rational equivalence):

Theorem 1.7 [P3]. If m > n then the Chow group of Dr is canonically isomorphic to
the Chow group of Gr(E). Therefore, for every i, Ai(Dr) =

⊕
Ai−|I|(X), the sum over

all partitions I ⊂ (r)n−r, |I| 6 i.

Let Matm×n(K) denote the affine space of m×n matrices over a field K (assume m >
n without loss of generality) and Dr ⊂ Matm×n(K) be the subscheme defined by the ideal
generated by all minors of order r+ 1. The theorem implies, in particular, that for every
K-scheme X, Ai(X×Dr) ∼=

⊕
Ai−|I|(X), the sum as above. For i = 1 this is a geometric

analogue of the result from [B]. Note that the Chow group of Dr is isomorphic to the Chow
group of the Grassmannian Gr(Kn). This could create an impression that homologically
Dr behave like spaces which admit a cellular decomposition. This is, however, not the
case — see [P-R1] where it is shown that complex determinantal varieties have nontrivial
Borel-Moore homology groups of odd degree.

It would be interesting to find analogues of Theorem 1.7 for the tautological degen-
eracy loci of homomorphisms with symmetries.

Finally we pass to perhaps the most spectacular application of the theory of polynomi-
als universally supported on degeneracy loci. This is a formula for the Chern-Schwartz-
MacPherson classes of degeneracy loci associated with an r-general vector bundle ho-



SYMMETRIC POLYNOMIALS AND DIVIDED DIFFERENCES IN INTERSECTION THEORY 135

momorphism ϕ : F → E over a (possibly singular) complex analytic variety X. The
Chern-Schwartz-MacPherson class c∗(X) of a variety X has its value in the Borel-Moore
homology of X and satisfies similar properties as the Chern class c(TX) of the tangent
bundle of a complex manifold X. In particular, for a possibly singular compact analytic
variety X, we have the following expression for the topological Euler-Poincaré character-
istic:

χ(X) =
∫
X

c∗(X)

(see, for instance [F1, Chap. 19]). Let us now fix a Whitney stratification X of X. Let
E be a holomorphic vector bundle on X and Z — the variety of zeros of a holomorphic
section s of E. Assume that s intersects, on each stratum of X , the zero section of E
transversely. Let ι:Z → X be the inclusion.

Lemma 1.8 [P-P2].

ι∗(c∗(Z)) = c(E)−1 ·ctop(E) ∩ c∗(X).

In particular, for a compact analytic variety X,

χ(Z) =
∫
X

c(E)−1 ·ctop(E) ∩ c∗(X).

This is the simplest instance of the formula in question. To state the result in the most
general form we need a notion of r-generality of a vector bundle homomorphism. We say
that ϕ is r-general if the section sϕ:X → Hom(F,E) induced by ϕ intersects, on each
stratum of the Whitney stratification X , the subset Dk \ Dk−1 transversely for every
k = 0, 1, . . . , r. For a pure-dimensional nonsingular X, this condition can be expressed
in a more transparent way: a morphism ϕ is r-general iff for every k = 0, 1, . . . , r, the
subset Dk(ϕ) \Dk−1(ϕ) is nonsingular of pure dimension dimX − (m− k)(n− k) (here,
D−1(ϕ) = ∅).

Let m ∧ n denote the minimum of m and n. We now define the following element in
H∗(X). We set

Ψ(k) := Pk(E,F ) ∩ c∗(X),
where

Pk(E,F ) :=
∑

(−1)|I|+|J|Dm−k,n−k
I,J s(m−k)n−k+I,J∼(E − F ).

Here, the sum is over all partitions I, J such that l(I) 6 m ∧ n − k, l(J) 6 m ∧ n − k,
and the numbers Dm−k,n−k

I,J are some binomial determinants which will be defined in
Theorem 2.4(i).

The following formula gives an explicit expression for the image of the Chern-Schwartz-
MacPherson class of Dr(ϕ) in the homology of X. Recall that ι:Dr(ϕ)→ X denotes the
inclusion.

Theorem 1.9 [P-P1,2]. If ϕ is r-general then one has in H∗(X)

ι∗(c∗(Dr(ϕ))) =
r∑

k=0

(−1)k
(
m ∧ n− r + k − 1

k

)
Ψ(r − k).

In particular, if X is a compact analytic variety, then

χ(Dr(ϕ)) =
∫
X

r∑
k=0

(−1)k
(
m ∧ n− r + k − 1

k

)
Ψ(r − k).
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Under the assumption Dr−1(ϕ) = ∅, the above formula reads χ(Dr(ϕ)) =
∫
X

Ψ(r).
This result was established earlier in [P3] as a particular case of an algorithm for com-
putation the Chern numbers of nonsingular degeneracy loci.

The essence of the argument is to pass first to the above described desingularization
of Dr(ϕ) and calculate explicitly the image of the homology dual to its Chern class in the
homology of X. To this end, by using some algebra (of symmetric polynomials and Gysin
maps), we show that this image has the form P ∩c∗(X) where P = P ({ci}, {c′j}) is a poly-
nomial universally supported on the r-th degeneracy locus and not universally supported
on the (r − 1)-th one, specialized by setting ci = ci(E), c′j = cj(F ). Thus “morally”,
without changing the result of the computation, we can assume that Dr−1(ϕ) = ∅. But
then the desingularization equals Dr(ϕ) and the wanted class is known by the result of
[P3] quoted above.

Secondly, stratifying Dr(ϕ) by the subsets where the rank of ϕ is constant, the desin-
gularization turns out to be a Grassmannian bundle over each stratum. This leads to an
equation with the known H∗(X)-image of the Chern class of the desingularization on the
one side and a linear combination of the unknown H∗(X)-images of the Chern-Schwartz-
MacPherson classes of Dk(ϕ) (k 6 r) — on the other. By varying r, this leads to a system
of linear equations in the unknown H∗(X)-images of the Chern-Schwartz-MacPherson
classes of Dr(ϕ) (and with known coefficients). Solving this system of equations with
the help of some algebra of binomial numbers, one gets the formula looked at.

As a by-product of our considerations, we also get a formula for the Intersection
Homology-Euler characteristic of Dr(ϕ) associated with an r-general morphism ϕ:

Theorem 1.10 [P-P2]. If X is nonsingular compact analytic variety and ϕ is r-general,
then

χIH(Dr(ϕ)) =
∫
X

Ψ(r).

As an example of application of Theorem 1.9, we provide an expression for the topo-
logical Euler-Poincaré characteristic of the Brill-Noether loci W r

d (C) = {L ∈ Picd(C) |
h0(C,L) > r} parametrizing all complete linear series of degree d and dimension r on a
general curve C of genus g. Let ρ := ρ(r) := ρ(g, d, r) := g − (r + 1)(g − d + r) be the
Brill-Noether number.

For ρ(r) > 0, let

Φ(g, d, r) = (−1)ρ(r)g!
∑

Dr+1,g−d+r
I,J /h(Ig,d,r + I, J∼),

where Ig,d,r is the partition (r + 1)g−d+r, the sum is over partitions I, J with length
6 (r + 1) ∧ (g − d + r) and such that |I| + |J | = ρ(r). Moreover, for a partition I, h(I)
denotes the product of all hook lengths associated with the boxes in the Ferrers’ diagram
of I (see [M1, Chap. I]). We set Φ(g, d, r) = 0 if ρ(r) < 0.

Theorem 1.11 [P-P2]. Assume that a curve C of genus g is general. Let d, r be
integers as above and such that ρ(r) > 0. Then one has

χ(W r
d (C)) =

∑
k>r

(−1)k−r
(

k

k − r

)
Φ(g, d, k).

From this formula, one deduces the following corollary. If we fix g, d, r such that
ρ(r) > 0 and the nonnegative numbers ρ(r), ρ(r + 1), . . . change successively the parity,
then χ(W r

d (C)) > 0 (resp. χ(W r
d (C)) < 0) iff ρ(r) is even (resp. ρ(r) is odd). Observe
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that the above numbers change successively the parity if r + 1 and r + g − d are of the
same parity. The latter condition holds iff g 6≡ d (mod 2). Thus we get, in the situation
of the theorem, the following result.

Corollary 1.12 [P-P2]. Assume g 6≡ d (mod 2). Then one has χ(W r
d (C)) < 0 (resp.

χ(W r
d (C)) > 0) iff g ≡ r (mod 2) (resp. g 6≡ r (mod 2)).

For example, if ρ = 0, we have

Φ(g, d, r) = card(W r
d (C)) = g!/h((r + 1)g−d+r),

which is the classical Castelnuovo formula, expressed here using the hook number of Ig,d,r.

2. Some explicit formulas for Chern and Segre classes of tensor bundles
with applications to enumerative geometry. In this paper, by SIE we will denote
the Schur bundle associated with a bundle E and partition I (whenever we speak about
Schur bundles, we assume, for simplicity, that the ground field is of characteristic zero).
Recall that if |I| = n and if Sn stands for the symmetric group with n! elements, then
SIE = HomSn(ΣI , E⊗n) where ΣI is the corresponding irreducible representation of
the group Sn and this group acts on E⊗n via the permutations of the factors. Thus
in particular S(n)E = Sn(E), the n-th symmetric power; and S(1)nE = Λn(E), the
n-th exterior power. In other words, SIE is the tensor bundle of E associated with the
irreducible representation of GLn defined by I.

The problem of determining the Schur polynomials decomposition of sI(SJE) is very
far of being solved. The present section and Section 7 provide some partial information
related to this question.

Throughout this paper, for a vector bundle E, we write ctop(E) instead of crankE(E).
We show first that the Schur polynomials decomposition of ctop(SJE) determines the one
of c(SJE).

Proposition 2.1. If ctop(SJE) =
∑
K mK sK(E), the sum over partitions K, then

c(SJE) = |J |− rank(SJE)
∑
K

∑
L⊂K

|J ||L| mK dKL sL(E).

where the sum is over partitions K = (k1, . . . , kn), L = (l1, . . . , ln), where n = rankE,
and

dKL = Det
[(
kp + n− p
lq + n− q

)]
16p,q6n

.

For a proof see Appendix A.2.

(In particular, note that if ctop(SJE) and the Segre classes si(SJE), i 6 p, are known,
then the remaining Segre classes si(SJE), i > p, are also determined.)

Recall that the Schur polynomials decompositions of c(S2E) and c(Λ2(E)) are known.

Proposition 2.2 [L2]. If rankE = n then

ctop(S2E) = 2nsρn(E) and ctop(Λ2(E)) = sρn−1(E).

(Note that [L2] also contains a formula for the decomposition of c(E ⊗ F ) into Schur
polynomials.)
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Example 2.3. In the following, sI = sI(E).
If rankE = 4 then

ctop(Λ3(E)) = s3,1 + s2,2 + s2,1,1 + s1,1,1,1.

If rankE = 5 then

ctop(Λ3(E)) = 9s3,3,2,1,1 + 3s3,3,2,2 + 2s3,3,3,1 + 9s4,2,2,1,1 + 3s4,2,2,2 + 6s4,3,1,1,1

+ 9s4,3,2,1 + 3s4,3,3 + 3s4,4,1,1 + 3s4,4,2 + 4s5,2,1,1,1 + 4s5,2,2,1 + 4s5,3,1,1

+ 4s5,3,2 + 2s5,4,1 + s6,2,1,1 + s6,2,2 + s6,3,1 + 6s3,2,2,2,1 + s3,3,3,1 + s6,1,1,1,1.

If rankE = 2 then

cn+1(SnE) =
(n−1)/2∏
j=0

[j(n− j)s2 + (n2 − 3j(n− j))s1,1]

for n odd, and

cn+1(SnE) = (n/2)s1 ·
n/2−1∏
j=0

[j(n− j)s2 + (n2 − 3j(n− j))s1,1]

for n even.

The rest of this section summarizes some results from [La-La-T] and [P3].
Let E,F be vector bundles of ranks n and m respectively. Assume m > n. We state

Theorem 2.4.
(i) [L-S1], [La-La-T] The total Segre class of the tensor product E ⊗ F is given by

s(E ⊗ F ) =
∑

Dn,m
I,J sI(E) sJ(F ),

where the sum is over partitions I, J of length 6 n and

Dm,n
I,J = Det

[(
ip + jq +m+ n− p− q

ip + n− p

)]
16p,q6n

.

(ii) [La-La-T] & [P3] The total Segre class of the second symmetric power S2E is given
by

s(S2E) =
∑

((I + ρn−1)) sI(E),

where the sum is over all partitions I and the definition of ((J)), for J = (j1 >
. . . > jn > 0), is as follows. If n is even, define ((J)) to be the Pfaffian of the n× n
antisymmetric matrix [ap,q] where for p < q,

ap,q =
∑(

jp + jq
j

)
(the sum over jq < j 6 jp),

and if n is odd, then ((J)) :=
∑

(−1)p−1 2jp ((J \ {jp})).

(iii) [La-La-T] & [P3] The total Segre class of the second exterior power Λ2(E) is given
by

s
(
Λ2(E)

)
=
∑

[I + ρn−1] sI(E)
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where the sum is over all partitions I and the definition of [J ], for J = (j1 >
. . . > jn > 0) is as follows. If n is even, define [J ] to be the Pfaffian of the n × n-
antisymmetric matrix [(jp + jq − 1)!(jp − jq)/jp!jq!]; if n is odd then [J ] = 0 unless
jn = 0 where [J ] = [j1, . . . , jn−1].

R e m a r k 2.5. (Background) The history of the above formulas for s(S2E) and
s
(
Λ2(E)

)
is as follows. At first, one of the authors of [La-La-T] has informed the au-

thor about recursive formulas for ((J)) and [J ], in the form of linear equations, obtained
with the help of divided differences. (We will explain and use this extremely powerful
technique in Sections 3, 4 and 6.) Using this recursion the author has found and proved
the above Pfaffian formulas in [P3]. Finally, the authors of [La-La-T] managed to give a
self-contained and elegant account of different formulas for s(S2E) and s

(
Λ2(E)

)
based

on an interplay between the recursive formulas, Pfaffian expressions from [P3] and formu-
las which present ((J)) and [J ] as sums of minors in some matrices of binomial numbers.
Consequently, there are no divided differences in the final version of [La-La-T]. (“The
power was eliminated by the elegance”! (9))

As it was mentioned in Section 1, the coefficientsDm,n
I,J appearing in Theorem 2.4(i) are

needed for the expression of the Chern-Schwartz-MacPherson classes of Dr(ϕ) associated
with an r-general morphism.

The analogue of Theorem 1.9 for homomorphisms with symmetries is not known yet;
let us state, however, a weaker result using, this time, the numbers ((J)) and [J ] from
Theorem 2.4(ii) and (iii). By ι we understand the inclusion Dr(ϕ)→ X.

Theorem 2.6 [P3]. Assume that a (possibly singular) complex analytic variety X is
compact, ϕ is r-general and Dr−1(ϕ) = ∅.
(i) If ϕ is symmetric then

ι∗(c∗(Dr(ϕ))) =
∑

(−1)|I|((I + ρn−r−1))Qρn−r+I(E) ∩ c∗(X),

the sum over all partitions of I of length 6 n− r.
(ii) If ϕ is antisymmetric, r even, then

ι∗(c∗(Dr(ϕ))) =
∑

(−1)|I| [I + ρn−r−1] Pρn−r−1+I(E) ∩ c∗(X),

the sum over all partitions of I of length 6 n− r.
Taking the degree of the expression on the right-hand side gives the topological Euler-

Poincaré characteristic of Dr(ϕ). It would be valuable to extend the theorem to r-general
morphisms without the assumption of the emptiness of Dr−1(ϕ).

Another application of Theorem 2.4 was given in [La-La-T] to the enumerative prop-
erties of complete correlations and quadrics. Let us limit ourselves to the latter case. Here
we assume that the ground field is of characteristic different from 2.

Let us fix a positive integer r and a projective space P. By a complete quadric of rank
r we understand a sequence Q• : Q1 ⊂ Q2 ⊂ · · · ⊂ Qn (n can vary) of quadrics in P, such
that

1) Q1 is nonsingular,
2) the linear span L(Qi) of Qi is the vertex of Qi+1, i = 1, . . . , n− 1,

(9) The proof of the linear equations for ((J)) and [J ] via the divided differences is reproduced
in Appendix A.3.
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3) dimL(Qn) = r − 1.
There exists a natural structure of a nonsingular algebraic projective variety on CQ(r)
— the set of all rank r complete quadrics (see [La-La-T] and the references therein). Let
µi ∈ A∗(CQ(r)) (i = 1, . . . , r) be the class of the locus of all complete quadrics Q• such
that Qn is tangent to a given (codimension i)-plane in P.

Now let G = Gr(P) be the Grassmannian parametrizing (r − 1)-dimensional linear
subspaces of P. Fix a sequence I = (1 6 i1 < i2 < · · · < ir 6 dimP) of integers and
consider the flag L• : L1 ⊂ L2 ⊂ · · · ⊂ Lr of linear subspaces in P where dimLj = ij ,
j = 1, . . . , r. Let Ω(I) be the class in A∗(G) of the Schubert cycle

{L ∈ G | dim(L ∩ Lj) > j − 1, j = 1, . . . , r}.
We have a map f : CQ(r)→ G such that f(Q•) = L(Qn). Let ω(I) := f∗Ω(I).

Classics of enumerative geometry like Schubert, Giambelli . . . were interested in the
computation of the number of complete quadrics Q• such that Qn is tangent to mj fixed
planes of codimension j in general position in P and such that dim(L(Qn) ∩ Lj) > j − 1
for each member of the above flag L•. This question makes sense if i1 + · · ·+ ir + r−1 =
m1 + · · · + mr because then µm1

1 µm2
2 . . . µmrr · ω(I) is in A0(CQ(r)). The answer to the

question (under the above assumption) needs besides the numbers ((J)) defined at the
beginning of this section, also the function α(p; k, j) defined by

α(p; k, j) :=


(
k

0

)
+
(
k

1

)
p+ · · ·+

(
k

j

)
pj if j > 0,

0 — otherwise.
In fact, the following result answers a more general question:

Theorem 2.7 [La-La-T]. Assume that p is a number such that 0 6 p < r and m1 +
· · ·+mq > ir + ir−1 + · · ·+ ir−q+1 + q − 1 for q = 1, . . . , p− 1. Then

µm1
1 µm2

2 . . . µ
mp+1
p+1 · ω(I) =

= 1m12m2 . . . pmp
[
(p+ 1)mp+1((I))−

∑
α
(
p;mp+1,mp+1 − |J | − (r − p)

)
εJ((J))((J ′))

]
,

where the sum is over all subsequences J in I of cardinality r − p; J ′ = I \ J and
εJ = sign(J, J ′).

This theorem generalizes and offers a “modern treatment” of the results of Schubert
[S] and Giambelli [G2] from the end of the previous and the beginning of the present
century. For more on this subject, consult also the paper [Th] by A. Thorup in the
present volume.

There is a similar formula for complete correlations which, in turn, uses the numbers
Dn,m
I,J (see [La-La-T]).

3. Flag degeneracy loci and divided differences. This section summarizes mainly
some of the results of [F2]. Let

F• : F1 ⊂ F2 ⊂ · · · ⊂ Fm = F and E• : E = En � · · ·� E2 � E1

be two flags of vector bundles over a variety X and let ϕ : F → E be a vector bundle
homomorphism. Assume that a function r : {1, . . . , n}×{1, . . . ,m} → N is given (we will
refer to r as to a rank function). Define

Dr(ϕ) = {x ∈ X | rank
(
Fq(x)→ Ep(x)

)
6 r(p, q) ∀p, q}.
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In [F2] the author gives conditions on r which guarantee that for a “generic” ϕ, Dr(ϕ)
is irreducible. Then, a natural problem arises, to find for such an r and ϕ a formula
expressing [Dr(ϕ)] in terms of the Chern classes of E• and F• .

It turns out that the crucial case is the case of complete flags, i.e. rankEi = rankFi = i
and m = n. The desired formula in all other cases can be deduced from that one. In this
situation, the degeneracy loci Dr(ϕ) are parametrized by permutations µ ∈ Sn, and

rµ(p, q) = card{i 6 p | µ(i) 6 q}.
Let Ωµ(E•, F•) = Drµ(ϕ). Then the expected (i.e. the maximal one, if the locus is

nonempty) codimension of Ωµ(E•, F•) is l(µ) (the length of µ). In order to describe a
formula for the fundamental class of Ωµ(E•, F•) associated with a generic ϕ we need
some algebraic tools developed in [B-G-G], [D1,2] and [L-S 2,3] (for an elegant account
of this theory, see [M2]).

Let A = (a1, . . . , an), B = (b1, . . . , bn) be two sequences of independent and commut-
ing variables. We have divided differences

∂i : Z[AB]→ Z[AB] (of degree − 1)

defined by
∂i(f) = (f − τif)/(ai − ai+1) i = 1, . . . , n− 1,

where τi = (1, . . . , i−1, i+1, i, i+2, . . . , n) denotes the i-th simple transposition. For every
reduced decomposition µ = τi1 · . . . · τik (10) one defines ∂µ := ∂i1 ◦ · · · ◦∂ik — an operator
on Z[AB] of degree −l(µ). In fact ∂µ does not depend on the reduced decomposition
chosen. Finally, for a permutation µ ∈ Sn, we give, following [L5] (see also [M2]):

Definition 3.1. (Double) Schubert polynomials of Lascoux and Schützenberger.
We set

Sµ(A/B) = ∂µ−1ω

∏
i+j6n

(ai − bj),

where ω is the permutation of biggest length in Sn.

Equivalently, the polynomials Sµ(A/B) are defined inductively by the equation

∂i
(
Sµ(A/B)

)
= Sµτi(A/B)

if µ(i) > µ(i+ 1), the top polynomial Sω(A/B) being
∏

i+j6n
(ai − bj).

Note that the operators act here on the A-variables; however, it can be shown ([L5],
[M2]) that

Sµ(A/B) = (−1)l(µ)Sµ−1(B/A).
Specialize now

ai := c1
(
Ker(Ei → Ei−1)

)
and bi := c1(Fi/Fi−1).

Then we have

Theorem 3.2 [F2]. Assume that X is a pure-dimensional Cohen-Macaulay scheme
and Ωµ(E•, F•) is of pure codimension l(µ) in X or empty. Then the following equality

(10) This — most common — notation means that µ = (µ(1), . . . , µ(n)) ∈ Sn is obtained
from (1, . . . , n) by the sequence of simple transpositions of components, where one performs first
τi1 , then τi2 etc.
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holds in A∗(X),
[Ωµ(E•, F•)] = Sµ(A/B) ∩ [X].

The key point of the proof of Theorem 3.2 in [F2] is a geometric interpretation of the
divided differences with the help of some correspondences in flag bundles. More precisely,
assume, for simplicity, that E → X is a vector bundle over a nonsingular variety X and
let F → X be the flag bundle parametrizing the flags of quotients of E of successive
ranks n, n− 1, . . . , 2, 1. Denote by

E• : E = En � En−1 � · · ·� E2 � E1

the tautological flag on F . It is well known that for ai = c1
(
Ker(Ei � Ei−1)

)
, i =

1, . . . , n, A∗(F) is a quotient ring of A∗(X)[a1, . . . , an]. Let F(i) be the flag bundle
parametrizing flags of successive quotients of ranks n, n − 1, . . . , i + 1, i − 1, . . . , 2, 1 of
E. There is a canonical projection F → F(i) which is a P1-bundle. Consider the fibre
product

F ×F(i) F
equipped with two projections

p1, p2 : F ×F(i) F → F

Proposition 3.3 [F2].
(i) The map (p1)∗ ◦ p∗2 : Ak(F)→ Ak+1(F) acts on polynomials in a1, . . . , an like the

divided-differences operator ∂i does.
(ii) Assume that a flag of subbundles

F• : F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn = E

is given on X. Then, in A∗(F),

(p1)∗ ◦ p∗2
[
Ωµ(E•, (F•)F )

]
=
[
Ωµτi(E

•, (F•)F )
]

if µ(i) > µ(i+ 1), and 0 — otherwise.

The theorem generalizes in a uniform way the formulas for the fundamental classes of
Schubert varieties in the flag varieties from [B-G-G] and [D2], and — with the help of a
rich algebra of Schubert polynomials (see [M2]) — some other known before formulas for
flag degeneracy loci like the Giambelli-Thom-Porteous formula (see Section 1) as well as
determinantal formulas for flag degeneracy loci from [K-L], [L1] and [P3] which we recall
in the following examples. (Note that another approach to the Giambelli-Thom-Porteous
formula, this time using a certain Schur complex, is given in Appendix A.6.)

Example 3.4 [K-L]. Assume that on X a flag of vector bundles

B1 $ B2 $ · · · $ Bk = B

is given, with rank Bi = mi. Moreover, let ϕ : A→ B be a vector bundle homomorphism
where rankA = n. Consider the locus:

Ω =
{
x ∈ X| dim Ker(Bi(x) ↪→ B(x)

ϕ(x)−−−→ A(x)) > i, i = 1, . . . , k
}
.

Then, assuming that X is a pure dimensional Cohen-Macaulay variety and Ω is of
pure codimension

∑
i(n−mi + i) in X or empty, one has the equality

[Ω] = Det
[
cn−mi+j(A−Bi)

]
16i,j6k

∩ [X]
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(compare also [L1]). The author of [F2] reports on p. 417 that his approach does not cover
all the instances of this formula but only the cases of the form n−m1 +1 > n−m2 +2 >
. . . > n−mk + k. (A similar remark applies to the formula treated in the next example.)

Example 3.5 [P3, (8.3)]. Assume that on X two flags of vector bundles are given

B1 ⊂ B2 ⊂ · · · ⊂ Bk = B, A = A1 � A2 � · · ·� Ak−1 � Ak

with rankAi = ni, rankBi = mi. Moreover, let ϕ : B → A be a vector bundle homomor-
phism. Consider the locus

Ω =
{
x ∈ X | dim Ker

(
Bi(x) ↪→ B(x)

ϕ(x)−−−→ A(x)� Ai(x)
)
> i, i = 1, . . . , k

}
.

Then, assuming that X is a pure-dimensional Cohen-Macaulay variety, mi > i,

n1 −m1 + 1 > n2 −m2 + 2 > · · · > nk −mk + k > 0

and Ω is of pure codimension
∑

(ni −mi + i) in X or empty, one has the equality

[Ω] = Det
[
cni−mi+j(Ai −Bi)

]
16i,j6k

∩ [X].

See Appendix A.4 for a proof of this formula with the use of Gysin maps.

A combination of Theorem 3.2 with [G5] gives some interesting formulas for special-
izations of indeterminates in Schubert polynomials (see [F2, p.419]; compare also some
related computations in [He-T] using the Gröbner bases technique).

Finally, note that Schubert polynomials are a useful tool in the computation of Chern
classes of the tangent vector bundles to the flag varieties — for details see [L5]. For one
more application of Schubert polynomials, this time to the cohomology rings of Schubert
varieties, see [A-L-P].

4. Gysin maps and divided differences. As it was pointed out in [F2], the divided
differences ∂i are geometrically constructed from correspondences which are P1-bundles
(see also the preceding section).

The aim of this section is to emphasize that some compositions of the ∂i’s can be
interpreted geometrically as Gysin maps for flag bundles. Similar results are true for
divided differences associated with other semisimple algebraic groups. We also state some
“orthogonality” results with respect to Gysin maps for flag bundles.

Let π : G1(E) → X be the projective bundle parametrizing 1-quotients of E where
E is a vector bundle on a variety X of rank n. Assume, for simplicity, that X is smooth.
Let A = (a1, . . . , an) be a sequence of independent indeterminates and α1, . . . , αn — the
sequence of Chern roots of E. One has the divided-differences operators ∂i : Z[A]→ Z[A]
(i = 1, . . . , n − 1), associated with the simple transpositions, defined by the formulas
from the preceding section.

Denote by M: Z[A]→ Z[A] the following composition of divided-differences operators

M:= ∂n−1 ◦ · · · ◦ ∂2 ◦ ∂1

We emphasize that while the divided-differences operators act on the whole polyno-
mial ring Z[A], the symmetrizing operators appearing below are, in general, defined on
proper subrings of Z[A] (for more on symmetrizing operators, see [L-S4] and [P4]).
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Proposition 4.1. One has, for P ∈ Z[A]S1×Sn−1 ,

(i) MP =
∑

σ∈Sn/S1×Sn−1

σ

 P∏
β>2

(a1 − aβ)


(ii) π∗

(
P (α1, . . . , αn)

)
= (MP )(α1, . . . , αn).

A word about how one proves such a result (this method can also be applied to
other results of this type stated in this section). The equality (i) is just a straightforward
verification. In fact, since M (σP ) = σ M (P ) for σ ∈ Sn, it suffices to check it for
P = ak1 , k = 0, 1, . . . , n− 1. For the degree reasons it remains to show (i) for P = an−1

1 ,
the calculation of the expression on the right-hand side being essentially the Laplace
development of the Vandermonde determinant. To show (ii) we can assume without loss
of generality that X is a “big” Grassmannian and E is a universal bundle on it with
the Chern roots a1, . . . , an. Then M induces an A∗(X)-morphism. Since A∗(G1E) =⊕n−1

i=1 π
∗A∗(X)ξi, where ξ = c1(O(1)), the assertion follows from the equality M(an−1

1 ) =
1 because π∗(ξn−1) = 1 and π∗(ξi) = 0 for i < n− 1.

Let π : Gq(E) → X be the Grassmannian bundle parametrizing q-quotients of the
bundle E as above. Denote by � : Z[A] → Z[A] the following composition of divided-
differences operators (r = n− q):

� := (∂r ◦ · · · ◦ ∂2 ◦ ∂1) ◦ · · · ◦ (∂n−2 ◦ · · · ◦ ∂q ◦ ∂q−1) ◦ (∂n−1 ◦ · · · ◦ ∂q+1 ◦ ∂q).

Proposition 4.2. One has, for P ∈ Z[A]Sq×Sr ,

(i) �P =
∑

σ∈Sn/Sq×Sr

σ

 P∏
α6q<β

(aα − aβ)


(ii) π∗

(
P (α1, . . . , αn)

)
= (�P )(α1, . . . , αn).

The operator � is known in interpolation theory as the Lagrange-Sylvester sym-
metrizer. We refer the reader to [L4] for an account of algebraic properties of the Lagrange-
Sylvester symmetrizer.

Let now τ = τE : Fl(E) = Fln,n−1,...,1(E) → X be the flag bundle endowed with the
tautological sequence of quotients

E = Qn � Qn−1 � · · ·� Q2 � Q1,

where rankQi = i. Let Li = Ker(Qi � Qi−1) and αi = c1(Li), i = 1, . . . , n.
Denote by ∂ = ∂A : Z[A]→ Z[A] the following composition of divided differences:

∂ := (∂1 ◦ · · · ◦ ∂n−1) ◦ · · · ◦ (∂1 ◦ ∂2 ◦ ∂3) ◦ (∂1 ◦ ∂2) ◦ ∂1

In other words, ∂ = ∂ω is the operator associated with the longest element ω ∈ Sn (in
the notation of Section 3).

Proposition 4.3. One has, for P ∈ Z[A],

(i) ∂P =
∑
σ∈Sn

σ

 P∏
α<β

(aα − aβ)





SYMMETRIC POLYNOMIALS AND DIVIDED DIFFERENCES IN INTERSECTION THEORY 145

(ii) τ∗
(
P (α1, . . . , αn)

)
= (∂P )(α1, . . . , αn).

Let us prove (ii). Consider the factorization

τ = τE : Fl(E) ∼= Fl(Qn−1)
τ ′=τQn−1
−−−−−−−→ G1E

π−→ X.

Hence τ∗ = π∗ ◦ τ ′∗. Define the operator ∂′ : Z[A]→ Z[A] by

∂′ = (∂1 ◦ · · · ◦ ∂n−2) ◦ · · · ◦ (∂1 ◦ ∂2) ◦ ∂1.

Thus ∂ =M◦∂′. Then assuming that equation (ii) is valid for τ ′ and ∂′ instead of τ and
∂, and invoking Proposition 4.1 we deduce, by induction on n, that equation (ii) holds.

The operator ∂ is called the Jacobi symmetrizer. A familiar Jacobi-Trudi identity can
be restated as

Proposition 4.4. Let I be a partition, l(I) 6 n. Then

∂(ai1+n−1
1 ai2+n−2

2 . . . a
in−1+1
n−1 ainn ) = sI(A).

For a simple operator proof see Appendix A.5. In fact this identity is valid for se-
quences I ∈ Zn such that i1 > −(n− 1), . . . , in−1 > −1, in > 0 (notation: I > −ρn−1).

Using this proposition one can give a short operator proof of Proposition 1.3(i).
Denoting Aq = (a1, . . . , aq) and Ar = (aq+1, . . . , an) and assuming Zq 3 I > −ρq−1,
Zr 3 J > −ρr−1, we obtain

�
(
sI(Aq) · sJ(Ar)

)
= �

(
∂Aq (a

i1+q−1
1 · . . . · aiqq ) · ∂Ar (aj1+r−1

q+1 · . . . · ajrn )
)

= ∂A(ai1+q−1
1 · . . . · aiqq a

j1+r−1
q+1 · . . . · ajrn )

= ∂A
(
a

(i1−r)+(n−1)
1 · . . . · a(iq−r)+(n−q)

q aj1+r−1
q+1 · . . . · ajrn

)
= si1−r,...,iq−r,j1,...,jr (A),

which is the algebraic essence of the proposition (the second equality being a straightfor-
ward verification).

Let us now pass to other root systems than the one of type An−1. We need more
notation which will also be used in Section 6.

Let G be a semisimple algebraic group, B ⊂ G — a Borel subgroup and T ⊂ B
— a maximal torus. With a character χ ∈ X(T ) := Hom(T,C∗) one associates a line
bundle Lχ over a generalized flag variety G/B. The total space of Lχ is G×C/˜ , where
the relation “˜” is defined by: (g, z)˜ (gb, χ(b−1)z) for g ∈ G, z ∈ C, b ∈ B; recall that
X(T ) = Hom(B,C∗). We have a map from X(T ) to A1(G/B) which assigns to χ the
Chern class c1(Lχ). It extends multiplicatively to the Borel characteristic map:

c : S•(X(T ))→ A∗(G/B).

Let R be the root system of (G,T ), endowed with the basis M associated with B,
and P ⊃ B be the parabolic subgroup associated with a subset θ ⊂M. Denote by Wθ the
subgroup of the Weyl group W of (G,T ) or R generated by all reflections {sα}α∈θ. Then
the characteristic map restricted to the Wθ-invariants factorizes through A∗(G/P ) :

c : S•(X(T ))Wθ −→ A∗(G/P ).

Let Rθ (resp. R+
θ ) denote the subset of the set of roots (resp. positive roots with re-

spect to B) formed by linear combinations of roots in θ and dθ =
∏

α∈R+
θ

α. Consider a
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“symmetrizing operator” ∂θ : S•(X(T ))→ S•(X(T )) defined by

∂θ(f) =
∑
w∈Wθ

(−1)l(w)w(f)/dθ,

where l(w) is the length of w with respect to M.

Theorem 4.5 [A-C].
(a) ∂θ(S•(X(T ))) ⊂ S•(X(T ))Wθ .
(b) The diagram

S•(X(T )) c−−−−→ A∗(G/B)y∂θ π∗

y
S•(X(T ))Wθ

c−−−−→ A∗(G/P )
commutes, where π∗ is the Gysin map associated with π : G/B � G/P . In other
words, π∗ is induced by ∂θ.

Observe that for θ =M, ∂M(f) =
∑

(−1)l(w)w f/d where d is a product of all positive
roots and the sum is over w ∈ W . This formula gives, more generally, a symmetrizing
operator description of the Gysin maps associated with G/B-fibrations (11) overlapping,
e.g., the case of Lagrangian and orthogonal flag bundles.

Let us recall another familiar interpretation of ∂M. Given a root α ∈ R, one defines
an operator ∂α : S•(X(T ))→ S•(X(T )) by

∂αf = (f − sαf)/α,

where sα ∈W is the reflection associated with α.

Lemma 4.6 [B-G-G], [D1]. If w ∈ W , l(w) = k and w = sα1 · . . . · sαk = sβ1 · . . . · sβk
where αi, βi ∈M, then

∂α1 ◦ . . . ◦ ∂αk = ∂β1 ◦ . . . ◦ ∂βk .
Thus the value of this operator can be denoted by ∂w without ambiguity.

It has been shown in loc.cit. that for the longest element w0 ∈W , ∂w0 = ∂M. Since θ
is a basis of the root (sub)system Rθ ⊂ R, the operator ∂θ is similarly interpreted as the
operator associated with the longest word in Wθ. (Of course, the operators considered in
Section 3 and in the beginning of this section are special cases of the ones here for type
An−1, the Jacobi symmetrizer being ∂M = ∂(n,n−1,...,1) ).

Taking as the starting point the above mentioned symmetrizing operator description
of the Gysin map associated with aG/B-fibration, the authors of [P-R5] give some explicit
formulas for the Gysin maps associated with Lagrangian and orthogonal Grassmannian
bundles. Consider, for example, the Lagrangian case. Let V → X be a vector bundle

(11) Note added in proof: This has circulated as a “folklore” among specialists since some
time. A precise written account for f∗ : A∗(X/B) → A∗(Y ), where f : X → Y is a principal
G-bundle (X and Y are nonsingular varieties, G is a reductive group), is contained in a paper
by M. Brion The push-forward and Todd class of flag bundles – in this volume. In this paper,
the author gives also a symmetrizing operator description of the Gysin map associated with a
flag bundle X/P → Y where P ⊂ G is a parabolic subgroup (thus generalizing the general linear
group case from [P3] and the results of [A-C]). Moreover, he computes the Todd class of the
tangent bundle of such a “flag fibration” X/P → Y .
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of rank 2n endowed with a nondegenerate antisymmetric form. Let τ : LFl(V ) → X be
the flag bundle parametrizing flags of isotropic subbundles of ranks 1, 2, . . . , n in V with
respect to the above form, and let π : LGn(V ) → X be the Lagrangian Grassmannian
bundle parametrizing top-dimensional isotropic subbundles in V . Let α1, . . . , αn be the
sequence of the Chern roots of the tautological Lagrangian (sub)bundle R on LGn(V ).
We know by the above that one has in A∗(X),

τ∗
(
f(α1, . . . , αn)

)
=
(
∂

(1,2,... ,n)
f
)
(α1, . . . , αn),

where f is a polynomial in n variables. (Recall that the symplectic Weyl group is the
group of barred permutations and (1, 2, . . . , n) is the longest element of it.)

In connection with π∗, it is natural to associate with a vector bundle E the following
polynomials in its Chern classes (consult [P-R5] and the subsection A connection with
Q-polynomials in Section 6). We set Q̃iE = ci(E) and for a partition I, l(I) > 2, to define
Q̃IE we mimic the definition of the Schur polynomial QI (see Section 1).

Proposition 4.7 [P-R5]. One has in A∗(X):
(i) π∗

(
f(α1, . . . , αn)

)
=
(
∂

(n,n−1,... ,2,1)
f
)

(α1, . . . , αn) for a symmetric polynomial f
in n variables.

(ii) The element Q̃IR∨ has a nonzero image under π∗ only if each number p, 1 6 p 6 n,
appears as a part of I with an odd multiplicity mp. If the latter condition holds then

π∗Q̃IR
∨ =

n∏
p=1

(
(−1)pc2pV

)(mp−1)/2
.

(iii) The element sIR∨ has a nonzero image under π∗ only if I is the partition of the
form 2J + ρn for some partition J . If I = 2J + ρn then

π∗sIR
∨ = s

[2]
J V,

where the right-hand side is defined as follows: if sJ = P (e.) is a unique presentation
of sJ as a polynomial in the elementary symmetric functions ei, E – a vector bundle,
then s

[2]
J (E) := P with ei replaced by (−1)ic2i(E) (i = 1, 2, . . . ).

We finish this section with some examples of the “orthogonality” results for Gysin
maps for flag bundles. These results are crucial for computing the classes of diagonals in
flag bundles and the knowledge of the classes of diagonals is useful in calculations of the
classes of Schubert varieties, following a procedure described in the next section.

In the next theorem we follow the previously introduced notation from this section.
Additionally, we put Sµ(A) = Sµ(A/0, . . . , 0) (12) for µ ∈ Sn, in the notation of Sec-

(12) Note added in proof: It is an interesting question to extend the above definition of
Schubert polynomials Sµ(A) to other semisimple groups. It appears that for the symplectic and
orthogonal groups, a satisfactory algebro-combinatorial theory of this type has been given by
S. Billey and M. Haiman in Schubert polynomials for classical groups, J. Amer. Math. Soc. 8
(1995), 443–482. Compare also: S. Fomin and A. N. Kirillov, Combinatorial Bn analogues of
Schubert polynomials and S. Billey, Transition equations for isotropic flag manifolds — preprints
(1995). For a theory of Schubert polynomials, suited to algebraic geometry, which has grown up
from a paper by P. Pragacz and J. Ratajski [P-R5], see a forthcoming article: Symplectic and or-
thogonal Schubert polynomials à la polonaise — in preparation in collaboration with A. Lascoux.
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tion 3. Moreover, we define the polynomials Q̃IA as follows. We set Q̃iA = ei(A) (the i-th
elementary symmetric polynomial in A), and, for a strict partition I, l(I) > 2, we mimic
the definition of the Schur Q-polynomial QI (thus the element Q̃IE associated above with
a bundle E is equal to Q̃IA with A specialized to the Chern roots of E). Note that the
algebro-geometric properties of these Q̃-polynomials were worked out in [P-R5] (see also
[La-Le-T2] where an interesting specialization of a Hall-Littlewood polynomial, denoted
in loc.cit. by Q′I , is studied, giving, for the specialization q = −1 of the parameter, the
“Young dual” of Q̃I).

Theorem 4.8.
(i) For partitions I, J ⊂ (r)q,

�
(
sI(Aq) · sJ(−ar+1, . . . ,−an)

)
= δI,J ,

where the Ferrers’ diagram of J is the complement of the one of J∼ in (q)r. Using
a standard λ-ring notation, this is equivalently rewritten as

�
(
sI(Aq) · s(r)q/J(−Ar)

)
= δI,J .

(ii) For permutations µ, ν ∈ Sn,

∂ω
(
Sµ(A) ·Sνω(−an,−an−1, . . . ,−a1)

)
= δµ,ν .

(iii) For strict partitions I, J ⊂ ρn = (n, n− 1, . . . , 2, 1), one has the following equality,
in the symplectic case:

∂
(n,n−1,... ,2,1)

(
Q̃I(A) · Q̃ρnrJ(A)

)
= δI,J .

Here, δ·,· denotes the Kronecker delta and ρn r J is the strict partition whose parts
complement the parts of J in {1, . . . , n}.

Assertion (i) can be deduced from (the �-version of) Proposition 1.3(i). For a proof
of (ii), see [L-S6], [M2] or [L-P]. Assertion (iii) stems from [P-R5].

5. Fundamental classes, diagonals and Gysin maps. As it was pointed out in
Section 1, one of the fundamental problems in the study of a concrete (closed) subscheme
of a given (smooth) scheme X is the computation of its fundamental class in terms of
given generators of the Chow ring of X.

The decisive role in the method described in this section is played by the diagonal
of the ambient scheme or, more precisely, its class in the corresponding Chow group
of a fibre product (13). As a matter of fact, we have already seen, in Section 3, one
application of the diagonal to the computation of fundamental classes. In the situation of
Section 3, there is a vector bundle on the product of flag bundles endowed with a section
vanishing precisely on the diagonal. The top Chern class of this bundle is represented
by Sω(A/B). By applying divided differences to this polynomial, one gets polynomials
representing the classes of other (i.e. higher dimensional) degeneracy loci in the product
of flag bundles. (This generalizes the procedure from [B-G-G] and [D2]: starting from the
class of the point and applying divided differences one gets the class of a curve, then —
the class of a surface, etc.) The procedure given below is of different nature. By using a

(13) The material of this section is due to the author. A discovery of this method is inspired by
the construction used in the proof of the main formula in the paper by G. Kempf and D. Laksov
[K-L].
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desingularization of the subscheme whose class we want to compute, and the diagonal of
the ambient scheme, we replace the original problem by the one of computing the image
of the class of the diagonal under an appropriate Gysin map. Moreover, since the diagonal
is not always represented as the scheme of zeros of a vector bundle (this seems to happen,
e.g., for flag bundles for classical groups different from SLn), we give a recipe allowing
to calculate the class of the diagonal of the fibre product with the help of Gysin maps.

Let S be a smooth scheme (over a field) and π : X → S a smooth morphism of
schemes. Suppose that D ⊂ X is a (closed) subscheme whose class is to be computed.
Let p : Z → S be a proper smooth morphism and α : Z → X be an S-morphism which
maps birationally Z onto D. Assume that α is proper. Consider a commutative diagram:

∆ ↪→ X ×S Xx 1×α

X ×S Z
σ←−−−−−−→
p2

Zy p1 α �
↙

y p

D ↪→ X −−−→
π

S

Here p1 and p2 are the projections, the section σ (of p2) equals α×S id and ∆ is the
diagonal in the fibre product X ×S X.

Proposition 5.1. Suppose that the class of the diagonal ∆ in A∗(X ×S X) is [∆] =∑
pr∗1(xi) · pr∗2(yi) where pri : X ×S X → X are the projections and xi, yi ∈ A∗(X).

Then, in A∗(X),

[D] =
∑
i

xi ·
(
π∗ p∗ α

∗(yi)
)
.

P r o o f. By the assumption [D] = α∗([Z]). Since α = p1 ◦ σ, we have α∗([Z]) =
(p1)∗[σ(Z)]. Now, the key observation is that, in the scheme-theoretic sense, one has the
equality σ(Z) = (1×α)−1(∆). Since ∆ ∼= X is smooth, this implies [σ(Z)] = (1×α)∗([∆])
(see Lemma 9 in [K-L]). We then have:

[D] = (p1)∗
(

[σ(Z)]
)

= (p1)∗
(

(1× α)∗([∆])
)

= (p1)∗
(

(1× α)∗
(∑
i

pr∗1(xi) · pr∗2(yi)
))

= (p1)∗
(∑

i

p∗1(xi) · p∗2(α∗(yi))
)

=
∑
i

xi ·
(
(p1)∗ p∗2 α

∗(yi)
)

=
∑
i

xi ·
(
π∗ p∗ α

∗(yi)
)
,

where the last equality follows from the above fibre product diagram and [F1, Proposition
1.7].
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The next result shows how one can compute the fundamental class of the diagonal
[∆] ∈ A∗(X ×S X) using Gysin maps.

Theorem 5.2. Let S be as above and π : X → S be a proper smooth morphism
such that π∗ makes A∗(X) a free A∗(S)-module; A∗(X) =

⊕
α∈ΛA

∗(S) · aα, where aα ∈
Anα(X) and A∗(X) =

⊕
β∈ΛA

∗(S) · bβ, where bβ ∈ Amβ (X). Suppose that for any α
there is a unique β =: α′ such that nα + mβ = dimX − dimS and π∗(aα · bβ) 6= 0
(assume π∗(aα · bα′) = 1). Moreover, denoting by pri : X ×

S
X → X (i = 1, 2) the

projections, suppose that the homomorphism A∗(X)⊗
A∗(S)

A∗(X)→ A∗(X×
S
X), defined

by g ⊗ h 7→ pr∗1(g) · pr∗2(h), is an isomorphism. Then
(i) The class of the diagonal ∆ in X×

S
X equals

[
∆
]

=
∑
α,β dαβaα⊗ bβ , where, for

any α, β, dαβ = Pαβ({π∗(aκ · bλ)}) for some polynomial Pαβ ∈ Z[{xκλ}].
(ii) The following conditions are equivalent:

a) One has π∗(aα · bβ′) = δα,β, the Kronecker delta.
b) The class of the diagonal ∆ ⊂ X ×

S
X equals

[
∆
]

=
∑
α aα ⊗ bα′ .

P r o o f. Denote by δ : X → X ×
S
X, δ′ : X → X × X (× denotes the Cartesian

product) the diagonal embeddings and by γ the morphism π ×
S
π : X ×

S
X → S. For

g, h ∈ A∗(X) we have

π∗(g · h) = π∗

(
(δ′)∗(g × h)

)
= π∗

(
δ∗(g ⊗ h)

)
= γ∗δ∗

(
δ∗(g ⊗ h)

)
= γ∗

(
[∆] · (g ⊗ h)

)
,

where all the equalities follow from the theory in [F1, Chap. 8] by taking into account,
for the second one, the commutative diagram

X ×S X ↪→ X ×X

↖
δ �

�
↗
� δ′�

X

and, for the third one, the equality π = γ ◦ δ. Hence, writing [∆] =
∑
dµνbµ⊗ aν , we get

(*)
π∗(aα · bβ) = γ∗

(
[∆] · (aα ⊗ bβ)

)
= (π∗ ⊗ π∗)

((∑
dµνbµ ⊗ aν

)
· (aα ⊗ bβ)

)
=
∑
µ,ν

dµνπ∗(bµ · aα) · π∗(aν · bβ).

(i) By the assumption and (*) with α replaced by α′, and β by β′, we get

(**) dαβ = π∗(aα′ · bβ′)−
∑

µ6=α,ν 6=β

dµνπ∗(bµ · aα′) · π∗(aν · bβ′).

where the degree of dµν ∈ A∗(S) such that π∗(bµ · aα′) · π∗(aν · bβ′) 6= 0 and µ 6= α or
ν 6= β, is smaller than the degree of dαβ . The assertion now follows by induction on the
degree of dαβ .
(ii) a)⇒ b): By virtue of a), Equation (**) now reads π∗(aα′ ·bβ′) = dαβ and immediately
implies b).
b)⇒ a): Without loss of generality we can assume that Λ is endowed with a linear ordering
≺ compatible with codimension, i.e. nα1 < nα2 ⇒ α1 ≺ α2, mβ1 < mβ2 ⇒ β1 ≺ β2 and
such that α1 ≺ α2 ⇒ α′2 ≺ α′1. The rows and columns of the matrices below are ordered
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using the ordering ≺. Write xαβ = π∗(aα · bβ). By virtue of b), Equation (*) gives us the
following system of equations:

xαβ =
∑

µ
xαµxµ′β ,

where α, β ∈ Λ. Note that the antidiagonal of the matrix M := [xαβ ]α,β∈Λ is indexed
by {(α, α′) | α ∈ Λ}. The assumption implies that this antidiagonal consists of units.
Moreover, because of dimension reasons and the assumption again, we know that the
entries above the diagonal are zero. Let P be the permutation matrix corresponding to
the bijection α 7→ α′ of Λ. The above system of equations is rewritten in the matrix form
as:

MP = MP ·MP.

Then MP as a (lower) triangular matrix with the units on the diagonal, must be the
identity matrix. Hence M = P−1 and this implies a).

R e m a r k 5.3. A standard situation when the theorem can be applied is when π :
X → S is a locally trivial fibration and {aα}, {bβ} restrict to bases of the Chow ring
of a fibre F which are dual under the Poincaré duality map: (a, b) 7→

∫
F
a · b. In such a

situation the above method is successfully applied in [P-R5] to solve a problem of J. Harris
— for more on that, see the next section.

Example 5.4. Let π : G → X be a relative Grassmannian as in Proposition 1.3. It
is easy to see the diagonal in G1 ×X G2, where G1 = G2 = G, is given (in the scheme-
theoretic sense) by the vanishing of the entries of a matrix of the homomorphism RG1 →
EG1 = EG2 → QG2 . Hence, by the theorem and a formula for the top Chern class of
the tensor product [L2], we have that π∗

(
sI(Q) · sJ(R∨)

)
= δI,J for I, J ⊂ (r)q, where

J is the partition whose Ferrers’ diagram complements the one of J∼ in the rectangle
(q)r. Equivalently, π∗

(
sI(Q) · s(r)q/J(−R)

)
= δI,J . This is coherent with Theorem 4.8(i)

(invoking Proposition 4.2).

In a similar way, using the calculation of the class of the diagonal from [F2, Proposition
7.5] via the top Chern class of a suitable vector bundle, one can reprove the equality in
Theorem 4.8(ii). On the contrary, it appears that the equality in Theorem 4.8(iii) does
not admit a geometric interpretation in terms of the top Chern class of a vector bundle
on a fibre product of two Lagrangian Grassmannian bundles.

6. Intersection rings of spaces G/P , divided differences and formulas for
isotropic degeneracy loci — an introduction to [P-R 2-5].

“explicit” is not necessary EXPLICIT!

In this section we summarize results and techniques mainly from [P-R 2-5] and [R]
as well as from preceding papers [H-B] and [P4, Sect. 6]. This section should serve as
a “friendly” introduction to the papers [P-R 2-5] by J. Ratajski and the author, and
convince the reader that this series of very technical — at the very first glance — papers
relies on a childishly simple idea!

Let G be a semisimple algebraic group, B ⊂ G — a Borel subgroup and T ⊂ B a
maximal torus. We have the characteristic map

c : S•(X(T ))→ A∗(G/B).
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(see Section 4) which allows one to study the multiplicative structure of A∗(G/B). On
the other hand, looking at the additive structure, one has the Bruhat-Schubert cycles

Xw =
[
B
−
wB/B

]
∈ Al(w)(G/B). Here w runs over the Weyl group W and B− denotes

the Borel subgroup opposite to B. Since the Bruhat-Schubert cells B−wB/B (w ∈ W )
form a cellular decomposition of G/B, one has A∗(G/B) =

⊕
w∈W

ZXw.

The key problem is now to understand the coefficients cw(f) appearing in the decom-
position

c(f) =
∑
w∈W

cw(f)Xw,

where f ∈ S•(X(T )). This question is answered using the divided-differences operators
∂w which were defined in Section 3.

Theorem 6.1 [B-G-G], [D1,2]. If f ∈ S•(X(T )) is homogeneous then
c(f) =

∑
l(w)=deg f

∂w(f)Xw. Moreover, the kernel of c is generated by the positive degree

W -invariants and c⊗Q is surjective.

Observe that ∂w(Ker c) ⊂ Ker c, so ∂w acts also on A∗(G/B). One has (loc.cit.):

∂wXv =
{
Xvw−1 if l(vw−1) = l(v)− l(w)
0 otherwise.

In particular, Xw = ∂w0w−1Xw0 where w0 ∈ W is the longest element in W . One has
(loc.cit.):

Xw0 = c

( ∏
α∈R+

α/|W |

)
= c
(
ρN/N !

)
,

where R+ is the set of positive roots with respect to B of cardinality N and ρ denotes
the half of the sum of positive roots.

A similar theory works for the parabolic subgroups. Let ∆ be a basis of the root
system associated with T and let P be the parabolic subgroup associated with a subset
θ ⊂ ∆. Denote by W θ the set

W θ = {w ∈W | l(wsα) = l(w) + 1 ∀α ∈ θ}.
The latter set is the set of minimal length left coset representatives of Wθ, the subgroup of
W generated by {sα}α∈θ, in W . (This follows, e.g., from the following fact: for every w ∈
W , there exist unique wθ ∈W θ, wθ ∈Wθ such that w = wθwθ and l(w) = l(wθ)+l(wθ) —
see [Bou].) The projectionG/B → G/P induces an inclusion A∗(G/P )→ A∗(G/B) which
(additively) identifies A∗(G/P ) with

⊕
w∈W θ

ZXw. Multiplicatively, A∗(G/P ) is identified

with the ring of invariants A∗(G/B)Wθ . Indeed, Xw ∈ A(G/B)Wθ iff ∂αXw = 0 for all
α ∈ θ. This takes place iff l(wsα) 6= l(w) − 1, i.e. l(wsα) = l(w) + 1, for all α ∈ θ; or
equivalently w ∈W θ. The restriction

c : S•(X(T ))Wθ → A∗(G/P )

of the characteristic map satisfies, for a homogeneous f ∈ S•(X(T )),

c(f) =
∑
w∈W θ

l(w)=deg f

∂w(f)Xw.
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The series of papers [P-R 2-5] deals with the case when G is a classical group and
P is a maximal parabolic subgroup, i.e. θ = ∆ \ {α} where α is a simple root. In ev-
ery case like that, there exists a collection of “special” Schubert cycles {Xp} forming a
minimal set of multiplicative generators of A∗(G/P ) and a collection {ep} of elements
in S•(X(T )) such that c(ep) = Xp up to a scalar. We specify these families “type by
type”: Let S = S•(X(T ))Wθ/Ker c. We use here the “Bourbaki notation” [Bou] for roots
although denoting by An the sequence of variables (a1, a2, . . . , an) where (a1, . . . , am) is
the sequence of “basic coordinates” and n 6 m. By si we denote the simple reflection
associated with the i-th simple root αi specified below (in all types); it should not be
confused with the Schur (or Segre) polynomial.

Am−1 Simple roots: αn = εn − εn+1, n = 1, . . . ,m− 1.
For a fixed n, Wαn = Sn × idSm−n ↪→ Sm = W ;

S = SP(An)/
(
sj(An) | m− n+ 1 6 j 6 m

)
; ep = ep(An)

Xp = Xsn+p−1sn+p−2...sn for p = 1, . . . , n. One has c(ep) = Xp.
(Here, G/P = Gn(Cm).)

Bm Simple roots: αn = εn − εn+1 (n < m), αm = εm.
For a fixed n, Wαn = Sn ×

(
Sm−n nZ

m−n
2

)
↪→ Sm nZ

m

2
= W (W is identified with the

group of “barred permutations” — see [H-B], [P-R2])

S = SP(An)/
(
sj(a2

1, . . . , a
2
n) | m− n+ 1 6 j 6 m

)
; ep = ep(An),

Xp = Xsn−p+1sn−p+2...sn for p = 1, . . . , n. For m = n one has c(ep) = 2Xp.

For n < m, c(ep) = Xp.

(Here, G/P = OGn(C 2m+1) is the Grassmannian of isotropic n-subspaces in C 2m+1

endowed with a symmetric nondegenerate form.)

Cm Simple roots: αn = εn − εn+1 (n < m), αm = 2εm.
For a fixed n, Wαn = Sn ×

(
Sm−n n Z

m−n
2

)
↪→ Sm n Z

m

2
= W ;

S = SP(An)/
(
sj(a2

1, . . . , a
2
n) | m− n+ 1 6 j 6 m

)
; ep = ep(An),

Xp = Xsn−p+1sn−p+2...sn for p = 1, . . . , n. One has c(ep) = Xp.

(Here, G/P = LGn(C 2m) is the Lagrangian Grassmannian of isotropic n-subspaces in
C 2m endowed with an antisymmetric nondegenerate form.)

Dm Simple roots: αn = εn − εn+1 (n < m), αm = εm−1 + εm.
For a fixed n, Wαn = Sn ×

(
Sm−n n Z

m−n−1

2

)
↪→ Sm n Z

m−1

2
= W , the latter being

identified with the group of “even-barred permutations”;
For n = m, ep = ep(An), p = 1, . . . , n − 1, generate multiplicatively S; for n < m,
ep(An), p = 1, . . . , n and an+1 · . . . · am generate multiplicatively S.
We propose the following choice of special Schubert cycles: Xp = Xsn−p+1sn−p+2...sn

for p = 1, . . . , n and additionally for n < m, X0 = Xsnsn+1...sm−1 . One has c(ep) = Xp

for p = 1, . . . , n and, for n < m, c(an+1 · . . . · am) = X0.

(Here, G/P = OGn(C 2m) is the Grassmannian of isotropic n-subspaces in C 2m endowed
with a symmetric nondegenerate form. Recall that for n < m, G/P = OGn(C 2m) is
irreducible, and for n = m, it has two connected components.)
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Our main task here are Pieri-type formulas, i.e. we wish to give explicit formulas for
the coefficients mv

w,p ∈ N appearing in the equations:

Xw ·Xp =
∑

mv
w,pXv

where w, v ∈ W θ (θ = ∆ \ {α}, α a simple root). For the spaces G/B, there exists a
formula of this type due to C. Chevalley [Ch] (14):

Xw ·Xsα =
∑

(β∨, ωα)Xwsβ ,

where w ∈ W and β runs over positive roots such that l(wsβ) = l(w) + 1. One can
use the Chevalley formula to compute the Pieri-type formulas for G/P in question. This
method leads, however, to very complicated computations (compare [H-B]) which make
it practically unaccessible for the Grassmannians of non-maximal subspaces of types B,
C, D.

The strategy taken in [P-R 2-4] relies on a totally different method; namely, it uses
an iteration of the following Leibniz-type formula: for f, g ∈ S•(X(T )) and a root α, one
has:

∂α(f · g) = f · (∂αg) + (∂αf) · (sαg).
More precisely, the calculation goes as follows. Let f be a homogeneous element of

S•(X(T ))⊗Q such that c(f) = Xw. We have for a reduced decomposition v = sα1 ·. . .·sαk ,

mv
w,p = ∂v(f · ep) = ∂α1 ◦ · · · ◦ ∂αk(f · ep) =

=
∑

∂I(f) · ∂Iα(ep),

where the sum is over all subsequences I = (i1 < · · · < il) ⊂ {1, . . . , k}; ∂I is ∂rI where
rI = sαi1 · . . . · sαik and ∂Iα is obtained by replacing in ∂α1 ◦ · · · ◦ ∂αk the subword ∂I
through the subword rI . By the choice of f we finally infer

Lemma 6.2. mv
w,p =

∑
∂Iα(ep), where the sum runs over I such that rI is a reduced

decomposition of w (notation: rI ∈ R(w)).

The content of papers [P-R 2-4] and [R] can be summarized, in a coarse way, in the
following theorem.

Theorem 6.3 [P-R 2-4], [R]. In the above notation, for types Am−1, Bm, Cm (15) and
any simple root α, the following assertions hold (Wα = W∆\{α}):

I. For any v ∈ Wα there exists a reduced decomposition v = sα1 · . . . · sαk such that
for any w ∈Wα with k = l − p, the cardinality of the set

I =
{
I ⊂ {1, . . . , k} | sαi1 · . . . · sαil ∈ R(w) and ∂Iα(ep) 6= 0

}
is less than or equal to 1.

II. There exists an EXPLICIT combinatorial criterion for card I = 1.
III. If card I = 1 then the unique I = I(α., w) ∈ I is given by an EXPLICIT combina-

torial algorithm.
IV. The multiplicity is given by the formula mv

w,p = ∂Iα.(ep) = 2e(w,v), where e(w, v) is
given by an EXPLICIT combinatorial rule.

(14) Note added in proof: This paper, written about 1958, has been published only recently.
(15) Note added in proof: The authors have recently extended the result also to type Dm.

See a forthcoming paper: P. Pragacz and J. Ratajski, A Pieri-type theorem for even orthogonal
Grassmannians.
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We now illustrate the theorem for type Cn and the simple root αn. Let, for the rest
of this section, G = LGn(C2n) denote the Lagrangian Grassmannian of n-dimensional
isotropic subspaces in C2n with respect to a nondegenerate antisymmetric form on C2n.
Let F denote the flag variety of (total) isotropic flags in C2n (with respect to the same
antisymmetric form). By ρn we denote the partition (n, . . . , 2, 1). Let I = (i1 > i2 >
· · · > ik > 0) ⊂ ρn be a strict partition. We associate with I the element wI of the
symplectic Weyl group W (16):

wI = (sn−ik+1 . . . sn−1sn) . . . (sn−i2+1 . . . sn−1sn)(sn−i1+1 . . . sn−1sn).

From the theory described above we get a Schubert cycle XwI ∈ A|I|(F), defined as
the class of the closure of B−wIB/B where B is the Borel subgroup of the symplectic
group and B− — its opposite. In fact, XwI belongs to A|I|(G) ⊂ A|I|(F). Denote this
element in A|I|(G) by σ(I), for brevity.

As usual, we associate to a partition I its Ferrers’ diagram DI (see [M1]) and treat it
as a subset of Z×Z. A subset D ⊂ Z×Z is connected if each of the sets {i : ∃j (i, j) ∈ D}
and {j : ∃i (i, j) ∈ D} is an interval in Z. This allows us to speak about the “connected
components” of skew diagrams, i.e. the differences between diagrams of partitions.

The following result was given originally in [H-B] and reproved in [P-R2].

Theorem 6.4 [H-B]. Let I = (i1, . . . , ik) ⊂ ρn be a strict partition. The following
equality holds in A∗(G) (p = 1, . . . , n) :

σ(I) σ(p) =
∑

2e(I,J) σ(J),

where the sum is over strict partitions J such that ih−1 > jh > ih (i0 = n, ik+1 = 0),
|J | = |I|+ p and e(I, J) is the number of connected components of DJ \DI not meeting
the first column.

(This formulation of the theorem is slightly different from the one in [H-B] and is suited
to the techniques of [P-R2].)

Example 6.5. n = 7

σ(632) σ(5) = 2σ(763) + 22σ(7531) + 2σ(7621) + 2σ(7432) + σ(6532).

////////////
//////
////

////////////
//////
////

////////////
//////
////

////////////
//////
////

////////////
//////
////

We now sketch a proof of this theorem, in the spirit of Theorem 6.3 above, stemming
from [P-R2]. This proof is much simpler than the one in [H-B] based on the Chevalley
formula.

Let A = (a1, . . . , an) be a sequence of independent variables. It follows from [B-G-G]
and [D1,2] that A∗(F) is identified with Z[A]/I, where I is the ideal generated by sym-
metric polynomials in a2

1, . . . , a
2
n without constant term. Also, A∗(G) is identified with

(16) Footnote 10 applies here with Sn replaced by W .
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(Z[A]/I)Sn , i.e. with the quotient of the symmetric polynomials modulo I restricted to
the ring of symmetric polynomials.

We have “symplectic divided differences”: ∂i : Z[A] → Z[A] (of degree −1), i =
1, . . . , n, defined by

∂i(f) = (f − sif)/(ai − ai+1), i = 1, . . . , n− 1, ∂n(f) = (f − snf)/2an.

Recall that there exists a surjective characteristic map c : Z[A]→ A∗(F), and c(ep) =
σ(p) = Xp ∈ Ap(G) ([H-B]).

Let fI ∈ Z[A] be homogeneous such that c(fI) = σ(I). Then, for w ∈ W , l(w) = |λ|,
we have ∂w(fI) 6= 0 iff w = wI and ∂wI (fI) = 1. Following Theorem 6.3, our goal is to
find the coefficients mJ appearing in

c(fI · ep) =
∑

mJ σ(J).

Consider an arbitrary subset D ⊂ DJ . (Subsequences I in Lemma 6.2 and Theorem
6.3 correspond here to subsets D of DJ .) The boxes in DJ which belong to D will be
called D-boxes; the boxes in DJ\D will be called non-D-boxes. We associate with D the
word rD and the operator ∂DJ , given by Definitions 6.6 and 6.7. For technical reasons we
will use, from now on, the “matrix” coordinates for indexing boxes in DJ ⊂ ρn but the
columns are numbered from left to right by n, n− 1, . . . , 2, 1 successively.

In Definitions 6.6, 6.7 we read DJ like books (e.g., in Europe), i.e. row by row from
left to right starting from the top row.

Definition 6.6 of rD. Read DJ . Every D-box in the i-th column gives us the si.
Non-D-boxes have no influence on rD. Then rD is the word obtained by writing the si’s
from right to left.

Definition 6.7 of ∂DJ . Read DJ . Every D-box in the i-th column gives us the si.
Every non-D-box in the i-th column gives the ∂i. Then ∂DJ is the composition of the si’s
and ∂i’s (the composition written from right to left).

Example 6.8. J = (763), n = 7.

7 6 5 4 3 2 1
////////
////// ////
////

(D-boxes are shaded here)

rD = s6 · s7 · s2 · s3 · s5 · s6 · s7 · s4 · s5 · s6 · s7 ,

∂DJ = ∂5 ◦ s6 ◦ s7 ◦ s2 ◦ s3 ◦ ∂4 ◦ s5 ◦ s6 ◦ s7 ◦ ∂1 ◦ ∂2 ◦ ∂3 ◦ s4 ◦ s5 ◦ s6 ◦ s7.

In the above notation, Lemma 6.2 reads as follows: mJ =
∑
∂DJ (ep), where the sum

is over all D ⊂ DJ such that rD ∈ R(wI).
One proves that if jh+1 > ih for some h (in particular if l(J) > l(I) + 1) then

∂DJ (
∑
ep) = 0 for every D ⊂ DJ such that rD ∈ R(wI).

Moreover, fix a strict partition I ⊂ ρn. Let J be a strict partition such that I ⊂ J ⊂
ρn, jh+1 6 ih for every h (in particular l(J) 6 l(I) + 1). Then there exists exactly one
DI,J ⊂ DJ such that rD ∈ R(wI) and ∂DJ (

∑
ep) 6= 0 for D = DI,J .

The idea of constructing such a DI,J can be easily explained using pictures. The boxes
from DI ⊂ DJ are shaded in the pictures below. A part:



SYMMETRIC POLYNOMIALS AND DIVIDED DIFFERENCES IN INTERSECTION THEORY 157

...
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♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
///////////////////////
\\\\\\\\\\\\\\\\\\\

of the diagram DI ⊂ DJ is deformed to:
...

©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
///////////////////////
\\\\\\\\\\\\\\\\\\\

On the other side, a part:

...

©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
///////////////////////
\\\\\\\\\\\\\\\\\\\
ℵℵℵℵℵ
?

of the diagram DI ⊂ DJ is deformed to:
...

©©©©©©©©©©©©©©©©©©©©©©©©©©©©©©
♦♦♦♦♦♦♦♦♦♦♦♦
////////// ♦♦♦♦♦♦♦♦♦♦♦♦
\\\\\\\\ ////////////
ℵℵℵℵℵ \\\\\\\\\\
?

The deformations are performed in direction South → North.
Fix a strict partition I ⊂ ρn and a number p = 1, . . . , n. Let J be a strict partition

such that I ⊂ J ⊂ ρn, |J | = |I| + p, jh+1 6 ih for every h. Let D = DI,J . Every
∂i involved in ∂DJ is associated with a box in DJ\D. It turns out that the connected
components of DJ\D play a crucial role in the computation of ∂J(ep). Namely, in the
above notation,

∂DJ (ep) = 2e(I,J),

where e(I, J) is the number of connected components of DJ\D not meeting the n-th
column. By changing the numbering of columns to the usual ordering, this can be easily
restated as: e(I, J) is the number of connected components of DJ\DI not meeting the
first column.
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This finishes the sketch of the proof of Theorem 6.4 in the spirit of Theorem 6.3 —
for more details see [P-R2].

Example 6.9. The diagrams D(632),J for partitions J appearing in the decomposition
σ(632) σ(5), are:

////////
\\\\\\ ////
♦♦♦♦

////////////
\\\\\\
♦♦♦♦

////////
\\\\\\ ////
♦♦♦♦

////////////

\\\\\\
♦♦♦♦

////////////

\\\\\\
♦♦♦♦

A geometric interpretation of σ(I) is as follows. Let V be a vector space of dimension
2n endowed with an antisymmetric nondegenerate form φ : V × V → C. Let (v1, . . . , vn)
be a basis of an isotropic n-subspace of V . Let V1 ⊂ V2 ⊂ · · · ⊂ Vn be a flag of isotropic
subspaces where Vi is spanned by the first i vectors in the sequence (v1, . . . , vn). Then
σ(i1, . . . , ik) is the class in A|I|(G) of the cycle of all isotropic n-subspaces L in V such
that

dim(L ∩ Vn+1−ih) > h, h = 1, . . . , k.

A connection with Q-polynomials. In [P4] the author has deduced from Theo-
rem 6.4 the following result, where QI denotes the Schur Q-polynomial (see Section 1):

Theorem 6.10 [P4, Sect. 6]. The assignment QI 7→ σ(I) for I ⊂ ρn — zero otherwise,
defines a ring homomorphism and allows one to identify A∗(G) with the factor of the ring
of Q-polynomials modulo the ideal

⊕
ZQI , the sum over all I not contained in ρn.

In particular the following Giambelli-type formula is valid for the Schubert cycle σ(I).

Theorem 6.11 [P4, Sect. 6]. Let I = (i1, . . . , ik) ⊂ ρn be a strict partition, k-even
(we can always assume it by putting ik = 0, if necessary). Then

σ(I) = Pfaffian
[
σ(ip, iq)

]
16p,q6k

,

where, for p < q, σ(ip, iq) = σ(ip)σ(iq) + 2
q∑

h=1

(−1)hσ(ip + h)σ(iq − h), and σ(ip, 0) =

σ(ip).

With the use of the tautological Lagrangian (sub)bundle R on G, this result is rewrit-
ten as σ(I) = Q̃IR

∨ (see Section 4 for the definition of the right-hand side).
Schubert calculus for usual Grassmannians is based on three main theorems: Pieri’s

formula, Giambelli determinantal formula and the basis theorem. Analogues of the for-
mulas are given in Theorems 6.4 and 6.11. A basis-type theorem for the Lagrangian
Grassmannian G can be formulated as

Theorem 6.12. A∗(G) =
⊕
Zσ(I), where the sum is over all strict partitions I ⊂ ρn.

This result globalizes to Lagrangian Grassmannian bundles LGn(V ) → X (the no-
tation as in Section 4). One has A∗(LGn(V )) =

⊕
A∗(X)Q̃IR∨, the sum over all strict

partitions I ⊂ ρn.
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Theorem 6.12 can be deduced from a general theory of the cellular Schubert-Bruhat
decompositions of homogeneous spaces (see, e.g., [Ch], [B-G-G], [D2]). The cellular de-
composition in the case of G was described in details in [P4, Sect. 6]. Another simple,
conceptual proof of Theorem 6.12 is given in [P-R2].

Using similar arguments one can prove a Pieri-type formula for the Grassmannian of
n-dimensional isotropic subspaces of (2n + 1)-dimensional vector space endowed with a
symmetric nondegenerate form (a Pieri-type formula in this case was originally given in
[H-B]). A connection with P -polynomials and a Giambelli-type formula were originally
established in [P4, Sect. 6].

Analogous results in the case of Grassmannian of n-dimensional isotropic subspaces
in a 2n-dimensional vector space endowed with a symmetric nondegenerate form were
worked out in [P4, Sect. 6].

The Giambelli-type formulas for isotropic Grassmannians described above are global-
ized in [P-R5] to Lagrangian and orthogonal degeneracy loci. In particular, the following
problem is solved:

P r o b l e m (J. Harris). Let V be a vector bundle over X equipped with a nondegener-
ate antisymmetric or symmetric form and let E, F be two maximal isotropic subbundles
of V . Express the fundamental class of the locus

Dk =
{
x ∈ X | dim(E(x) ∩ F (x)) > k

}
as a polynomial in the Chern classes of the bundles involved. (For a definition of an
appropriate scheme structure on Dk — see [P-R5].)

Observe that if X = LGn(C 2n), E is the tautological vector bundle on X and F is
a trivial isotropic rank n bundle on X, then the fundamental class of the above locus is
the Schubert cycle σ(k, k − 1, . . . , 1). By the above, this Schubert cycle is expressed by
Q̃(k,k−1,...,1)E

∨.
More generally, one has:

Theorem 6.13 [P-R5]. Let V be a vector bundle over a pure-dimensional Cohen-
Macaulay variety endowed with a nondegenerate antisymmetric form. Let E, F ⊂ V be
two maximal isotropic subbundles. If Dk is of pure codimension k(k+1)/2 in X or empty,
then

[Dk] =
∑
I⊂ρk

Q̃IE
∨ · Q̃ρkrIF

∨,

where ρk = (k, k − 1, . . . , 1) and for a strict I ⊂ ρk, ρk r I is the strict partition whose
parts complement I in {k, k − 1, . . . , 1} (17).

There exists ([P-R5]) an analogue of this theorem for the symmetric form; this ana-
logue has allowed recently a computation of the cohomology class of Brill-Noether loci
in Prym varieties. Let K be an algebraically closed field of characteristic different from

(17) Note added in proof: A different (in its form) solution to Harris’ problem has been
obtained independently by W. Fulton in Determinantal Formulas for Orthogonal and Symplectic
Degeneracy Loci — to appear in J. Differential Geom. and Schubert Varieties in Flag Bundles
for the Classical Groups — to appear in “Hirzebruch 65”, Israel Math. Conf. Proc. Both the
papers depend on the paper by D. Edidin and W. Graham, Characteristic classes and quadric
bundles — Duke Math. J. 78 (1995), 277–299.
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2. Let π : C̃ → C be an étale double cover of a nonsingular algebraic curve C over K
of genus g (hence the genus of C̃ is 2g − 1). Let Nm : Pic2g−2(C̃) → Pic2g−2(C) be the
norm map associated with π; the scheme Nm−1(ωC), ωC being the canonical class, breaks
up into two connected components P+ and P− corresponding to even or odd values of
h0(−). These components, being translates of the Prym variety associated with π, are
irreducible of dimension g − 1. The following definition of the closed subsets V r in P±

(called “Brill-Noether loci for Pryms”) is due to G. Welters. For every integer r > −1
one sets:

V r = {L ∈ Nm−1(ωC)| h0(L) > r + 1 and h0(L) ≡ r + 1 (mod 2)}.

Theorem 6.14 [DC-P]. Assume that V r either is empty or has pure codimension in
P± equal to r(r + 1)/2. Then its class in the numerical equivalence ring of P±, or its
cohomology class in H∗(P±,C) (for K = C), is equal to

2r(r−1)/2
r∏
i=1

(i− 1)!
(2i− 1)!

ξr(r+1)/2.

where ξ is the class of the theta divisor on P±.

The assumptions of the theorem, as shown by Welters, are satisfied for a general curve
C and any irreducible double cover π : C̃ → C of it. For more details, concerning, e.g.,
a definition of an appropriate scheme structure on V r, see [DC-P] and the references
therein.

The paper [P-R5] gives also formulas for more general loci; in the following a. is a
sequence a. = (1 6 a1 < · · · < ak 6 n) :

D(a.) =
{
x ∈ X | dim(E(x) ∩ Fap(x)) > p, p = 1, . . . , k

}
where F• = F1 ⊂ F2 ⊂ · · · ⊂ Fn = F is an isotropic flag. The fundamental classes of these
loci are given in loc.cit. as quadratic expressions in Q̃-polynomials of E and flag Schur
polynomials of F• (i.e. the determinants of the matrices of the form [sip−p+q(Fp)]p,q).

By adapting the technique of Hodge and Pedoe, S. Sertöz has obtained in [Se] a “triple
Pieri intersection theorem” for isotropic Grassmannians in the orthogonal case; however,
the main result in [P-R 3,4] cannot be deduced from [Se].

7. Numerically positive polynomials for ample vector bundles with appli-
cations to Schur polynomials of Schur bundles and a vanishing theorem.

Question: “Which result of algebraic geometry is the most useful for combinatorists?”
Answer: “Perhaps . . . Hard Lefschetz!”

In this section, we denote by X a nonsingular projective variety. Let L = OX(1).
Suppose that c1, . . . , ce are independent variables such that deg ci = i. We say, following
[F-L], that a polynomial P ∈ Z[c1, . . . , ce], degP = d, is numerically positive for ample
vector bundles if for every X of dimension n > d and every ample vector bundle of rank
e on X, the number P (c1(E), . . . , ce(E)) · c1(L)n−d ∈ A0(X) = Z, is positive.

Recall (see Section 1) that the Schur polynomial associated with a partition I is
defined by

sI(c.) = Det
[
cjp−p+q

]
16p,q6i1

,

where J = I∼. One has
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Theorem 7.1 [F-L]. Every numerically positive polynomial is a Z-combination∑
dI sI(c.), where all dI > 0 and

∑
dI > 0 (18).

This theorem, based on the Hard Lefschetz theorem and the Giambelli-Kempf-Laksov
formula (i.e. the formula from Example 3.4), has a nice algebraic consequence. We follow
the notation from Section 2.

The following observation is due to the author.

Corollary 7.2. Let E1, . . . , Ek be vector bundles. Then for partitions I; J1, . . . , Jk;
K1, . . . ,Kk, the coefficients d(I; J1, . . . , Jk;K1, . . . ,Kk) appearing in the decomposition

sI
(
SJ1E1 ⊗ · · · ⊗ SJkEk

)
=
∑
K.

d(I; J1, . . . , Jk;K1, . . . ,Kk) sK1(E1) · . . . · sKk(Ek)

satisfy d(I; J1, . . . , Jk;K1, . . . ,Kk) > 0 and
∑
K.

d(I; J1, . . . , Jk;K1, . . . ,Kk) > 0.

Of course, the coefficients d(I; J1, . . . , Jk;K1, . . . ,Kk) are universal, i.e., they depend
on rank(E1), . . . , rank(Ek) only. Therefore, it is sufficient to show the assertion for ample
bundles E1, . . . , Ek with algebraically independent Chern roots. This can be achieved by
taking as X the product of Grassmannians

X =
k∏
i=1

Gei(Cni),

where ei = rankEi and ni � 0. Let L = OX(1). Moreover, denote by pi the projection
X → Gei(Cni) and by Qi the tautological quotient bundle on Gei(Cni). Define Ei :=
(p∗iQi)⊗L (i = 1, . . . , k). The bundles Ei are ample. Hence SJ1E1⊗· · ·⊗SJkEk is ample
(see [Ha]). The assertion now follows from Theorem 7.1.

For example, the numbers Dm,n
I,J , ((J)) and [J ] from Section 2 are nonnegative.

It would be interesting to have a purely algebro-combinatorial proof of Corollary 7.2.
Note that a combinatorial interpretation of the numbers Dm,n

I,J was given in [G-V].
In [D-P-S], the authors show that the above Fulton-Lazarsfeld inequalities for Chern

classes and Schur polynomials of ample vector bundles still hold for nef vector bundles
on compact Kähler manifolds. Recall that a vector bundle E is numerically effective if
the Grothendieck line bundle O(1) on G1(E) is nef, i.e. has a nonnegative degree on each
effective curve in G1(E).

As shown by L. Manivel in the next theorem, the numerical positivity of Schur poly-
nomials of vector bundles can be used to extend vanishing theorems to wider classes of
vector bundles.

Theorem 7.3 [Ma]. Let E be a numerically effective vector bundle on a projective
variety X of dimension n. Suppose that a line bundle L on X is nef and either there
exists a partition I such that

∫
X
sI(E) > 0 or L is “big” (or equivalently

∫
X
c1(L)n > 0).

Then, for every partition J of length l(J) > l(I),

Hq(X,KX ⊗ SJE ⊗ (DetE)l ⊗ L) = 0

(18) Note added in proof: W. Fulton has obtained recently an analogue of this result for
filtered ample bundles where the role of Schur polynomials is played by Schubert polynomials,
recalled in Sections 3 and 4. See: W. Fulton, Positive polynomials for ample vector bundles,
Amer. J. Math. 117 (1995), 627–633.
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for q > 0 and l > l(J).

This result, extending the familiar Kawamata-Viehweg vanishing theorem, is derived
from an expression of the self-intersection of a line bundle on a relative flag manifold.
This expression is a consequence of some expansion of the Chern character of symmetric
powers combined with the Hirzebruch-Riemann-Roch formula [H], and gives an insight
into the corresponding Gysin map that seems to be not reachable by the formulas of
Sections 4 and 1.

APPENDICES

A.1. Proof of Proposition 1.3(ii). Let Flq1,... ,ql(E)→ X be the flag bundle para-
metrizing flags of successive quotients of ranks q1, . . . , ql of E. It is endowed with a
sequence of tautological quotients Qi where rankQi = i. If (q1, . . . , ql) = (l, l− 1, . . . , 1)
then the projection in the flag bundle is denoted by τ lE . The proof goes as follows. First,
one shows the assertion for J = ∅ and any I. We use a commutative diagram

Flk,k−1,...,1(Q) Flq,k,k−1,...,1(E) Gq−k(K)yτkQ yπ′
Gq(E) πE−−−−→ X

τkE←−−−− Flk,k−1,...,1(E)

where K = Ker(E → Qk). Invoking [P3, Corollary 2.7], we have:

(πE)∗
(
ctop(RE ⊗QE) · PI(QE) ∩ π∗Eα

)
=

= (πEτkQ)∗

(
ai11 . . . aikk

∏
16i<j6q
i6k

(ai + aj)
∏

16i6q
q<j6n

(ai + aj) ∩ (πEτkQ)∗α
)

= (τkE)∗π′∗

(
ctop(RK ⊗QK) · ai11 . . . aikk

∏
16i<j6n
i6k

(ai + aj) ∩ (τkEπ
′)∗α

)

= π′∗ctop(RK ⊗QK) · PI(E) ∩ α.

Now, it follows easily from Proposition 1.3(i) that π′∗ctop(RK ⊗QK) equals

card
{
I ⊂ (q − k)n−q : |I| even

}
− card

{
I ⊂ (q − k)n−q : |I| odd

}
which is the requested multiplicity d in this case.

Passing to the dual Grassmannian, we prove the formula for I = ∅ and any J . If |I| > 1
(and J is arbitrary) we proceed as in [P4, pp. 154–155] with the following changes:

p. 155 l. −6 should read: “ . . . = dPI′,J(R′) ∩ π∗2α ” ,

p. 155 l. −4 should read: “ . . . = π2∗
[
d · e2PI′,J(R′) · ξii ∩ π∗2α

]
= dPI,J(E) ∩ α”.

(Observe that the multiplicity “d” associated with PI′,J(R′) is equal to the one associated
with PI,J(E).)
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A.2. Proof of Proposition 2.1. We need the following lemma.

Lemma [L2]. Let A = (a1, . . . , an) be a sequence of independent variables. Then the
following equality holds

sI(a1 + 1, . . . , an + 1) =
∑
J⊂I

dIJ sJ(A),

where I and J denote partitions and

dIJ = Det
[(
ip + n− p
jq + n− q

)]
16p,q6n

.

(As Lascoux points out, the simplest proof of this identity uses the familiar Binet-Cauchy
formula — see, e.g., [L-S1]. These binomial determinants appear as counting certain
correlations in [G2].)

We pass to the proof of Proposition 2.1. Let us decompose formally E = L1⊕ . . .⊕Ln
where rankLi = 1. Then, according to Schur’s Thesis, if SIE =

⊕
Lt11 ⊗ · · · ⊗ Ltnn , then

sI(E) =
∑
at11 . . . atnn , where ai = c1(Li) and both the sums are taken over the same

multiset of sequences (t1, . . . , tn). More precisely, sJ(A) =
∑
aT where the sum runs over

all standard tableaux T of shape J filled up with 1, . . . , n and aT = at11 · . . . ·atnn , ti being
the cardinality of boxes with “i” in T (see, e.g. [M1]). Hence we want to compute the
decomposition into Schur polynomials of∏

T

(1 +
∑
i

tiai),

where the product is taken over all standard tableaux T of shape J filled up with 1, . . . , n.
Note that by the assumption we have the following equation of symmetric polynomials
in independent variables x1, . . . , xn:∏

T

(
∑
i

tixi) =
∑
K

mK sK(x1, . . . , xn).

Using this equation and
∑
ti = |J |, we get:∏

T

(1 +
∑
i

tiai) = |J |− rank(SJE)
∏
T

(|J |+
∑
i

|J |tiai)

= |J |− rank(SJE)
∏
T

(
∑
i

ti(1 + |J |ai))

= |J |− rank(SJE)
∑
K

mK sK(. . . , 1 + |J |ai, . . . )

= |J |− rank(SJE)
∑
K

∑
L⊂K

|J ||L| mK dKL sL(E)

by the lemma and the homogeneity of Schur polynomials.

A.3. Recursive linear relations for ((J)) and [J]. We give here an alternative
proof, due to A. Lascoux, of the enumeration of complete quadrics by Schubert [S] and
Giambelli [G2] given in [La-La-T].

Let A = (a1, a2, . . . ) be a sequence of independent degree 1 indeterminates and let
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Ar = (a1, a2, . . . , ar). Define two power series in Ar:

Fr :=
∏

16i<j6r

1
1− (ai + aj)

and Hr :=
∏

16i6j6r

1
1− (ai + aj)

.

Let M: Z[Ar+1]→ Z[Ar+1] denote, in this section, the operator (−1)r∂1 ◦ . . . ◦ ∂r. Let
us make the following change of variables: b1 = −ar+1, b2 = −ar, . . . br+1 = −a1. Note
that with respect to the b-variables the above operator becomes ∂τ ◦ . . . ◦ ∂1 (i.e. is the
operator M studied in Section 4). Denoting Br = (b2, . . . , br+1), we have M

(
bi1 ·sJ(Br)

)
=

s(i−r)J(Br+1) by Proposition 1.3(i) where q = 1.

Lemma 1. The following equalities hold:
1) M(Fr) = Fr+1 if r is even, and 0 — otherwise.
2) M

(
(a1 + . . .+ ar) · Fr

)
=
(
r+1

2 − (a1 + . . .+ ar+1)
)
· Fr+1 if r is odd, and r

2 · Fr+1

if r is even.
3) M(Hr) =

(
(r + 1)− 2(a1 + . . .+ ar+1)

)
·Hr+1.

P r o o f. 1) We have

Fr = Fr+1(1 + b1 + b2) . . . (1 + b1 + br+1)

= Fr+1

(
(1 + b1)r + (1 + b1)r−1s1(Br) + . . .+ (1 + b1)0s(1)r (Br)

)
It follows from the remark preceding the lemma that

M
(
(1 + b1)r−js(1)j (Br)

)
=M
(
br−j1 s(1)j (Br)

)
= (−1)j

for 0 6 j 6 r. Therefore, M(Fr) = (1−1+1−1+ . . . )Fr+1, where the first factor contains
r + 1 times “±1”. This yields the assertion.

2) By similar computations we get, for 0 < j 6 r, the following equality (for the rest of
the proof we use the variables ai, set a := ar+1 and adapt a standard λ-ring notation):

M
(
a(1− a)r−jsj(−Ar)

)
=M
(
(r − j)a(−a)r−j−1sj(−Ar)

)
= (−1)j+1(r − j)

Also,

M
(
a(1− a)r

)
= a1 + . . .+ ar+1 − r.

Taking these equalities into account, we compute

M
(
(a1 + . . .+ ar) · Fr

)
=

= (a1 + . . .+ ar+1) M(Fr)− M(a · Fr)
= (a1 + . . .+ ar+1) M(Fr)

− M
(
a(1− a)r + a(1− a)r−1s1(−Ar) + . . .+ a(1− a)0sr(−Ar)

)
Fr+1

= (a1 + . . .+ ar+1) M(Fr)

+
(
r − (r − 1) + (r − 2)− . . .± 1− (a1 + . . .+ ar+1)

)
Fr+1

=

{
r
2Fr+1 if r is even,(
r+1

2 − (a1 + . . .+ ar+1)
)
Fr+1 if r is odd.
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3) We have

Hr = Hr+1 · (1− a− a1) . . . (1− a− ar+1)
= Hr+1 ·

(
(1− a)r+1 + (1− a)rs1(−Ar+1) + . . .+ (1− a)0sr+1(−Ar+1)

)
.

By applying M to (1− a)r+1−jsj(−Ar+1), 0 6 j 6 r + 1, one gets a nonzero result only
for j = 0, 1 :

M
(
(1− a)r+1

)
= −(a1 + . . .+ ar+1) + (r + 1)

and

M
(
(1− a)rs1(−Ar+1)

)
= −(a1 + . . .+ ar+1).

Hence M(Hr) =
(
(r + 1)− 2(a1 + . . .+ ar+1)

)
·Hr+1.

It will be now convenient to use the following notation: for a partition I = (i1, . . . , ir) ,
sI(Ar) =: s(ρr−1 + I;Ar). We define, for the use of this appendix, the numbers ((J)) and
[J ] by

Fr =
∑

[J ] s(J ;Ar)

Hr =
∑

((J)) s(J ;Ar)

(thus J = (j1 > j2 > . . . > jr−1 > jr > 0) ).

Proposition 2.
(i) The numbers [J ] satisfy the following recursive linear relations:

1) [1, 0] = 1
2) p[j1, . . . , j2p]−

∑
k

[j1, . . . , jk − 1, . . . , j2p] =

=
{

0 if (j2p−1, j2p) 6= (1, 0),
[j1, . . . , j2p−2] if (j2p−1, j2p) = (1, 0).

We assume the terms with jk+1 = jk − 1 in the above sum to be zero. If r is
odd then

[j1, . . . , jr] =
{

[j1, . . . , jr−1] if jr = 0
0 if jr > 0.

(ii) The numbers ((J)) satisfy the following recursive linear relations:
1) ((1, 0)) = 1
2) r((j1, j2. . . . , jr))− 2

∑
k

((j1, . . . , jk − 1, . . . , jr)) =

=
{

0 if jr > 0,
((j1 − 1, . . . , jr−1 − 1)) if jr = 0.

We assume the terms with jk+1 = jk − 1 in the above sum to be zero.

P r o o f. (i) Since, by the lemma, M(F2p) = F2p+1, the coefficient of s(J ;A2p) in F2p

is the same as the one of s(J ;A2p+1) in F2p+1. In particular, [j1, . . . , j2p, j2p+1] = 0 if
j2p+1 > 0, and [j1, . . . , j2p, j2p+1] = [j1, j2, . . . , j2p] if j2p+1 = 0. To get 2) we invoke the
Pieri formula (we need it for k = 1):

s(j1, . . . , jr;Ar) · sk(Ar) =
∑

s(h1, . . . , hr;Ar)
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where the sum is over h1 > j1 > h2 > j2 > . . . > hr > jr,
∑
hi =

∑
ji + k (see [M1] and

[L-S1]). Now writing,

F2p−1 =
∑

[i1, i2, . . . , i2p−2, 0] s(i1, i2, . . . , i2p−2, 0;A2p−1),

we express M
(
F2p−1 · s1(A2p−1)

)
in two different ways: first, using the Pieri formula and

then applying M, and secondly, using assertion 2) of the lemma. The comparison of the
coefficients of Schur polynomials in the two expressions so obtained gives

p[j1, j2, . . . , j2p]−
∑

[j1, . . . , jk − 1, . . . , j2p] =

=
{

0 if (j2p−1, j2p) 6= (1, 0),
[j1, j2, . . . , j2p−2] if (j2p−1, j2p) = (1, 0).

(ii) Using the Pieri formula and the equality M (Hr−1) =
(
r − 2 s1(Ar)

)
Hr from the

lemma, one immediately gets the assertion.

Example 3. 1) 2[5, 3, 2, 1]− [5, 3, 2, 0]− [4, 3, 2, 1] = 2 · 4− 7− 1 = 0;
2[5, 4, 3, 1]− [5, 4, 3, 0]− [5, 4, 2, 1] = 2 · 6− 5− 7 = 0;
2[6, 3, 1, 0]− [6, 2, 1, 0]− [5, 3, 1, 0] = 2 · 25− 10− 12 = [6, 3] = 28.

2) F2 = 1 + s1 +
(
s2 + s(2, 1)

)
+
(
s3 + 2 s(3, 1)

)
+
(
s4 + 3 s(4, 1) + 2 s(3, 2)

)
+ . . . ;

F4 = s(3, 2, 1, 0) + 3 s(4, 2, 1, 0) +
(
6 s(5, 2, 1, 0) + 4 s(4, 3, 1, 0)

)
+

+
(
10 s(6, 2, 1, 0) + 12 s(5, 3, 1, 0) + 2 s(4, 3, 2, 0)

)
+

+
(
15 s(7, 2, 1, 0) + 25 s(6, 3, 1, 0) + 13 s(5, 4, 1, 0) + 7 s(5, 3, 2, 0) + s(4, 3, 2, 1)

)
+

+
(
21 s(8, 2, 1, 0) + 44 s(7, 3, 1, 0) + 32 s(6, 4, 1, 0) + 16 s(6, 3, 2, 0) + 10 s(5, 4, 2, 0)+

+4 s(5, 3, 2, 1)
)
+

+
(
28 s(9, 2, 1, 0) + 70 s(8, 3, 1, 0) + 87 s(7, 4, 1, 0) + 41 s(6, 5, 1, 0) + 30 s(7, 3, 2, 0)+

+33 s(6, 4, 2, 0) + 5 s(5, 4, 3, 0) + 10 s(6, 3, 2, 1) + 7 s(5, 4, 2, 1)
)

+ . . . .
3) One has

((i, j))− ((i− 1, j))− ((i, j − 1)) = 0 for j > 0 ;
((i, 0))− ((i− 1, 0))− 2i−1 = 0 ; hence ((i, 0)) = 2i − 1.

The number ((i, j)) (i = 1, 2, 3, . . . , j = 0, 1, 2, . . . ) is given in the i-th row and j-th
column of the matrix:

1 0 0 . . .

3 3 0 . . .

7 10 10 . . .

15 25 35 . . .

31 56 91 . . .

63 119 210 . . .
...

...
...

so, for example, ((6, 2)) = 210.

A.4. A Gysin map proof of the formula of Example 3.5. Let τ : F =
Fl(B1, . . . , Bk) → X be the flag bundle parametrizing flags V1 ⊂ V2 ⊂ · · · ⊂ Vk of
vector bundles on X such that rankVi = i and Vi ⊂ Bi for i = 1, . . . , k. There is a
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tautological sequence of vector bundles R1 ⊂ R2 ⊂ · · · ⊂ Rk on F . Let Z ⊂ F be a
subscheme defined by the vanishing of the homomorphisms:

R1 → (A1)F , R2 → (A2)F , . . . , Rk → (Ak)F ,

induced by the homomorphism ϕ : B → A. Of course, τ(Z) = Ω. Note that Z can
be described by a smaller number of equations, i.e., defined by the vanishing of the
homomorphisms:

R1 → (A1)F , R2/R1 → (A2)F , . . . , Rk/Rk−1 → (Ak)F .

Let us assume, for a moment, that X is Cohen-Macaulay, codimF Z = n1 + · · ·+ nk and
τ maps Z birationally onto Ω. Then

[Z] = cn1

(
(A1)F −R1

)
· cn−2

(
(A2)F −R2/R1

)
· . . . · cnk

(
(Ak)F −Rk/Rk−1

)
∩ [F ].

We have (we omit writing pullback indices and brackets denoting classes of vector
bundles in the Grothendieck group, for brevity):

cn1(A1 −R1) · cn2(A2 −R2/R1) · . . . · cnk(Ak −Rk/Rk−1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

cn1(A1 −R1) 0 0 . . . 0

∗ cn2(A2 −R2 +R1) 0 . . . 0

∗ ∗ cn3(A3 −R3 +R2) . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . cnk(Ak −Rk +Rk−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where the places under the diagonal can be occupied by arbitrary elements. Consider the
k × k matrix



cn1(A1 −R1) cn1+1(A1 −R1) cn1+2(A1 −R1) . . . cn1+k−1(A1 −R1)

cn2−1(A2 −R2) cn2(A2 −R2) cn2+1(A2 −R2) . . . cn2+k−2(A2 −R2)

cn3−2(A3 −R3) cn3−1(A3 −R3) cn3(A3 −R3) . . . cn3+k−3(A3 −R3)
...

...
...

. . .
...

cnk−(k−1)(Ak −Rk) cnk−(k−2)(Ak −Rk) . . . . . . cnk(Ak −Rk)


We claim that the determinant of this matrix equals the preceding determinant. To show
it we record:

Lemma [J-L]. Let A1, . . . , Ak and B1, . . . , Bk be elements of a λ-ring equipped with
λ-operations λi; assume that rankBi 6 i− 1. Then the determinant of the matrix[

λip−p+q(Ap)
]
16p,q6k

remains unchanged if one replaces the argument Ap by (Ap +Bq) in the (p, q)-place.

(More precisely, this is the dual version of a result from [J-L], given originally using
Wronski’s aleph functions; see the next Appendix and also [L-S1, 7.5]).
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Our claim now follows by adding Ri to the argument of the (i+ 1)-th column in the
latter matrix.

In order to end the calculation we now invoke the following formula for the Gysin
map in Fl(B1, . . . , Bk) (see [K-L]): for arbitrary integers p1, . . . , pk and α ∈ A∗(X),

τ∗

(
Det

[
cpi−i+j(Ai −Ri)

]
16i,j6k

∩ τ∗α
)

= Det
[
cpi−mi+j(Ai −Bi)

]
16i,j6k

∩ α.

Applying this formula, we infer

τ∗

(
Det

[
cni−i+j(Ai −Ri)

]
16i,j6k

∩ [F ]
)

= Det
[
cni−mi+j(Ai −Bi)

]
16i,j6k

∩ [X],

as desired.

To get the formula in general, let C = B ⊕ A. Then B is embedded in C via the
graph of ϕ and A is a quotient of C via the projection onto the second summand. By
a universality property, we have a section sϕ : X → X = Fln1,...,nk(C) such that the
sequence C � A1 � . . .� Ak is the pullback of the universal one CX � A1 � . . .� Ak
on X. Let Ω ⊂ X be a subscheme defined by the conditions dim Ker(Bi → Ai) > i,
i = 1, . . . , k, where Bi = (Bi)X . Then Ω = s−1

ϕ Ω. Let Ω◦ ⊂ Ω be an open subset defined
by the conditions dim Ker(Bi → Ai) = i, i = 1, . . . , k. Then Ω◦ is nonempty provided
mi > i, mi − i 6 ni for i = 1, . . . , k and both the equalities Bi = Bi+1 and Ai = Ai+1

do not hold simultaneously for i = 1, . . . , k− 1. The latter condition can be rewritten as
ni −mi > ni+1 −mi+1 + 1 for i = 1, . . . , k − 1, or equivalently

n1 −m1 + 1 > n2 −m2 + 2 > . . . > nk −mk + k > 0

(we can assume, without loss of generality, the last inequality to be strict because the
equation nk−mk +k = 0 corresponds to a redundant condition). Under these conditions
Ω◦ is nonempty and the morphism τ : F = Fl(B1, . . . , Bk) → X restricted to the
subscheme Z defined for the barred data, induces an isomorphism over Ω◦. Moreover, the
sections of

(A1)F ⊗R∨1 , (A2)F ⊗ (R2/R1)∨, . . . , (Ak)F ⊗ (Rk/Rk−1)∨

defining Z, are independent, i.e. codimF Z = n1 + . . . + nk. Then the above calcula-
tion establishes the formula for [Ω]. The general assertion of Example 3.5 for a Cohen-
Macaulay X then follows from the one just obtained because Ω is Cohen-Macaulay
and sϕ is a regular embedding; this implies (see [F1, Sect. 6, 7]) [Ω] = s∗ϕ[Ω] provided
codimX Ω = codimX Ω.

A.5. An operator proof of the Jacobi-Trudi formula. In the following proof
of Proposition 4.4, we use the notation from loc.cit. We use the equality ∂ =M◦ ∂′ and
induction on n. We have, by the induction assumption:

∂′
(
ai1+n−1

1 . . . a
in−1+1
n−1 ainn

)

= (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣

0 si1+1(An−1) . . . si1+n−1(An−1)
...

...
. . .

...

0 sin−1−(n−3)(An−1) . . . sin−1+1(An−1)

ainn ain+1
n . . . ain+n−1

n

∣∣∣∣∣∣∣∣∣∣∣
n×n
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Consider now the following n× n matrix:
si1(An) si1+1(An) . . . si1+n−1(An)

...
...

. . .
...

sin−1−(n−2)(An) sin−1−(n−3)(An) . . . sin−1+1(An)

ainn ain+1
n . . . ain+n−1

n


.

We claim that the determinant of this matrix equals the previous determinant, i.e.
(−1)n−1∂′(aI+ρn−1). To show it we recall:

Jacobi-Lascoux Lemma [J-L]. Let A1, . . . , Ak and B1, . . . , Bk be elements of a
λ-ring; assume that rankBi 6 i− 1. Then the determinant of the matrix[

sip−p+q(Ap)
]
16p,q6k

remains unchanged if one replaces the argument Ap by (Ap−Bq) in the (p, q)-place. Here,
si(A) = (−1)iλi(−A), where λi is the i-th λ-operation in the λ-ring.
(See also [L-S1, 7.5].)

The above claim is proved by subtracting an from the argument of the last n − 1
columns (note that the last row then becomes:

ainn 0 . . . 0

so we can fill up the first column in an arbitrary way without changing the determinant).
Finally, since M(akn) = (−1)n−1sk−(n−1)(An), the final assertion about

∂(aI+ρn−1) =M
(
∂′
(

(−1)n−1(last determinant)
))

follows by the Laplace expansion with respect to the last row and M(f · g) = f ·M(g) for
f ∈ SP(An).

A.6. A Schur complex proof of the Giambelli-Thom-Porteous formula. First,
we need a certain Schur complex constructed in [Ni].

The notation here is as in Sections 1 and 2 of the present paper. It was proved in [Ni]
that there exists a complex Cr(ϕ). such that:

(i) Cr(ϕ)i =
⊕

I⊂(m−r)n−r
|I|=i

SI
∼

(F )⊗ S(m−r)n−r/I(E)

(ii) for every ϕ : F → E and r > 0, SuppCr(ϕ). = Dr(ϕ) (19).
(Cr(ϕ). is the complex denoted by T(m−r)n−r (ϕ) in [Ni].)

Suppose that X is a smooth scheme. We want to pass from the Chow ring A∗(X) to
GrK(X), where GrK(X) is the graded Grothendieck ring associated with the topological
filtration on K(X) (see [F1, 15.1.5]). By loc.cit. we have a functorial morphism of graded
rings

φ : A∗(X)→ GrK(X),

(19) Given a complex C. of vector bundles on X, by Supp(C.) we understand the complement
to the set of points x ∈ X for which (C.)x is an exact complex of vector spaces.
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where, for a subvariety V ⊂ X, φ([V ]) = [OV ]. A fundamental property of this homo-
morphism is that φQ is an isomorphism (loc.cit., 15.2.16).

Given a (finite) complex C. of vector bundles on X, we denote by [C.] the class∑
(−1)i[Ci] in GrK(X).
In particular, we have:

[Cr(ϕ).] =
∑

(−1)|I|[SI
∼

(F )] · [S(m−r)n−r/I(E)],

the sum over I ⊂ (m− r)n−r.

Claim. Let D be an irreducible (closed) subscheme of a smooth scheme X. Let C. be
a finite complex of vector bundles on X and let P be a homogeneous element in A∗(X)
of degree codimX D. If Supp(C.) ⊂ D and φ(P ) = [C.], then [D] = q ·P for some q ∈ Q.

Indeed, consider the following commutative diagram with the first row exact:

A∗(D) i∗−−−−→ A∗(X)
j∗A−−−−→ A∗(X \D) −−−−→ 0yφ yφ

GrK(X)
j∗K−−−−→ GrK(X \D)

Here, i : D → X and j : X\D → X denote the inclusions. Since Supp(C.) ⊂ D, we
have j∗K([C.]) = 0. Then the equality φ(P ) = [C.] implies (j∗A)Q(P ) = 0, φQ being an
isomorphism. Since degP = codimX D and D is irreducible, [D] = q · P for some q ∈ Q.

To prove the formula in question, we apply the claim to the triple D = Dr(ϕ),
C. = Cr(ϕ∨). and P = s(m−r)n−r (E−F ). By passing to a universal case, if necessary, we
can assume that X is smooth and the assumptions of the claim are satisfied (see, e.g., [F1,
Chap. 14]). We have φ(P ) = [C.]. To this end recall that if L→ X is a line bundle then
φ(c1(L)) = [1X ]− [L∨]. Now, use the splitting principle and write formally E =

⊕n
i=1 Li

and F =
⊕m

j=1Mj , where rankLi = rankMj = 1. Let A = (a1, . . . , an) with ai = c1(Li)
and B = (b1, . . . , bm) with bj = c1(Mj). We must perform the transformation: ai 7→
[1X ] − [L∨i ] and bj 7→ [1X ] − [M∨j ] to the element s(m−r)n−r (A − B). We have by the
addition/linearity formula,

s(m−r)n−r (A−B) =
∑

(−1)|I|sI∼(B) · s(m−r)n−r/I(A),

the sum over I ⊂ (m−r)n−r. According to Schur’s Thesis, if SIE =
⊕
Lt11 ⊗· · ·⊗Ltnn , then

sI(A) =
∑
at11 . . . atnn , where both the sums are taken over the same multiset of sequences

(t1, . . . , tn). Hence, using (i) for Cr(ϕ∨)., we see that the transformation: ai 7→ −[L∨i ] and
bj 7→ −[M∨j ], sends the element s(m−r)n−r (A−B) to [Cr(ϕ∨).]. Consequently it suffices to
show, that by the change ai 7→ ai+1, bj 7→ bj +1, the element s(m−r)n−r (A−B) remains
unchanged. This is the key point of the argument which follows, e.g., from the fact that the
minimal component of the ideal Tr generalizing the resultant (see Theorem 1.5) is gener-
ated by s(m−r)n−r (c./c.′) (for more about that, consult [P4, Sect. 5]). Observe, moreover,
that by (ii), SuppCr(ϕ∨). = Dr(ϕ). Hence, by the claim, [Dr(ϕ)] = q s(m−r)n−r (E − F )
for some q ∈ Q. To prove q = 1, consider a variety X and a morphism ϕ′ : F ′ → E′

where rankE′ = n − r, rankF ′ = m − r such that codimX D0(ϕ′) = (m − r)(n − r),
A(m−r)(n−r)(X) is a nonzero free abelian group and s(m−r)n−r (E − F ) 6= 0 (such an
example is easily constructable with the help of a Grassmannian). Let E = E′ ⊕ 1rX ,
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F = F ′ ⊕ 1rX and ϕ = ϕ′ ⊕ id. Then

q s(m−r)n−r (E − F ) = [Dr(ϕ)] = [D0(ϕ′)] = ctop(E′∨ ⊗ F ′) = s(m−r)n−r (E′ − F ′)
= s(m−r)n−r (E − F ).

This implies q = 1 and the proof is complete.

A.τ . Corrigenda and addenda to some former author’s papers.
“Every (good) paper must contain an error.”

T. Mostowski

We finish this article with a corrigenda and an addenda to the author’s former papers
[A-L-P], [DC-P], [L-P], [P-P1], [P1-4] and [P-R 2,3]. We apologize for all inconveniences
which the misprints, inaccuracies and errors corrected below have caused (20).

[A-L-P]: Misprints — should be:
p. 51111 — “ Let X be a nonsingular ” // p. 51415 — “ . . . < ik 6 n, ” //
p. 51416 — “ [i1, . . . , ik] ” // p. 51615 — “ polynomial in x1, . . . , xk, ” //
p. 51711 — “ π : G/B → G/P ” // p. 51710 — “ π−1(Yσ) ” //
p. 5173 — “ on (Yσ ∩ Z)×Yσ Xστ ”

[DC-P]: Addenda — Here is an elegant argument, pointed out to us by W. Fulton,
justifying the footnote on page 688:

If L0 is a representative of the Poincaré bundle such that L0 | Pic2g−2(C̃)×{c} ∈
Pic0

(
Pic2g−2(C̃)

)
and for any L ∈ P±, NmL0 | {L}×C ∼= ωC , then there exists M ∈

Pic0
(
Pic2g−2(C̃)

)
such that NmL0 | P±×C ∼= p∗M ⊗ q∗ΩC | P±×C where p : Pic2g−2 C̃ ×

C → Pic2g−2 C̃ is the projection. Since Pic2g−2(C̃) is an abelian variety, there ex-
ists L ∈ Pic0

(
Pic2g−2(C̃)

)
such that M = L⊗2. Then L = L0 ⊗ (p′)∗(L∨), where

p′ : Pic2g−2(C̃)× C̃ → Pic2g−2(C̃) is the projection, does the job.

[L-P]: Misprints — should be:
p. 2093 — “ 1 6 i1 < . . . < ik 6 n, k = 1, . . . ”// p. 2104 — “ {f(b1), . . . , f(bm)} ”//
p. 21014 — “∂i = ∂Ai ”// p. 2112 — “F,G ∈ Z[A]”// p. 2118 — “(ii) stems from [5].”//

p. 2125 — “ 〈Xµω,Xµω〉 ” // p. 21213 — “
∞∑
i=0

” // p. 21215 — “ Qi(A) ” //

p. 2158 — “ σ(i)
j : ” // p. 2156 — “ Sér. I ”

[P-P1] (21) Revision — p. 192: The definition of ((J)) and [J ] was incorrectly reproduced
from [P3] and [La-La-T]. For a correct definition, see Section 2 of the present paper.

(20) We do not correct, however, the errors of English because of two reasons. First, this
would make this paper too long, and secondly, this will lead, undoubtedly, to . . . some new
errors.

(21) The following remark applies to [P-P1] and to the earlier papers [P3] and [P4]. Given
partitions I, J such that l(I) 6 k and l(J∼) 6 i, by (i)k + I, J we denote the partition
(i + i1, . . . , i + ik, j1, j2, . . . ), i.e.,

(
(i)k + I

)
, J following the literal convention of [P-P1] and
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Addenda — p. 194: Theorem 5 holds under the assumption that Z is a Whitney stratifica-
tion; see the paper by A. Parusiński and the author, A formula for the Euler characteristic
of the singular hypersurfaces, J. Algebraic Geom. 4 (1995), 337–351.

[P1]: Misprint
p. 2509 — instead of “ (−1)kck(A) ”, should be “ ck(a) ”.

[P2]: Misprints — should be:
p. 2171 — “ 7→ (k-th elementary ” // p. 2188 — “ 7→ (i-th elementary ” //
p. 21811 — “ , . . . , ar+1 − br+1))0 ” // p. 2184 — “ But by (1.3), sI(B′ −A′) ” //
p. 21913 — “linear ordering” // p. 21916 — “as the Z[c.(a)]-combination of sJ(B)’s” //
p. 2196 — “

∑
mI(A′ + C)sI(B′ −A′) ” // p. 2217 — “ diviseur de deux ” //

p. 2214 — “ Porteous ”
Revisions:
— In this note, by mimicking some (probably not worth recommending) manner, we
identify both mathematically and linguistically a polynomial a(x) with the equation
“a(x) = 0” it determines; consequently, we write exchangeably “polynomial a(x)” or
“equation a(x)”.
— In all formulas of the paper, c0(−) is to be understood to be equal to 1.
— in the proof of Lemma 2.5, ck(a′) (resp. ck(C)) means in the analogy to ck(a) and
ck(b) the k-th elementary symmetric polynomial in A′ (resp. C).

[P3]: Here is a list of misprints and revisions (apart of those in [P4, pp. 185–186]):
Misprints — should be:
p. 42320 — “

(
n
2

)
less ” // p. 42610 — “ ... = [R∨F ⊗RE ] + [F∨ ⊗QE ].” //

p. 42613 – “ = π∗[sI(QE) ” // p. 42613,15,17 – All three instances of “ s
(m−r)n ” should be

“s
(m)n−r

” // p. 4315,10 –“ Lemma 3.6 ” // pp. 4311, 43515 –“ s(m−r)n−r+I(E − F ) ”//

p. 43510 — “s(m−r)n−r,(2)(E−F ) ” // p. 4408 –”[E⊗Q]− [Λ2Q] = [R⊗Q] + [S2Q]” //
p. 4428 — “ [E] = [Imϕ] + [C] ” // p. 4446 – “ A(X)-module structure ”//

p. 4475 — “ . . . +
(
jp+jq
jq+1

)]
” // p. 4477 — “

a∑
p=1

(−1)p−12jp ” // p. 4483 — “ by (30)”//

p. 4491 — “ (Ei − Fi)] ” // p. 4516 — “
i∑

r=0
(−t)rs( ”//

p. 4529 — “ (ar − as)(ar + as)−1 ” // p. 4525 — “
k∑
p=1

(−1)p−1w( ”.

Revisions:
p. 4177 — before “We . . . ” insert a footnote We assume here that A,B is a sequence of
independent variables, which can be then specialized in a commutative ring.

[P3,4] (as it was explained on the example of the factorization formula in [P3, Lemma 1.1] and
[P4, Proposition 2.2], and then used without further comment).
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pp. 4223–4232 — should be: “The sequence (8) allows us to treat the following classes of
polynomials: symmetric in A, symmetric separately in Ak and in An−k, and finally sym-
metric in An−k, as operators respectively on A(X), A(Gk(E)) and finally on A(Flk(E)).”
p. 424 — Proposition 2.8 is stated incorrectly for l(I) = q− 1. (For l(I) = q, it is correct
as well as the proof given.) The correct formulation for l(I) = q − 1 is: “ π∗[ctop(R⊗
Q) PI(Q)∩π∗α] = PI(E)∩α if rankR is even, and 0 if rankR is odd ”. Since in Section 7
we use precisely this formula when rankR is even, the correction affects no other results
and proofs in the paper. More generally one has for l(I) = k 6 q

π∗
[
ctop(R⊗Q) PI(Q) ∩ π∗α

]
= d PI(E) ∩ α,

where d = 0 if (q − k)(n − q) is odd and
(

[(n−k)/2]
[(q−k)/2]

)
— otherwise. For details consult

Proposition 1.3 (in the present paper).
p. 42710 — replace the given reference by: “(cf. [F], Theorem 6.2(a))”
p. 446 and 447 — By quoting [L-L-T], we were sure that its authors would present a
divided-differences proof of Proposition 7.11 independent of the formulas of Proposition
7.12. In the final version of [L-L-T], the authors, however, give the proof (of Proposition
7.11) which makes use of the formulas of Proposition 7.12. For an original, selfcontained,
divided-differences proof of Proposition 7.11 due to Lascoux, see Appendix A.3 (in the
present paper).
p. 449 — Example (8.3) is revised in Example 3.5 and Appendix A.4 (in the present
paper).

[P4]: Here is a list of misprints and revisions:
Misprints — should be (22).
p. 1331 — “ 6 ib + b− 1} ” // p. 1378 — “ sign(w)w[ ” //

p. 1766 — the sum is over: “ 16i1<···<ik6n
k=0,1,...,n ” //

pp. 1811, 1823 —“ P homogen(e)ous symmetric, ” // p. 18211 — “ [G-Z Lemma 8] ” //
p. 1854 — “ ∩p∗D(dk)) = ”.
Revisions:
p. 1367 — should be: “Move all zeros to the right-hand end, keeping them in order.”
p. 13712 — should be: “ was illuminated in [B-G-G] and [D]. ”
p. 154 — Theorem 3.3 (ii) and its proof are valid if k = q. The general case k 6 q requires
the following correction:

(πE)∗
[
ctop(RE ⊗QE) PJ(RE) PI(QE) ∩ π∗Eα

]
= dPI,J(E) ∩ α,

where d = 0 if (q − k)(n − q − h) is odd, and d = (−1)(q−k)r
(

[(n−k−h)/2]
[(q−k)/2]

)
— otherwise.

For more details consult Proposition 1.3 and Appendix A.1 (in the present paper).
p. 179, Remark 6.11; p. 181, Remark 6.16 — : replace the Chern classes and the Schur
polynomials in R by the ones in R∨.

(22) Some readers reported that “7.τ” on p. 18513 is a misprint. Actually, it is not. In the
old Mediterranean tradition, the letter τ means: “to recognize one’s error”.
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[P-R2]: Revision: In the formula of Proposition 3.5, the factor ∂
D

µ (fλ) (equal to 1) can
be omitted. Then add at the end of the proof of the proposition:
“We get

mµ =
∑

∂
D

µ (fλ) · ∂Dµ (ep)

and the assertion follows by the properties of fλ.”

[P-R3]: Misprints — should be:
p. 103620 — “ w = (τ, ” // p. 103611 — “ +dr , r = 1, . . . ,m− n, ” //
p. 1039, the bottom picture should have a dot “•” in the last row, i.e., the last two rows
of this picture should look like:

� �

•
p. 104013 — “ (iii) One has mb = 2. ”

Revision: p. 10396 — better is: “The roof of a deformed (nonextremal) component is its
row of highest boxes.”
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Math. 83 (1994), 387–404.

[Na] V. Navarro Aznar, On the Chern classes and the Euler characteristic for non-
singular complete intersections, Proc. Amer. Math. Soc. 78 (1980), 143–148.

[N] I. Newton, Philosophiæ Naturalis Principia Mathematica, London, 1687.
[Ni] H. A. Nie lsen, Tensor Functors of Complexes, Aarhus Univ. Preprint 15, 1977/78.
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