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1. Introduction. The purpose of this paper is to define and prove the existence
of the Hilbert scheme. This was originally done by Grothendieck in [4]. A simplified
proof was given by Mumford [11], and we will basically follow that proof, with small
modifications.

The present note started life as a handout supporting my lectures at a summer school
on Hilbert schemes in Bayreuth 1991. I want to emphasize that there is nothing new in
this paper, no new ideas, no new points of view.

To get an idea of a model for the Hilbert scheme, recall how the lines in the projec-
tive plane are in 1-1 correspondence with the points of another variety: the dual plane.
Similarly, plane conic sections are parameterized by the 5-dimensional projective space
of ternary quadratic forms. More generally, hypersurfaces of degree d in P n are naturally
parameterized by the projective space associated to H0(P n,OPn(d)). A generalization
of the dual projective plane in another way: linear r-dimensional subspaces of P n are
parameterized by the Grassmann variety G(r, n).

The Hilbert scheme provides a generalization of these examples to parameter spaces
for arbitrary closed subschemes of a given variety. Consider the classification problem for
algebraic space curves, for example. It consists of determining the set of all space curves,
but also to deal with questions like which types of curves can specialize to which other
types, or more generally, which algebraic families of space curves are there? (An algebraic
family is a subscheme Z ⊆ P 3 × T where T is a variety and each fiber Zt for t ∈ T is a
space curve. Thus T serves as a parameter space for the family.)

A partial answer to the classification problem can be naively outlined as follows.
Suppose we are working over the field C of complex numbers. Let H be the set of all
space curves, say of given degree d and genus g. If C ⊆ P 3 is such a curve, let [C] ∈ H
denote the corresponding point. For any variety T and any subvariety Z ⊆ P 3 × T such
that for each point t ∈ T , the fiber Zt is a curve in P 3 ×{t} ' P 3 with the given degree
and genus, we get a map of sets φZ :T → H given by φZ(t) = [Zt].
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Now suppose for a moment that we can give H the structure of a complex algebraic
variety, with this property that φZ is always a morphism of algebraic varieties. Assume
furthermore that there exists a closed subscheme W ⊆ P 3×H such that for each h ∈ H,
the fiber Wh is just the curve corresponding to h, in other words such that φW :H → H
is the identity morphism. If this is the case, then any morphism T → H would in turn
give rise to a family Z = W ×H T ⊆ P n×T such that φZ is exactly the given morphism
T → H.

Such a subscheme W would be called a universal family of curves. The classification
problem for curves of degree d and genus g would now be, at least in part, to describe in
detail the parameter variety H and the universal family W .

Actually, all this wishful thinking is almost true! But even if one is only interested in
nonsingular space curves, one is forced to leave the category of varieties and work in the
category of schemes instead. We also have to restrict our attention to flat families, a con-
dition which is very natural if the parameter space of the family is a variety, slightly less
trivial if it is a non-reduced scheme. Anyway, the resulting scheme H is called the Hilbert
scheme of space curves of degree d and genus g, and if we allow all flat degenerations, it
is a projective scheme, which is connected, but almost never smooth or irreducible.

The Hilbert scheme exists in much more general contexts than just space curves. The
essential requirement seems to be that the ambient fixed space be projective, although
there are other cases too. On the other hand, there exists an example, due to Nagata
and Serre, of a complete nonsingular 3-dimensional variety X such that even the Hilbert
scheme parameterizing pairs of points in X does not exist, see [4, p. 221-27].

From the preliminary definition of the Hilbert scheme above, it appears that it mi-
ght be easier to understand the set of morphisms from other varieties into H than to
understand H itself. These sets of morphisms form a functor in a natural way, and we
therefore start with a section on functors and how to represent them by schemes.

The Hilbert functor, and hence the Hilbert scheme, is relatively easy to define. We
shall construct the Hilbert scheme as a closed subscheme of a Grassmann variety, by
essentially writing down its equations, at least in the case where the ambient space is
P n. However, the Hilbert scheme is still somewhat indirectly given. For example, in
most cases it is unpractical to compute explicitly how large the ambient Grassmannian
needs to be, and then use the defining equations. To answer questions about geometrical
properties of the Hilbert scheme, like dimension, singularities, irreducible components,
cohomology etc. other methods are needed, and to some extent, available.

For example, Grothendieck proved that if Z ⊆ X is a closed subscheme, and the
Hilbert scheme of X exists, then the Zariski tangent space of this Hilbert scheme at
the point [Z] is canonically isomorphic to HomX(IZ ,OZ). He also gave a criterion for
smoothness. There is also an estimate, coming from deformation theory, for the dimension
of the Hilbert scheme at a given point. Covering this deformation theory will take us too
far, so we are content with just stating some results here.

Notation. We follow the notation of [6]. In particular, we use Grothendieck’s con-
travariant P : If V is a vector space, the points of P (V ) are the hyperplanes in V , or
equivalently, the rank-1 quotients of V . There is an analogous notation for affine spaces:
V (V ) = Spec Sym(V ) is the affine space whose underlying vector space is the dual of V .
For Grassmannians, we use the convention that Grassr(V ) represents the rank-r quotients
of V , and that Grassr(V ) the set of r-dimensional subspaces of V . This is admittedly not
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in accordance with Grothendieck’s own notation, but seems more natural in view of his
notation for the Quot schemes and for the Hilbert schemes themselves.

If F is a coherent sheaf on a scheme X, we will sometimes abbreviate Hi(X,F) to
Hi(F) and write hi(F) = dimHi(F).

All varieties and schemes are assumed to be noetherian, unless the contrary is explic-
itly stated. The important exception is the Hilbert scheme, which is a countable union
of noetherian schemes, hence only locally noetherian.

2. Functors.

The functor of points of a scheme. We assume familiarity with the definition of cat-
egories and functors. If C is a category, we denote by Co the opposite category, i.e. the
objects are the same but all arrows are reversed. Thus a contravariant functor on C is
the same as a covariant functor on Co. The category of sets and mappings is denoted by
sets, and the category of schemes is schemes. If S is a scheme, schemes/S is the category
of S-schemes and S-morphisms. If h is a contravariant functor on schemes/S with values
in sets, we write

h: (schemes/S)o → sets.
If f :X → Y and y ∈ h(Y ), we sometimes write f∗(y) ∈ h(X) for the image of y under
the map h(f):h(Y )→ h(X). Note that reference to the functor itself is suppressed under
this convention.

An interesting contravariant functor on schemes is the following. Let X be a scheme.
For any scheme T , put

hX(T ) = {morphisms t:T → X}.
Then hX is a contravariant functor on schemes with values in sets. It is called the functor
of points of X. A morphism t:T → X is a point of X with values in T , or just a T -valued
point of X. If T = Spec(A), we also say an A-valued point. If T = Spec(K) where K
is an algebraically closed field, it is called a geometric point of X. In this case we write
things like “t ∈ X is a geometric point” and “k(t) = K”.

Note that this usage of the word point differs from the usual notion of a point of a
scheme (corresponding to prime ideals), but not too much in the case of geometric points
on an algebraic variety.

There is a relative version as well: If X is an S-scheme, we have its functor of points
on the category of S-schemes:

hX/S(T ) = {S-morphisms t:T → X}.
In this situation, there is induced a morphism p:hX → hS . The datum of an S-scheme
T is an element t ∈ hS(T ). Then the relative point functor is given on the S-scheme
t:T → S by

hX/S(T ) = p(T )−1(t) ⊆ hX(T ).
When it is clearly understood what the base S is, we may sometimes suppress the S from
notation and just write hX instead of hX/S . This abuse of notation will not do much
harm, in particular if S is the spectrum of a field, for example.

Example 2.1. Let S = Spec(B) for a ring B, and let X = Spec(A) where

A = B[x1, . . . , xn]/(f1, . . . , fr).
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Then if R is a B-algebra, an R-valued point of X/S is a B-algebra homomorphism A→ R,
which corresponds exactly to a solution in Rn of the simultaneous equations fi = 0.

Example 2.2. The point functor of S over itself: hS/S(T ) is a one-point set for all
S-schemes T .

Example 2.3. The point functor of a subscheme. Assume the X ⊆ S is a subscheme.
Then for t:T → S an S-scheme, we have

hX/S(T ) =
{
{T → X} (a one-point set) if t factors through X
∅ otherwise.

(Cf. Definition 2.11.)

Example 2.4. The point functor of projective space. Let X = P nk and S = Spec(k),
where k is a field. Put V = H0(P nk ,OPn(1)). There is a canonical surjection φ:VPn →
OPn(1). Now for any T -point t:T → P n there is induced a surjection t∗φ:VT →
φ∗OPn(1). Conversely, any linebundle quotient VT → L on T gives rise to a unique
morphism T → P n. [6]. Hence

hPn
k
/k(T ) = {linebundle quotients of VT },

where two quotients are considered equal if they have the same kernel.

Example 2.5. The Grassmann functor. Let S = Spec(k), and let V be a vector space
over k. Put X = Grassr(V ). Then

hX(T ) = {rank-r locally free quotients of VT }.

Example 2.6. Fiber products: X ′ = X ×Y Y ′ is actually defined by the property
that hX′ = hX ×hY hY ′ . [6, 12]. In general, if f1, f2 → g are morphisms of functors,
we define the fiber product f1 ×g f2 to be the functor defined by the property that
(f1 ×g f2)(T ) = f1(T )×g(T ) f2(T ) for all T .

Representable functors. Let h: (schemes/S)o → sets be a functor. We want to know
whether there exists an equivalence of functors ψ:hX/S → h for some S-scheme X.
For starters, any morphism of functors ψ:hX/S → h gives rise to a canonical element
ξ = ψ(1X) ∈ h(X). Conversely, let X be an S-scheme and let ξ ∈ h(X). Then there
is induced a morphism ψξ:hX/S → h as follows: For any t:T → X in hX/S(T ), put
ψξ(t) = t∗ξ ∈ h(T ). These constructions are inverses to each other, and gives a 1-1
correspondence between h(X) and the set of morphisms ψ:hX/S → h.

Definition 2.7. The pair (X, ξ) represents h if the induced morphism ψξ:hX/S → h
is an isomorphism. Equivalently, this can be formulated as follows: For any T → S, there
is a 1-1 correspondence

{liftings t:T → X of T → S} ←→ h(T )

given by t↔ t∗(ξ). Note in particular that under the isomorphism h→ hX/S , the identity
1X ∈ hX/S(X) corresponds to ξ ∈ h(X).

A functor which can be represented like this is called representable, and the element
ξ is sometimes called the universal family .
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Example 2.8. Coherent sheaves and vector bundles. Let A be a ring and M an A-
module. Let B = SymA(M) be the symmetric algebra on M . There is a natural A-module
homomorphism i:M → B, identifying M with the homogeneous part of degree 1 in the
graded A-algebra B. By extension of scalars, we get a natural morphism j:M⊗AB → B.
This map is universal in the following sense: For any A-algebra R and any R-module
homomorphism r:M ⊗A R → R, there is a unique A-algebra morphism f :B → R such
that r is induced from j via f . Put more briefly, there are natural bijections

HomR(M ⊗A R,R) = HomA(M,R) = Hom
A−algebras(B,R).

This is the affine version of the following:
Let S be a scheme, and let F be a coherent sheaf on S. Consider the functor on

schemes/S given by
T 7→ HomT (FT ,OT ).

This functor is represented by the S-scheme V (F) := Spec SymOS (F).
If F is locally free of rank r, then the symmetric algebra is locally isomorphic to a

polynomial algebra, and V (F) is a vector bundle over S in the geometric sense. Note the
contravariant nature of this correspondence: If F → G is a morphism of sheaves, then
there is an induced morphism V (G)→ V (F) of S-schemes.

Example 2.9. Isomorphisms and principal bundles. Let E and F be vector bundles
of the same rank r on a scheme S, and consider the functor IsomS(E ,F) on schemes/S
given by

T 7→ {set of OT -module isomorphisms a: ET → FT .}
By the previous example, the functor of all homomorphisms ET → FT is represented
by V = V (HomOS (F , E)). There is a universal map j : Hom(F , E)V → OV , which
corresponds to a universal homomorphism b: EV → FV . Let D ⊆ V be the hypersurface
defined by the vanishing of the determinant of b. Then the complement IsomS(E ,F) :=
V −D represents IsomS(E ,F).

In the special case where F = rOS is the trivial rank-r vector bundle, IsomS(E , rOS)
is called the principal homogeneous GL(r)-bundle associated to the vector bundle E .

Digression on moduli spaces. Let h be a given functor. Even if h is not representable,
it might be pretty close. The concept of a coarse moduli space rests on the idea of mapping
h to a representable functor hM rather than the other way around. More precisely, we
have the following

Definition 2.10. A coarse moduli scheme for h is a pair (M,λ) where M is a scheme
and λ:h→ hM is a morphism of functors such that:

(1) For any algebraically closed field k, λ(Spec(k)) : h(Spec(k)) → hM (Spec(k)) is
bijective, and

(2) If (M ′, λ′) is another pair satisfying (1), then there exists a unique morphism
f : M →M ′ such that λ′ = hf ◦ λ.

If a coarse moduli scheme M for h exists, then it is obviously unique. Furthermore,
h is representable ⇐⇒ h is represented by M ⇐⇒ there exists an element ξ ∈ h(M)
such that λ(ξ) = 1M . In this case, M is called a fine moduli scheme for h. A coarse
moduli functor is thus in a sense the best representable approximation to the given
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functor h. Putting it very roughly, in the “space” of all functors, λ can be thought of as
the “orthogonal projection” of h onto the “subspace” of representable functors.

This should be contrasted with the concept of “formal moduli” or “pro-representable
hull” of a functor which arises in infinitesimal deformation theory. In that case we look at
functors on a slightly different (and smaller) category `, and a pro-representable hull is
then a morphism from a (pro-)representable functor to h, with certain properties [13, 8].

Subfunctors. If Y ⊆ X is a subscheme, composition with the inclusion morphism gives
rise to an inclusion hY (T ) ⊆ hX(T ) for all T . In fact, hY is a subfunctor of hX , in the
following sense:

Definition 2.11. Let g, h: (schemes/S)o → sets. Then g is a subfunctor of f if g(T ) ⊆
h(T ) for all T → S, and g(t): g(T )→ g(T ′) is the restriction of h(t) for all S-morphisms
t:T ′ → T , i.e., the inclusion g → h is a natural transformation of functors. g is said to be
a closed (resp. open, resp. locally closed) subfunctor of h if the following holds: For any
T → S and ξ ∈ h(T ), there exists a closed (resp. open, resp. locally closed) subscheme
Ugξ ⊆ T such that for any f :T ′ → T , we have

f∗ξ ∈ h(T ′) belongs to the subset g(T ′) ⇐⇒ f factors through Ugξ ⊆ T .

An alternative way to formulate this is as follows: For any S-scheme T and ξ ∈ h(T ),
consider the cartesian square

hT
ψξ−−−−→ hx xi

hT ×h g −−−−→ g

where i is the inclusion. Then

Proposition 2.12. In this situation, g is a closed (resp. open, resp. locally closed)
subfunctor of h if and only if for all S-schemes T and elements ξ ∈ h(T ), the fiber product
hT/S ×h g induced by ψξ:hT/S → h is represented by a closed (resp. open, resp. locally
closed) subscheme of T . In particular, if h is representable and g is a closed (resp. open,
resp. locally closed) subfunctor of h, then g is represented by a closed (resp. open, resp.
locally closed) subscheme of the scheme representing h.

P r o o f. Put Definition 2.11 to work on the pair (T, ξ) to produce a subscheme Ugξ ⊆ T .
Then hT/S ×h g is represented by Ugξ . For the second statement, let T be the scheme
representing h and ξ the universal family. Then Ugξ represents g.

Example 2.13. Let F be a coherent sheaf on S, let r be an integer, and consider the
subfunctor h of hS/S (Example 2.2) defined by

h(T ) =
{
{T → S} (a one-point set) if FT is locally free of rank r
∅ otherwise.

Then h is a locally closed subfunctor of hS/S , and it is represented by a locally closed
subscheme Sr(F) ⊆ S, see Corollary 6.3 below.



REPRESENTABLE FUNCTORS AND HILBERT SCHEMES 185

Speculations. A scheme X can be reconstructed from its functor of points hX . Note
that a morphism X → Y of schemes induces a morphism hX → hY of contravariant
functors. In fact, any morphism hX → hY of functors is induced from a unique morphism
of schemes X → Y . Thus the association X 7→ hX is an imbedding of the category of
schemes as a full subcategory of the category sets(schemes)o of contravariant functors
schemes→ sets. All this is easy to prove, see [12].

It is also true that the restriction of hX to the subcategory of schemes consisting of
affine schemes determines X uniquely. One can even restrict hX to schemes of the form
Spec(A) where A is an Artin local ring, and still reconstruct much of the local structure
of X. To give an example, suppose S = Spec(k), k an algebraically closed field, and let
t: Spec(k) → X be a k-point of X. Then the Zariski tangent space of X at t is nothing
but the set of morphisms t̃: Spec(k[ε]/ε2) → X “centered” in t, i.e., a certain subset of
hX/S(Spec(k[ε]/ε2)).

A related remark is this. If f :X → Y is a morphism of algebraic k-schemes, k an
algebraically closed field, then f is scheme-theoretically injective (i.e. injective on points
and tangentspaces) if and only if the induced morphism hf :hX → hY is injective in
the sense that hX(T ) → hY (T ) is injective for all k-schemes T . (It suffices to consider
T = Spec(k) and T = Spec(k[ε]/ε2).)

The moral here is first of all that the functor of points of a scheme contains a lot
of information. In some sense, to understand a given scheme is to understand its point
functor. (Not the only way to understand a scheme, but often the best!) On the other
hand, when we consider the examples above, it is striking how easy it is to describe the
functor of points of projective space, for example. It is much more complicated to give
the data defining it as a scheme: affine open covers, sheaves of rings etc.

Exercise 2.14. Let X → S be the blowing up of S in some center Y ⊆ S. Try to
understand the point functor hX/S . Then explain why it is hard to understand blow-ups.

One is tempted to ask: If functors are so much better than schemes, then why not
deal exclusively with functors and forget about schemes altogether? Well, one thing which
is nice with schemes is that certain objects, like coherent sheaves, or morphisms, even
the schemes themselves, may be constructed from compatible local data by gluing. For
example, a representable functor h is always a Zariski sheaf, meaning that for any scheme
T and any open cover (Tα) of T , the induced sequence

h(T )
f−→
∏
α

h(Tα)
g1−→−→
g2

∏
α,β

h(Tα ∩ Tβ)

is exact, meaning that f is injective with image {x | g1(x) = g2(x)}.
Many properties of schemes and morphisms can be meaningfully defined also for

functors.

Definition 2.15. Let h: (schemes/S)o → sets be a functor and {gi}i∈I a collection of
open subfunctors of h. We say that the gi form an open covering of h if for all S-schemes
T and ξ ∈ h(T ), the sets Ugiξ of Definition 2.11 form an open cover of T .

Proposition 2.16. Let h: (schemes/S)o → sets. If h is a Zariski sheaf which admits
an open covering by representable subfunctors, then h is itself representable.
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P r o o f. Let {gi}i∈I be a covering by representable, open subfunctors. Each gi is
represented by a scheme Xi. Clearly the functor gi ×h gj is an open subfunctor of both
gi and gj , which allows us to glue the Xi together to a scheme X. Both hX and h are
Zariski sheaves, and they coincide on an open covering. By the sheaf axiom, they must
be isomorphic, hence X represents h.

The Grassmannian. As an application, we prove that the Grassmann functor is re-
presentable:

Definition 2.17. Let F be a coherent sheaf over S, and let r be an integer. The
Grassmann functor Grassr(F) is the contravariant functor on schemes/S given by

Grassr(F)(T ) = {rank-r locally free quotients of FT }.

This functor is representable, but we prove it only in a special case here:

Proposition 2.18. Let S = Spec(A) and let V be a free module of rank n over A.
Then Grassr(V ) is represented by a projective S-scheme Grassr(V ), which furthermore
has an open cover of affine spaces over S of dimension r(n− r).

P r o o f. For each rank-r free direct summand W ⊆ V , let GW be the subfunctor of
Grassr(V ) corresponding to those quotients VT → Q such that the induced map WT → Q
is an isomorphism. Choose a complement K ⊆ V of W ; then it is easy to see that GW is
represented by the affine spaceGW = V (Homk(K,W )∗) corresponding to the free module
HomA(K,W ): an A-linear map φ:K → W gives the quotient φ+ 1W :K ⊕W → W .) It
is clear that the Grassmann functor is a Zariski sheaf and that the GW form an open
covering as W varies. Hence Grassr(V ) is represented by a scheme admitting a covering
of affine spaces GW as claimed.

To show the projectivity assertion, let VG → Q be the universal family. Define the
Plücker morphism π:G = Grassr(V )→ P = P (∧rV ) as follows. The r-th exterior power
yields a surjection ∧rVG → ∧rQ. This gives the required G-valued point of P . I claim that
π is a closed imbedding. It suffices to show that P admits an affine open cover {PW } such
that π−1PW → PW is a closed imbedding for all W . To construct this, we again let W
run through the set of free rank-r direct summands of V . For a fixed such W ⊆ V , we let
PW ⊆ P be defined by the non-vanishing of the composed map ∧rWP → ∧rV → OP (1),
i.e., PW is the complement of a hyperplane in P . For varying W ⊆ V , these PW form an
open cover of P , and it is clear that π−1PW = GW , the complement of the degeneration
locus of the composed map WG → VG → Q.

To show that πW :GW → PW is a closed imbedding, choose a complement K of W in
V as above. Then we have natural identifications

GW (A) = Hom(K,W )

PW (A) = Hom(∧r(K ⊕W ),∧r(W ))/ ∧r (0 + 1W ) =
r⊕
i=1

Hom(∧iK,∧iW )

πW (φ) = (φ,∧2φ, . . . ,∧rφ)

and hence the first component of the map is the identity. Therefore, πW is the graph mor-

phism of the morphism GW → V (
r⊕
i=2

Hom(∧iK,∧iW )∨) given by φ 7→ (∧2φ, . . . ,∧rφ).

The graph of a morphism into a separated scheme is closed, so πW is a closed imbedding.

See [7] for this and more general Grassmannians associated to vector bundles on a
base scheme S.
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3. Definition of the Hilbert scheme. In this section we give the basic idea be-
hind the construction of the Hilbert scheme. We make the definitions over an arbitrary
(noetherian) base scheme S. Let X be an S-scheme. If T is another S-scheme, we make
the following

Definition 3.1. An algebraic family of closed subschemes of X/S, parameterized by
T , is a closed subscheme Z ⊆ XT = X ×S T . The family is flat if the induced morphism
Z → T is flat. A geometric fiber of the family is the pullback (1 × t)∗Z of Z to X ×T
Spec(k(t)), where t: Spec(k(t))→ T is a geometric point of Z.

Definition 3.2. Let HilbX/S(T ) be the set of flat algebraic families of closed sub-
schemes Z of X/S parameterized by T . If T ′ → T is any morphism, Z 7→ Z ×T T ′ gives
a map HilbX/S(T )→ HilbX/S(T ′), which makes HilbX/S a contravariant functor on the
category of S-schemes.

If HilbX/S is representable, the S-scheme HilbX/S representing it is called the Hilbert
scheme of X/S.

Assume that X → S is projective, and choose a closed embedding X ⊆ P nS . A
numerical polynomial is a polynomial P ∈ Q[m] such that P (`) ∈ Z for all ` ∈ Z. For any
coherent sheaf F on X and any geometric point t of T , the induced sheaf Ft = (1× t)∗F
on P nk(t) has a Hilbert polynomial PFt . If Z is a flat familiy of closed subschemes of X/S
parameterized by a connected scheme T , then for all geometric points t of T , the Hilbert
polynomials PFt are the same [6]. Hence, if the Hilbert scheme exists, it necessarily
decomposes into disjoint open and closed subschemes indexed by Hilbert polynomials.
Therefore we make the following definition.

Definition 3.3. If P is a numerical polynomial, let HilbPX/S be the open and closed
subfunctor of HilbX/S given by flat families with Hilbert polynomial P in all geometric
fibers.

It is clear that if HilbPX/S is represented by some scheme HilbPX/S for each P , then
HilbX/S is represented by the disjoint union of all these.

The main body of the rest of the paper is devoted to proving that HilbPX/S exists,
provided that X is projective over S. We start by giving the main idea. Consider the case
where S = Spec(k). We want to study the set of all closed subschemes of Z ⊆ X with
Hilbert polynomial P . Let Z be such a subscheme. Then there exists an m0 such that
IZ(m) is generated by global sections and Hi(X, IZ(m)) = 0 for all i > 0 and m ≥ m0.
In particular, H0(OZ(m)) is a quotient of H0(OX(m)) of rank P (m) for all m ≥ m0, so
Z gives rise to a point in GrassP (m)(H0(OX(m))), called the m-th Hilbert point of Z.
Since IZ(m) is generated by its global sections, the subscheme Z is determined by its
m-th Hilbert point, for any sufficiently large m.

This suggests that the Hilbert scheme might be taken to be a subscheme of
GrassP (m)(H0(OX(m))) for some sufficiently large m. Indeed, this is how it works, but
there are essentially two difficulties to overcome. The first is to prove that one can find a
value of m0 which works for all subschemes at once (with the given Hilbert polynomial).
This problem is treated in Section 4, and uses the concept of m-regularity. Given its
positive solution, we get an injective morphism from the Hilbert functor to the Gras-
smann functor. The second difficulty is to prove that this morphism is actually a locally
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closed imbedding. This requires some understanding of the flatness condition, and uses
the concept of flattening stratification, covered in Section 7.

4. Boundedness. Throughout this section, we work over a field k. Write P n = P nk .
Following [11], we make the following definition:

Definition 4.1. A coherent sheaf F on P n is m-regular if Hi(F(m− i)) = 0 for all
i > 0.

Proposition 4.2 (Mumford-Castelnuovo). Let F be an m-regular sheaf on P n. Then
(1) H0(F(k))⊗H0(OPn(1))→ H0(F(k + 1)) is surjective for k ≥ m.
(2) Hi(F(k)) = 0 whenever k + i ≥ m and i > 0. In other words, F is m′-regular for

all m′ ≥ m.
(3) F(k) is generated by global sections if k ≥ m.

P r o o f. (Almost verbatim after [11].) We prove (1) and (2) together by induction on
n, the case n = 0 being trivial. If n > 0, let H ⊆ P n be a general hyperplane. Then there
is an exact sequence

0→ F(k − 1)→ F(k)→ FH(k)→ 0.
From the long cohomology sequence we get in particular:

Hi(F(m− i))→ Hi(FH(m− i))→ Hi+1(F(m− i− 1)),

from which it follows immediately that FH is m-regular. By induction, (1) and (2) hold
for FH . Now consider the exact sequence

Hi(F(m− i))→ Hi(F(m− i+ 1))→ Hi(FH(m− i+ 1)).

If i > 0, then by (2) for FH , the last group is zero, and the first group is also zero by
assumption. It follows that F is (m + 1)-regular. Continuing this way, (2) is proved for
F . To get (1), consider the diagram

H0(F(k))⊗H0(OPn(1)) σ−−−−→ H0(FH(k))⊗H0(OH(1))

µ

y yτ
H0(F(k + 1)) −−−−→

ν
H0(FH(k + 1)).

Note that σ is surjective for k ≥ m because H1(F(k − 1)) = 0 by (2). Moreover, τ is
surjective if k ≥ m by (1) for FH . Therefore, νµ is surjective. Since clearly Ker(ν) ⊆
Im(µ), it follows that also µ is surjective, and (1) is proven for F .

For (3), we know by Serre’s theorem [6] that F(k) is generated by its global sections
for k � 0. But by (1), these sections can all be expressed in terms of global sections of
F(m). Hence these sections already generate F(m).

Proposition 4.3. Let P be a numerical polynomial. Then there exists an integer
m0 = m0(P ) such that for any closed subscheme Z ⊆ P n with Hilbert polynomial P , the
ideal sheaf IZ is m0-regular.

P r o o f. Write IZ = I. Again we use induction on n, the case n = 0 being trivial. If
n > 0, let H be a general hyperplane, giving rise to an exact sequence

0→ I(−1)→ I → IH → 0,
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where also IH ⊆ OH is an ideal sheaf. By induction, there exists an integer m1, de-
pending only on P , such that IH is m1-regular. From the cohomology sequences we get
immediately that Hi(I(k)) = Hi(I(k + 1)) as soon as k ≥ m1 − i and i ≥ 2. By Serre’s
theorem, these groups must vanish. Hence I is also m1-regular except possibly for the
vanishing of H1(I(m1 − 1)). But we can control this using the following

Lemma 4.4. The sequence {h1(I(m))}m≥m1−1 decreases strictly to zero.

P r o o f. The following sequence, exact for m ≥ m1 − 1:

H0(I(m+ 1))
ρm−−→ H0(IH(m+ 1))→ H1(I(m))→ H1(I(m+ 1))→ 0,

shows that the sequence of the lemma is at least weakly decreasing. If for some m we
have h1(I(m)) = h1(I(m + 1)), then ρm is surjective. But it is straightforward to show
that ρm surjective implies that ρm+1 is surjective as well. It follows that h1(I(m)) =
h1(I(m+ 1)) = h1(I(m+ 2)) etc. By Serre’s theorem, these are all zero, and the lemma
is proved.

It follows from this lemma that H1(I(k)) = 0 for k ≥ m1− 1 + h1(I(m1− 1)). Hence
if we let m0 ≥ m1 + h1(I(m1 − 1)), then I is m0-regular. It remains only to check that
an m0 can be found which depends only on P . But this is clear: since H0(OZ(m1 − 1))
surjects onto H1(I(m1 − 1)), and the higher cohomology groups of OZ(m1 − 1) vanish
by what we have already, it suffices to take m0 = m1 + P (m1 − 1). This completes the
proof of Proposition 4.3.

R e m a r k 4.5. If one analyzes this proof a little, one can show that m0 can be taken
to depend polynomially on the coefficients of P . However, one can be much more precise,
using work of Macaulay, Hartshorne, Gotzmann, and Bayer, as follows. For a sequence
m0 ≥ · · · ≥ ms > 0 of positive integers, consider the degree s numerical polynomial in z:

g(m0, . . . ,ms; z) =
s∑
i=0

(
z + i

i+ 1

)
−
(
z + i−mi

i+ 1

)
.(4.1)

It can be shown that the Hilbert polynomial of any projective scheme Z can be written
uniquely in the form g(m0, . . . ,ms; z) for s = dim(Z) and suitable integers m0 ≥ m1 ≥
· · · ≥ ms > 0. Furthermore, Gotzmann’s regularity theorem states that OZ is (m0 − 1)-
regular and IZ is m0-regular [1, 2, 3].

This bound on the regularity of a subscheme is best possible, as can be verified by
considering the “lexicographic” monomial ideal corresponding to a given numerical poly-
nomial. By this we mean the following. Let P (z) be written in the form g(m0, . . . ,ms; z).
Consider the ideal L generated by the

(
n+m0
n

)
−P (m0) first monomials in H0(OPn(m0)),

taken in the lexicographic order. Then one may show that the last of these monomials
is not in the saturation of the ideal generated by the others. Hence the associated ideal
sheaf is not generated by its sections of degree m0 − 1.

The regularity bound gets large very quickly. For example, for the polynomial P (z) =
(z+ 1)3, corresponding to the Segre imbedding of P 1×P 1×P 1 in P 7, we may compute
thatm0 = 3216, and for P (z) = (z+1)4, we getm0 = 141193125854001740. This indicates
that the Hilbert scheme is quite a beast, even for quite innocent looking subschemes!

R e m a r k 4.6. There is a similar statement to Proposition 4.3 (with the same proof)
if instead of ideal sheaves one considers subsheaves on a fixed coherent sheaf F on P n,
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specializing to the above if we take F = OPn . This can be used in proving that the
“Quot” functor (see Section 9) is representable.

5. Base change. This paragraph is mostly extracted from [11]. We need some infor-
mation on base change in the non-flat case. Suppose we have a diagram

P n × T h=1×g−−−−→ P n × S
q

y yp
T −−−−→

g
S.

(5.1)

If F is a coherent sheaf on P n × S, there are base change maps

bi: g∗Rip∗F → Riq∗h
∗F .

The theorems on cohomology and base change in [6] deal only with the case where F is
assumed flat over S. But even without this assumption, bi are isomorphisms if we replace
F by F(m) for a sufficiently large m. Of course, then the higher direct images are zero,
so the only interesting isomorphism is b0.

Proposition 5.1. Let the situation be as above. Then there exists an m0 such that
for all m ≥ m0, the base change map b0: g∗p∗F(m)→ q∗h

∗F(m) is an isomorphism.

P r o o f. This is local on T , so we may assume that S = Spec(A) and T = Spec(B) are
affine. Recall the correspondence between coherent sheaves on P nA and graded modules
over A[X0, . . . , Xn]. To a sheaf F there is associated the graded module

⊕
m
p∗F(m), and

to a graded module M there is associated a coherent sheaf M̃ . This correspondence is
1-1 except that we may truncate the graded module from below wherever we want. The
assertion of the proposition is just the fact that the maps in this 1-1 correspondence are
compatible with tensor products −⊗A B.

R e m a r k 5.2. Note that, a priori, m0 depends on g:T → S as well as F . Later we
shall see that in fact m0 can be chosen to depend only on F .

We know from [6] that if S is reduced and connected, then the sheaf F above is flat
over S if and only if all geometric fibers of F over S have the same Hilbert polynomial.
We need a similar criterion if the case of a general base S:

Proposition 5.3. A coherent sheaf F on P nS is flat over S if and only if there exists
an m0 such that p∗F(m) is locally free for all m ≥ m0.

P r o o f. If F is flat, this follows from standard base change theorems [6]. Conversely,
if such an m0 exists, let M =

⊕
m≥m0

p∗F(m) be the associated graded OS-module. (We

may assume that S is affine.) Then M is flat over S. Recall now how the functor M 7→ M̃

works: Over a suitable open affine in P nS , the sheaf M̃ is obtained from M by first
localizing in a variable Xi and then extracting the direct summand of degree 0. Clearly
these operations preserve flatness. Since M̃ = F , we are done.
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6. Fitting ideals. Let S be a scheme, and let f : E1 → E0 be a morphism of locally
free sheaves of finite ranks e1 and e0, respectively. Locally, f can be represented by an
e0 × e1 matrix m with entries in OS . The ideal generated by the minors of m of a given
size is independent of the choice of m, and globalizes to an ideal which in fact turns out
to depend only on the cokernel of f .

Definition 6.1. Let r be an integer. The r-th Fitting ideal Fr(f) of f is the image
of the map

∧e0−rE1 ⊗ ∧e0−rE∨0 → OS
induced by the map ∧e0−rf :∧e0−rE1 → ∧e0−rE0. If r ≥ e0 we agree that Fr(f) = OS, if
r < 0 then Fr(f) = 0.

If F is a coherent sheaf on S, we define the r-th Fitting ideal Fr(F) of F to be the
r-th Fitting ideal of a locally free presentation of F .

We need to verify that the Fitting ideal so defined is independent of the choice of
presentation. So assume that f is a presentation of F . Note that the formation of Fitting
ideals commutes with arbitrary base change on S. In particular, since both Fr(f) and
F = Coker(f) localize well, we may assume that S is the spectrum of a local ring A and
that the Ei are free A-modules. Let g:An → Am be a minimal presentation of F . Then
there exists a commutative diagram of A-modules:

E1
f−−−−→ E0 −−−−→ F −−−−→ 0

j

x xi ∥∥∥
An −−−−→

g
Am −−−−→ F −−−−→ 0

where i and j are split monomorphisms. It follows that Fr(f) = Fr(g), and this proves
that Fr(f) only depends on F .

Proposition 6.2. Let F be a coherent sheaf on S, and let r be an integer. Then F
is locally free of rank r if and only if Fr−1(F) = 0 and Fr(F) = OS.

P r o o f. Necessity is immediate. For sufficiency, we may again assume that S =
Spec(A) for a local ring A. Let f :An → Am be a presentation of F . Since Fr(F) = A
and A is local, there is an invertible (m − r) × (m − r) minor of f . The corresponding
invertible submatrix allows splitting off part of the presentation, and we are left with a
presentation g:An−m+r → Ar of F . Since Fr−1(F) = 0, g = 0 and we are done.

Corollary 6.3. Let F be a coherent sheaf on S, and let r be an integer. Let Sr(F)
be the locally closed subscheme V (Fr−1(F)) − V (Fr(F)) of S. Then for any morphism
g:T → S, the pullback FT = g∗(F) is locally free of rank r if and only if g factors through
the inclusion Sr(F) ⊆ S.

P r o o f. Apply Proposition 6.2 to g∗F , noting that Fitting ideals commute with base
change.

7. Flattening stratifications. In the previous section we essentially studied the
question: Given a coherent sheaf F on S, what is the condition on an S-scheme T that
FT be locally free? More generally, we may ask for flatness in cases where F is not
coherent on S, but rather on a projective S-scheme. To be precise, suppose that we are



192 S. A. STRØMME

in the situation (5.1), with F a coherent sheaf on P nS . Even if F is not flat over S, it
might happen that FT = (1× g)∗F is flat over T .

Definition 7.1. A flattening stratification for F over S is finite disjoint collection
{Si} of locally closed subschemes of S, the set-theoretic union of which is S, with the
following property:

(1× g)∗F is flat ⇐⇒ each g−1Si is open and closed in T .

If T is connected, this means that (1×g)∗F is flat if and only if T → S factors through
one of the Si. The Si are called flattening strata of F . A flattening stratification is not
unique in general, but each connected component of a flattening stratum is a maximal
locally closed connected subscheme of S with respect to the property that the restriction
FSi is flat. Hence we could have uniqueness of the flattening stratification if we imposed
the condition that all strata be connected. However, this is not the most useful choice in
general, and in the following proposition we lump together connected strata according to
Hilbert polynomials.

Proposition 7.2. Let F be a coherent sheaf on P nS . There exists a flattening strati-
fication {SP } for F , indexed by numerical polynomials P , such that for all g:T → S, we
have

FT is T -flat with Hilbert polynomial P ⇐⇒ g factors as T → SP → S.

P r o o f. Look at the case n = 0 first, i.e., F is a coherent sheaf on S itself. Then
the Sr(F) form a flattening stratification, by Corollary 6.3. For dealing with the general
case, we need the following

Lemma 7.3. Let F be a coherent sheaf on P nS . Then there exists a nonempty open
subset U ⊆ Sred such that FU is flat over U .

Note that unless S is generically reduced, we may not be able to find such U open
in S itself: consider for example the case where n = 0 and F = OS/N , where N is the
nilradical of OS .

P r o o f. Without loss of generality we may assume that S is affine, reduced, and
irreducible. Cover P nS by standard open affine sets Di = D+(Xi) as usual, and let Fi
be the restriction of F to Di. If Ui ⊆ S is an open subset such that Fi is flat over Ui,
then FU is flat over U = U0 ∩ . . .∩Un. Hence the lemma follows from the following pure
algebra statement.

Proposition 7.4. Let A ⊆ B be a finitely generated extension of noetherian integral
domains, and let F be a finitely generated B-module. Then there exists a non-zero f ∈ A
such that Ff = F ⊗A Af is a flat A-module.

P r o o f. F admits a finite filtration by submodules Fi such that Fi/Fi+1 ' B/P for
some prime ideal P of B. It suffices therefore to prove the proposition in the special case
F = B/P . If P ∩A 6= 0, then we may find a non-zero f ∈ P ∩A, and then Ff = 0, which
is flat. Thus we may assume that P ∩ A = 0. Dividing out by P , we may assume that
P = 0.

Let K be the fraction field of A. By Noether’s normalization lemma, there exist
elements b1, . . . , br in B ⊗AK, algebraically independent over K, such that B ⊗AK is a
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finitely generated module over the polynomial ring K[b1, . . . , br]. For a suitable common
denominator a ∈ A, we can assume that the bi are in Ba and that Ba is finite over
C := Aa[b1, . . . , br]. If the rank of Ba as C-module is t, we may choose a C-linear map
φ:Ct → Ba such that φ is injective and has cokernel of dimension less than dim(B). By
induction on the dimension, Coker(φ) is flat over Ac for some nonzero element c ∈ A.
Then Bac is flat over Aac.

Corollary 7.5. There is a finite set of locally closed reduced subschemes Yi of S
such that their set-theoretic union is S and such that FYi is flat over Yi for all i. In
particular, there is only a finite number of distinct Hilbert polynomials for the various
geometric fibers Fs for s ∈ S, and we may, if necessary after collecting all Yi with the
same Hilbert polynomials in the fibers, index the Yi by Hilbert polynomials and write YP
instead.

We may now complete the proof of Proposition 7.2. By Proposition 5.1, there exists an
m0 such that all the fibers of F are m0-regular. (First apply Proposition 5.1 to each base
change YP → S, and find an m′0 as in that proposition that works for all the YP . Then
apply Serre’s theorem and standard base change arguments for flat families to ensure the
vanishing of Hi(Fy(`)) for i > 0 and large `, and y ∈ YP a geometric point.)

Therefore, the Hilbert polynomial of a given fiber Fs is determined by the numbers

h0(Fs(m)) for m0 ≤ m ≤ m0 + n. For each m ≥ m0 + n, putMm =
m⊕

i=m0

p∗F(i). It now

follows that the Hilbert polynomial of the fibers is constant on each flattening stratum
of Mm, for any m ≥ m0 + n. As m grows, the flattening strata of Mm form descending
sequences of locally closed subschemes of S with fixed support YP . Such sequences are
stationary. Hence for m large enough, by Proposition 5.3, the flattening strata for Mm

are also flattening for F .

R e m a r k 7.6. For m � 0, the integers P (m) are distinct as P runs through the
finite set of Hilbert polynomials. In conjunction with the above proof, this shows that
the flattening stratification for p∗F(m) is also a flattening stratification for F , if m is
large enough.

8. Existence of the Hilbert scheme.

Theorem 8.1 (Grothendieck). Assume that X is projective over S and P is a numer-
ical polynomial. Then HilbPX/S exists and is projective over S.

P r o o f. First step: we may assume that X = P nS . Indeed, fix a closed imbedding
X ⊆ P nS over S, and assume that H = HilbP

P
n
S
/S exists. Let Z ⊆ P nH be the universal

subscheme. Fix a sufficiently large integer m, and consider the zero locus of the composed
map α of sheaves on H:

α: (p∗IX(m))H → (p∗OPn
S

(m))H = π∗OPn
H

(m)→ π∗OZ(m)

Here p:P nS → S and π:P nH → H are the natural maps. For a T -point t:T → H, it is
fairly clear that ZT ⊆ XT if and only if t∗(α) = 0. Therefore the zero locus of α, defined
by the appropriate Fitting ideal of Coker(α), represents the Hilbert functor of X/S.

Second step: we may assume that we are in the absolute case, i.e., that S = Spec(Z).
In general, if S′ → S is any base change and if HilbPX/S exists, then HilbPX×SS′/S′ =
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(HilbPX/S)×S S′. This is straightforward. Thus it remains to be proved that the Hilbert
scheme of P n = P n

Z
exists.

Third step: to imbed the Hilbert functor into a Grassmann functor. Fix m0 = m0(P )
as in Proposition 4.3. Then for any scheme T and flat family of subschemes Z ⊆ P nT with
Hilbert polynomial P in the fibers, the induced map H0(OPn(m0))T → prT ∗OZ(m0) is
surjective and the second sheaf locally free of rank P (m0). But this means that we get a
T -point of the Grassmann variety GrassP (m0)(H0(OPn(m0))). By base change theorems
again, this is functorial in T , giving rise to a morphism of functors:

φ: HilbP
Pn → GrassP (m0)(H0(OPn(m0))).

The morphism φ is injective. To see this, let Z ⊆ P nT correspond to an element [Z] ∈
HilbP

Pn(T ), with ideal sheaf IZ . Then φ([Z]) determines the following short exact se-
quence:

0→ prT ∗IZ(m0)→ H0(OPn(m0))T → prT ∗(OZ(m0))→ 0.
Composing the inclusion here with the pullback of the natural surjection

H0(OPn(m0))Pn → OPn(m0),

we obtain, by base change, maps on P n × T :

prT
∗prT ∗IZ(m0)→ H0(OPn(m0))Pn×T → OPn(m0)Pn×T

where, by Proposition 4.2(3) for IZ , the image of the composed map is IZ(m0). Hence
Z is determined by φ([Z]).

Fourth step: to show that the image of φ is a locally closed subfunctor of the Gras-
smann functor. Denote by G the Grassmann variety

G = GrassP (m0)(H0(OPn(m0))),

and let
0→ R→ H0(OPn(m0))G → Q→ 0

be the universal exact sequence on G. Taking the leftmost map here and the tautological
map

H0(OPn(m0))Pn → OPn(m0),
we obtain a map on P n ×G:

prG
∗R→ H0(OPn(m0))Pn×G → OPn(m0)Pn×G

where the image of the composed map is IW (m0) for some closed subscheme W ⊆ P nG.
Now consider the flattening stratum GP for the coherent sheaf OW . I claim that the
image of φ is exactly hGP . Indeed, for any family [Z] ∈ HilbP

Pn
(T ), we have already

shown above that the pullback of W under the induced map T → G is just Z again.
Since this is flat over T , we have a factorization T → GP → G. This shows that the
image of φ is contained in hGP . On the other hand, the restriction WGP is flat with
Hilbert polynomial P , hence gives rise to a GP -valued point of the Hilbert functor, or
equivalently, a morphism ψ:hGP → HilbP

Pn
. Clearly ψ is a two-sided inverse to φ, which

completes step four.
It follows by Proposition 2.12 that HilbP

Pn exists and is quasiprojective over Z.
The fifth and final step is to show that HilbP

Pn is complete, i.e., proper over Spec(Z).
For this one uses the valuative criterion for completeness: Let A be a discrete valuation
ring and let U ⊆ U = Spec(A) be the complement of the closed point. Suppose u:U →
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HilbP
Pn is given, corresponding to a subscheme Z ⊆ P n × U flat over U . Now simply

let Z ⊆ P n
U

be the closure of Z. Then Z is flat over U [6], hence u can be extended to
u:U → HilbP

Pn .

R e m a r k 8.2. Hartshorne has proved that HilbP
Pn is connected [5]. Not much is

known about the number of irreducible components in general; for example for space cu-
rves, the problem has been studied for more than a century, and in spite of some progress,
the classification of irreducible components seems completely out of reach. Even compo-
nents where the general point corresponds to a nonsingular curve can be non-reduced, as
was first observed by Mumford [10].

9. Variations. These variations are taken from Grothendiecks original paper [4]
where he defines and constructs the Quot and Hilbert schemes.

Quot scheme. The first variation is the generalization to the Quot scheme. The setting
is this: Let X be an S-scheme and let F be a coherent sheaf on X. For any S-scheme T ,
put

QuotF/X/S(T ) = {coherent quotient sheaves FT → G, with G flat over T},

where as usual quotients are equal if their kernels coincide. Then we have the following
theorem:

Theorem 9.1. Assume that X → S is projective, X ⊆ P nS , F a coherent sheaf
on X, and P a numerical polynomial. Let QuotPF/X/S be the subfunctor of QuotF/X/S
corresponding to quotients with Hilbert polynomial P . Then QuotPF/X/S is represented by

a projective S-scheme QuotPF/X/S.

Note that F needs not necessarily be flat over S. The proof is very similar to the one
we have given for the Hilbert scheme. First, if F ′ → F is a surjection, there is induced
a closed imbedding QuotF/X/S → QuotF ′/X/S

of functors, so it suffices to prove that

QuotPF/X/S is representable in the special case where F = NOPn
S

(−m) for some integer
m. Twisting everything by m and replacing P by the polynomial z 7→ P (z +m) we may
assume that F = NOPn

S
. From there on everything goes more or less exactly as in the

Hilbert scheme case, by finding a regularity bound in terms of P and an imbedding of
the Quot functor in the Grassmann functor given by taking direct image of a twist higher
than the regularity.

If F = OX , we recover the Hilbert scheme: QuotPOX/X/S = HilbPX/S .
In another direction, suppose that X = S. Then any Hilbert polynomial is a constant,

and a quotient is flat if and only if it is locally free. So we recover the Grassmannian
again, QuotrF/S/S = Grassr(F) as S-schemes. Note therefore that the Grassmannian
exists even when F is not locally free. It is essential here that we consider quotients and
not subsheaves, of course; this is one of the advantages of Grothendieck’s contravariant
constructions, like P (F).

Quasi-projective case. Suppose U ⊆ X is an open subscheme of some projective
scheme X over S. Consider the following subfunctor h of the Hilbert functor of X/S:

h(T ) = {[Z] ∈ HilbPX/S(T ) | Z ⊆ U ×S T ⊆ X ×S T}.
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Then h is represented by an open subscheme of HilbPU/S ⊆ HilbPX/S . This depends actually
only on the quasi-projective S-variety U , as it coincides with the functor of subschemes
of U ×S T which are proper (or equivalently, projective) over S. For example, we have a
Hilbert scheme for closed subschemes of An of fixed finite length.

Sections and morphisms. Let f :X → Y be a separated S-morphism. Consider the
functor ∏

Y/S

(X/Y )(T ) = {morphisms g:YT → XT such that fT ◦ g = 1YT }.

Clearly, an element of
∏
Y/S(X/Y )(T ) is equivalent to the datum of a closed subscheme

of XT mapping isomorphically to YT under fT . Thus if Y is flat over S, then
∏
Y/S(X/Y )

is an open subfunctor of HilbX/S . It follows that

Theorem 9.2. If Y is flat and proper over S, and X is quasi-projective over S, then∏
Y/S(X/Y ) is represented by an open subscheme of HilbX/S.

In the special case when X = Y ×S Z and f is the first projection, a section of f over
YT is nothing but a morphism Y → Z. Hence

Theorem 9.3. If Y is projective and flat over S, and Z is quasi-projective over S,
the functor

T 7→ {set of S-morphisms YT → ZT }
is representable by an S-scheme HomS(Y,Z) ⊆ HilbY×SZ/S. The subfunctor of isomor-
phisms YT → ZT is represented by an open subscheme IsomS(Y,Z) ⊆ HomS(Y,Z).

There are many other variations as well that one may build from Hilbert schemes.
For example, one might want to study nested pairs Z ⊆ Y of subschemes of X, or more
general collections of subschemes of several schemes with morphisms between them on so
on. One example which has been useful is the parameter space for morphisms f :P 1 → X
taking a given finite collection of points Pi ∈ P 1 to specified subschemes Yi ⊆ X. This
space plays a part in areas such as the Mori minimal model program as well as in the
study of mirror symmetry and Calabi-Yau manifolds.

10. Local structure of the Hilbert scheme. We will not attempt to go into
deformation theory in any detail, except to prove Grothendieck’s formula for the tangent
space of the Hilbert scheme.

Theorem 10.1. Let X be an algebraic scheme over a field k, and assume that the
Hilbert scheme H = HilbX/k exists (for example, that X is projective over k). Let [Z] ∈ H
correspond to a subscheme Z ⊆ X. Then the Zariski tangent space of the Hilbert scheme
H at the point [Z] is canonically isomorphic to HomX(IZ ,OZ).

P r o o f. Let D = Spec(k[ε]) where ε2 = 0. There is a natural inclusion i: Spec(k)→ D.
As remarked earlier, the tangent space to H at [Z] can be identified with the set of
ξ ∈ hH(D) such that the i∗(ξ) = [Z]. We will not go into all details in this proof, but be
content with giving a description of both ways of the natural correspondence asserted in
the theorem.

First, let Z̃ ⊆ X×D be a subscheme corresponding to a tangent vector ξ, i.e., it is flat
over D and restricts to Z modulo ε. We will construct a homomorphism φξ: IZ → OZ .
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Tensoring together the exact sequences 0 → k
ε−→ k[ε]

p−→ k → 0 and 0 → I
Z̃
→

OX ⊗k k[ε] → O
Z̃
→ 0 and using the flatness assumption, we get a commutative exact

diagram
0 0 0y y y

0 −−−−→ IZ −−−−→ OX −−−−→ OZ −−−−→ 0
ε

y ε

y yε
0 −−−−→ I

Z̃
−−−−→ OX ⊗k k[ε]

β−−−−→ O
Z̃
−−−−→ 0y γ

y yπ
0 −−−−→ IZ −−−−→

α
OX −−−−→ OZ −−−−→ 0y y y

0 0 0
The inclusion k → k[ε] induces a section j:OX → OX ⊗k k[ε] of γ. The composed map
β ◦ j ◦ α clearly has image contained in the kernel of π, hence induces a map

φξ: IZ → OZ .

Conversely, starting with an element φ ∈ HomX(IZ ,OZ), we can construct a lifting
Z̃ of Z as follows: First cover X by open affine subschemes U . Then X × D is covered
by open affine subschemes U ×D, and it suffices to construct Z̃ by glueing together its
restrictions to these open affine sets. Let U = Spec(A) be an open affine of X, and let
the ideal of Z ∩ U be generated by the ideal I = (f1, . . . , fr) ⊆ A. Now construct an
ideal Ĩ ⊆ Ã = A ⊗k k[ε] in the following way: For each i = 1, . . . , r, let gi ∈ A be a lift
of the element φ(fi) ∈ A/I, put f̃i = fi + εgi, and let Ĩ = (f̃1, . . . , f̃r). Then one needs
to check that the ideal Ĩ is independent of the choices made (of the generators fi and
the liftings gi) and that Ã/Ĩ is flat over k[ε]. We leave this check to the reader, as well
as the verification that the various Ĩ taken together defines a subscheme Z̃ ⊆ X ×D as
required.

Finally, one verifies that the two constructions we have given are inverses to each
other. This completes the proof.

Any homomorphism of OX -modules IZ → OZ factors uniquely through IZ/I2
Z . This

sheaf is called the conormal sheaf of Z in X, and its dual is called the normal sheaf NZ/X .
If Z is a local complete intersection in X, for example if both X and Z are nonsingular,
the conormal and normal sheaves are locally free, and are called the conormal and normal
bundle, respectively. Thus the first statement in the following theorem, which we state
without proof, is just a rewrite of Theorem 10.1.

Theorem 10.2. The tangent space of the Hilbert scheme H = HilbX/k at the point
[Z] is isomorphic to H0(Z,NZ/X). If Z is a local complete intersection in X, we have
the inequalities

h0(NZ/X)− h1(NZ/X) ≤ dim[Z]H ≤ h0(NZ/X).
In particular, if H1(NZ/X) = 0, then H is nonsingular at [Z]. More generally, if the first
inequality is an equality, then H is a local complete intersection at [Z].
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Part of this is proved in [4], but the lower bound for the dimension is not there. For a
complete proof of this theorem and similar theorems in much more general situations, see
Laudal’s work [8]. For a related case, the lower bound was proved by Mori [9]. The essential
ingredient is a technique called obstruction calculus. For example, suppose that Z̃ is a
lifting of Z ⊆ X to k[ε] = k[t]/(t2) as in in the proof above. Then one may ask whether
there Z̃ can be further lifted to k[t]/(t3), and so on. The systematic study of such lifting
problems is the domain of deformation theory. It turns out that there is a functorially
defined element (called the obstruction) in some sort of cohomology group (obstruction
group) which vanishes exactly when a lifting exists. Information bounding the size of the
obstruction group is useful even when computing the actual obstructions is impractical.
For example, the theorem above follows quite formally from general deformation theory
[8, 4.2.4] once we can establish that the obstruction group for the Hilbert scheme at a
local complete intersection Z ⊆ X is contained in H1(Z,NZ).
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