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Abstract. The parameter spaces for quadrics are reviewed. In addition, an explicit formula
for the number of quadrics tangent to given linear subspaces is presented.

1. Schubert’s problem.
1.1. One century ago, in 1894, Schubert considered the following problem: Let P be a

projective space. Assume there is given in P a finite number of linear subspaces in general
position, say m1 hyperplanes, m2 codimension-2 planes, and in general, mi codimension-i
planes. Then, how many quadrics in P are tangent to the given linear subspaces?

In Schubert’s problem, the quadrics are assumed to be non-singular. Assume P =
P(E) where E is a vector space of rank r. Then a non-singular quadric in P corresponds to
a regular symmetric r×r matrix up to multiplication by a scalar. The symmetric matrices
form a vector space of rank

(
r+1
2

)
. Therefore, the set of non-zero symmetric matrices up

to multiplication by a scalar is parametrized by a projective space of dimension N :=(
r+1
2

)
−1. In this PN , the matrices with non-zero determinant form an open subset U . By

construction, the points of U correspond to the non-singular quadrics in P , that is, U is
a parameter space for the set of non-singular quadrics in P . The set of quadrics that are
tangent to a given linear subspace of P form, in the parameter space U , a hypersurface.
Therefore, in Schubert’s problem it is natural to require that the number

∑
imi of given

linear subspaces is equal to the dimension N of the parameter space. Then the quadrics
tangent to the given linear subspaces correspond in the parameter space to the points
in the intersection of N hypersurfaces. It could be hoped that the intersection is finite;
Schubert’s problem is then to count the number of points in the intersection.

To solve the counting problem by enumerative techniques, a closed (or complete)
parameter space is needed. By construction, the space U is an open (dense) subset of
PN . A naive completion of U is then to take PN as its closure. Clearly, the boundary
points of U in PN correspond to the singular quadrics in P . However, we cannot expect
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to solve Schubert’s problem allowing singular quadrics as solutions. For instance, among
the singular conics in a fixed projective plane are the double lines, corresponding to
symmetric 3× 3 matrices of rank 1. Viewed as a singular conic, a double line is tangent
to any line. Hence, the set of conics tangent to any finite number of given lines will always
contain the infinite set of double lines.

Schubert saw that it was possible to refine the notion of a limit point of U to obtain a
different closure B of U . These refined limit points of U correspond to refined degenera-
tions of non-singular quadrics. They are called complete quadrics. The refined closure B
of U is then a parameter space for the complete quadrics. In the parameter space B, the
complete quadrics tangent to a given linear subspace of P form a hypersurface. Moreover,
given N linear subspaces in general position in P , the corresponding hypersurfaces of B
intersect in a finite number of points.

In fact, Schubert considered a more general problem. He allowed the p-dimensional
projective space P to vary in a fixed projective space Q subject to a given Schubert
condition: fix in Q a flag of r = p+ 1 linear subspaces,

L1 ⊂ L2 ⊂ · · · ⊂ Lr.

The corresponding Schubert condition on a p-plane P in Q is that dimP ∩ Li ≥ i − 1
for i = 1, . . . , r. The Schubert condition is said to be of type A = (a1, . . . , ar), where
ai = dimLi. The general problem considered by Schubert is the following: Given mi

codimension-i planes in Q and a Schubert condition of type A = (a1, . . . , ar). How many
quadrics in a variable p-plane P satisfying the given Schubert condition are tangent to
the given linear subspaces?

1.2. To describe a naive parameter space for the general problem, assume that
Q = P(V ) where V is a vector space. Then the p-planes P in Q correspond to the
rank-r quotients of V , where r = p + 1. Thus the set of p-planes is parametrized by
the Grassmannian Grassr(V ). In the Grassmannian, the p-planes P satisfying a given
Schubert condition of type A form a subspace Ω of dimension equal to

∑r
i=1(ai − i+ 1).

For a fixed p-plane P , the space of all quadrics in P is of dimension
(
r+1
2

)
− 1. Hence the

space of quadrics in a variable P satisfying the given Schubert condition form a space of
dimension

∑
ai −

(
r
2

)
+
(
r+1
2

)
− 1 =

∑
ai + r − 1. It is convenient to define

N(A) :=
r∑

i=1

ai + r − 1.

Thus the parameter space of all quadrics in a varying p-plane satisfying the given Schubert
condition of type A is of dimension N(A). In the parameter space, the quadrics tangent
to a given linear subspace form a hypersurface. Therefore, in the general problem it is
natural to require that the number of linear subspaces is equal to N(A), that is,∑

i

mi = N(A).

In Schubert’s notation, the number of quadrics satisfying the given Schubert condition of
type A = (a1, . . . , ar) and tangent to mi codimension-i planes for i = 1, . . . , q is denoted
by the symbol,

(1.2.1) (a1, . . . , ar)µm1
1 · · ·mmq

q .
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1.3. It was Schubert’s ultimate goal to determine the number (1.2.1) explicitly as a
function of the integers a1, . . . , ar and m1, . . .mq. He did find a recursive procedure for the
computation of the number. In the simplest case q = 1, that is, when all the given linear
subspaces are hyperplanes, the number depends only on a1, . . . , ar, since m1 = N(A).
Schubert [18] defined a function ψa1,...,ar recursively, and proved the formula,

(a1, . . . , ar)µN(A)
1 = ψa1,...,ar .

He did not find an explicit formula for his function ψ, but he found other recursion
formulas. An explicit formula was first found by Laksov–Lascoux–Thorup [14]. At the
end of the paper we summarize some of the properties of the function ψ.

In terms of the function ψ, Schubert gave explicit formulas for the numbers (1.2.1)
for q = 2 and for q = 3. In his paper [19], he considered the analogous problem for
correlations. There he found a beautiful explicit expression for the function analogous
to ψ, but he never published for correlations results corresponding to his formulas for
q = 2 and q = 3 for quadrics. Giambelli [6] found for correlations a formula valid for all q
under certain restrictions on the numbers mi. In fact, Giambelli’s formula for correlations
is only valid without conditions on the mi when q = 2. In [14], Giambelli’s formula
was reconsidered, and the analogous formula for quadrics was proved. But it should be
emphasized that the analogous formula is only a generalization of Schubert’s formula for
q = 2; it does not encompass Schubert’s formula for q = 3.

It is the purpose of the present paper to describe Schubert’s problem in detail. We
introduce the notion of complete quadrics, and the corresponding tangency conditions.
We show how the application of modern intersection theory to the various parameter
spaces leads to the determination of the number (1.2.1). In addition, we obtain a series
of incidence formulas. Finally, we present some new explicit formulas for the numbers,
specializing to Schubert’s result for q = 3. Other closed formulas were found by Brion
[1]. It should be emphasized that explicit formulas are only of theoretical interest. The
recursive procedure described by Schubert has been verified by several authors, and in
practice it might be easier to use than formulas. For instance, the tables of Schubert for
the numbers have been verified and enlarged using a computer by DeConcini–Gianni–
Procesi [3]. A history of the subject is found, among other places, in the papers of Kleiman
[8,9,10] and Laksov [11,12]. It should also be noted that enumerative problems on quadrics
different from the simple tangency conditions considered here require other parameter
spaces for their solution, see for instance the papers on Halphen’s theory by Casas–Xambó
[2] and Procesi–Xambó [16].

2. Schubert conditions.

2.1. Setup. We work throughout over a field k of characteristic different from 2. Fix a
projective space Q = P(V ), associated to a vector space V over k. The notation is that of
Grothendieck: P(V ) is the set of linear hyperplanes in the vector space V , or equivalently,
the set of surjective linear maps V → k up to multiplication by a scalar. In particular,
the linear subspaces of Q are the projective spaces P(E) where E is a quotient vector
space of V . It will be convenient to define the rank of P(E) to be the rank of E. Thus
the dimension of P(E) is one less than the rank.

In addition, we fix a positive integer r and in Q a strictly increasing flag of r linear
subspaces,

L1 ⊂ L2 ⊂ · · · ⊂ Lr.
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Set p = r − 1. The Schubert condition corresponding to the flag is the condition on
a p-plane P in Q that dimP ∩ Li ≥ i − 1 for i = 1, . . . , r. By definition, the type
of the Schubert condition is sequence A = (a1, . . . , ar), where ai = dimLi. We write
‖A‖ =

∑
i ai and, as in Section 1, N(A) =

∑
i ai + r − 1.

The p-planes P in Q correspond to the rank-r quotients of V . Thus the set of p-planes
is parametrized by the Grassmannian Grassr(V ). In the Grassmannian, the p-planes P
satisfying a given Schubert condition of type A form a subscheme Ω, called the Schubert
subscheme. It is well known that the dimension of the Schubert subscheme is equal to∑r

i=1(ai − i+ 1), see for instance Kempf–Laksov [7, p. 158].

Example 1. Consider lines (r = 2) in Q = P3. There are 6 types of Schubert condi-
tions on a line P in P3:
(01) Given a point on a line: the line P is the given line.
(02) Given a point in a plane: the line P is in the given plane through the given point.
(03) Given a point: the line P goes through the given point.
(12) Given a line in a plane: the line P is in the given plane.
(13) Given a line: the line P intersects the given line.
(23) Given a plane: the line P can vary freely.

Example 2. A Schubert condition of type (0, 1, . . . , p) requires the p-plane P to
be fixed. Hence, the number (0, 1, . . . , p)µm1

1 · · ·µ
mp
p in Schubert’s notation (1.2.1) is the

number of solutions to Schubert’s simple problem. For instance, a fixed plane corresponds
to the Schubert condition (012), and N(012) = 5. Hence (012)µm

1 µ
n
2 , for m + n = 5, is

the number of conics through n given points and tangent to m given lines.
Consider planes (r = 3) in a fixed P3. A given point in a given plane defines a Schubert

condition of type (023). It requires the plane P to go through the given point. We have
N(023) = 7. For instance, (023)µ7

2 is the number of conics that lie in a plane through a
given point and intersect seven given lines.

2.2. The notion of incidence will play an important role. Let L = P(V/K) be a linear
subspace of Q. The codimension d of L in Q is the rank of the vector subspace K. Let
P be a second linear subspace of Q, of dimension p. If p < d, then P and L will be
called incident, if L ∩ P is non-empty. If p ≥ d, then P and L will be called incident, if
the codimension of L ∩ P in P is strictly smaller that d. In terms of vector spaces, say
P = P(E) where E is a quotient of V , then the spaces P and L are incident if and only
if the composite linear map, K → V → E, is not of maximal rank.

More generally, assume there is given a rank-r flag in Q, that is, a strictly increasing
flag of linear subspaces,

P1 ⊂ P2 ⊂ · · · ⊂ Ps = P,

where P is of rank r. Then L is said to be incident with the flag if L is incident with one
of the spaces Pj .

Clearly, if the codimension d is less than rank r, then L is incident with the flag if
and only if, for the first j such that L∩Pj 6= ∅ we have that the codimension of Pj ∩L in
Pj is strictly less than d. If d = r, then L is incident with the flag if and only L∩ P 6= ∅.

If the flag is complete, that is, s = r or equivalently, dimPj = j − 1 for all j, then L
is incident with the flag if and only if L ∩ Pd 6= ∅.



PARAMETER SPACES FOR QUADRICS 203

Example 3. Consider a line L in P3. It is of codimension 2. A flag consisting of a
point in a plane is incident with L if either L goes through the point or L lies in the
plane.

Consider a complete rank-3 flag in P3. It consists of a point P1 on a line P2 in a plane
P3. A plane is incident with the flag if it contains the point P1, a line is incident with the
flag if it meets the line P2 and a point is incident with the flag if it is contained in the
plane P3.

3. Quadrics and quadratic forms.

3.1. As the characteristic of the field k is different from 2, a symmetric form on a vector
space E, that is, a linear map u : Sym2E → k can be identified with the corresponding
quadratic form on E. Moreover, we can identify (Sym2E)∗ and Sym2(E∗). Let P be a
projective space, say P = P(E) where E is a vector space of rank r. By definition, a
quadric in P is the subscheme defined by a nonzero equation of degree 2, that is, by a
global section of OP (2). The space of global sections is the symmetric square Sym2(E).
Hence a quadric can be viewed as a nonzero symmetric tensor v ∈ Sym2E, up to a nonzero
scalar. Quadrics may be singular. In fact, the singular space of the quadric defined by
the tensor v is the linear subspace P(E/U), where U is the smallest k-linear subspace
of V such that v belongs to Sym2 U . Note that v as a tensor in Sym2 U is regular: As
a linear map v : k → Sym2 U , the dual map v∗ : Sym2 U∗ → k is a regular symmetric
form on U∗, that is, the associated linear map U∗ → U is an isomorphism. Its inverse,
denoted v−1 : U → U∗, corresponds then to a regular symmetric form u : Sym2 U → k.
The following result is the well known correspondence between singularity of the quadric
and singularity of the quadratic form.

3.2. Lemma. Consider in P = P(E) a linear subspace S = P(E/U). Then the
quadrics in P with S as singular space correspond bijectively to the non-singular forms
u : Sym2 U → k modulo scalars. Moreover, if L = P(E/K) is a linear subspace disjoint
from S, then the quadric defined by a non-singular form u is tangent to L, if and only if
the restriction of u to the subspace U ∩K is singular.

Note in particular that if S is a hyperplane in P , that is, if U is of rank 1, then there
is exactly one quadric in P with S as singular space.

3.3. Definition. A complete rank-r quadric in Q consists of a rank-r flag of linear
subspaces,

(3.3.1) ∅ = P0 ⊂ P1 ⊂ · · · ⊂ Ps = P,

where P is of rank r, and, for j = 1, . . . , s, a quadric in Pj with Pj−1 as singular space.
In particular, since P0 is empty, the quadric in P1 is non-singular. The complete quadric
is called non-singular if s = 1. It is said to be degenerated in rank q if some Pj for j < s
is of rank q, and it is said to be completely degenerated if it is degenerated in every
rank q < r. Clearly, completely degenerated complete quadrics correspond bijectively to
complete flags.

A linear subspace L of codimension d ≤ r in Q is said to be tangent to the complete
quadric if either L is incident with the flag (3.3.1) or the first non-empty intersection
L ∩ Pj for j = 1, . . . , s is tangent to the given quadric in Pj .

If the codimension d is equal to r, then L is tangent to the complete quadric if and
only if L ∩ P 6= ∅. Assume d < r. Then d ≤ dimP , and hence L ∩ P 6= ∅. Consider
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the smallest j such that L ∩ Pj 6= ∅. Then L is incident with the flag if and only if the
codimension of L∩Pj in Pj is strictly less than d. Assume that the codimension of L∩Pj

in Pj is equal to d. Then L is tangent to the complete quadric if L∩Pj is tangent to the
given quadric in Pj . Note that the linear subspace L ∩ Pj is disjoint from the singular
space of the quadric in Pj , since L is disjoint from Pj−1 by the choice of j.

Example 4. In P3 there are four types of rank-3 flags: a plane P , a line P1 in a plane
P , a point P1 in a plane P , and a point P1 on a line P2 in a plane P . Correspondingly,
there are four types of complete rank-3 quadrics in P3:

(1) A non-singular conic in a plane P ,
(2) A non-singular quadric on a line P1 (i.e., two different points on P1) contained in

a plane P .
(3) Two different lines in a plane P intersecting in a point P1.
(4) A point P1 on a line P2 in a plane P .

Let L be a plane in P3. A quadric of type (1) is tangent to L if either P = L or the
intersection L ∩ P is tangent to the conic. A quadric of type (2) is tangent to L if one
of the two points on P1 belong to L. A quadric of type (3) or (4) is tangent to L if the
point P1 belongs to L.

Let L be a line in P3. A quadric of type (1) is tangent to L, if L intersects the conic
(in particular, if L is contained in the plane P ). A quadric of type (2) is tangent to L,
if L meets the line P1. A quadric of type (3) is tangent to L, if L meets one of the two
lines. Finally, a quadric of type (4) is tangent to L if L meets the line P2.

Note that tangency is also defined when L is a point. A point L of P3 is tangent to
the quadric, if L belongs to the plane of the quadric.

3.4. Translation into algebra. A p-plane P of Q is a projective space P = P(E), where
E is a rank-r quotient of the vector space V . In the flag (3.3.1), the subspace Pj of P is
a projective space P(E/Ej) where Ej is a k-linear subspace of E. Hence the flag (3.3.1)
corresponds to a flag of k-linear subspaces of E:

(3.4.1) E = E0 ⊃ E1 ⊃ · · · ⊃ Es = (0).

It follows from 3.2 that a quadric in Pj with Pj−1 as singular space corresponds to
a nonsingular quadratic form uj : Sym2Ej−1/Ej → k. Therefore, a complete rank-r
quadric in Q = P(V ) may be viewed algebraically as a rank-r quotient E of V , a flag
of k-linear subspaces (3.4.1), and a sequence u = (u1, . . . , us) consisting of non-singular
quadratic forms up to scalar uj : Sym2Ej−1/Ej → k. We will refer to the algebraic
counterpart as the complete quadratic form u = (u1, . . . , us) on E. Note that a complete
quadratic form on E could have be defined inductively: u1 is a non-singular quadratic
form on E/E1 and u′ := (u2, . . . , us) is a complete quadratic form on E1.

3.5. Definition. Associated to a complete quadratic form u = (u1, . . . , us) on E
there are exterior powers

∧du for d ≤ r. They are surjective forms,∧du : Sym2∧d
E → k,

defined as follows: Let t be the rank of E/E1. Consider first the quadratic form
u1 : Sym2E/E1 → k. In a basis for E/E1, the form u1 is given by a symmetric ma-
trix, and d’th exterior power of u1 is the form

∧du1 : Sym2∧d(E/E1) → k defined by
the matrix of d by d minors of the matrix of u1. Since u1 is nonsingular, the form

∧du1 is
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surjective for d ≤ t. In particular, when d = t, the exterior power
∧tu1 is the determinant

of u1, viewed as a linear map detu1 : det(E/E1)⊗2 → k of 1-dimensional vector spaces.
Now, for d ≤ t, the quadratic form

∧du is defined as the composition,

Sym2∧d
E −→ Sym2∧d

E/E1

∧d
u1

−−−−→ k.

For d ≥ t, there is a canonical surjective linear map,∧d
E → det(E/E1)⊗

∧d−t
E1.

Its symmetric square is a linear map,

Sym2∧d
E → det(E/E1)⊗2 ⊗ Sym2∧d−t

E1.

As u′ := (u2, . . . , us) is a complete quadratic form on E1, we may, by induction on s,
assume that

∧d−tu′ is defined. Then define
∧du as the composition of the quadratic form

detu1 ⊗
∧d−tu′ and the canonical map.

The following result is a consequence of Lemma 3.2.

3.6. Proposition. Let E be a rank-r quotient of V . Given a complete quadric in
P = P(E) corresponding to a complete quadratic form u = (u1, . . . , us) on E. Let L =
P(V/K) be a linear subspace codimension d of Q, corresponding to a k-linear subspace K
of rank d in V . Then L is tangent to the complete quadric, if and only if the following
composition is zero:(∧d

K
)⊗2

−→ Sym2∧d
V −→ Sym2∧d

E

∧d
u

−−−→ k.

4. Parameter spaces of quadrics.

4.1. Clearly, the set of non-zero quadratic forms Sym2E → k up to scalars is
parametrized by the projective space,

B1 := P(Sym2E),

with its universal surjective form u1 : Sym2EB1 → OB1(1). In particular, the open subset
U of B1 where the form u1 is regular parametrizes the set of non-singular quadrics in
P = P(E). It is well known, see for instance DeConcini–Procesi [4], Laksov [11,12,13],
or Thorup–Kleiman [21], that a parameter space B for the set of complete quadrics can
be constructed from U and B1. The space B is obtained from B1 by a finite sequence
of blowing ups with centers lying over the complement of U . Alternatively, the exterior
powers of u1 define an embedding,

(4.1.1) U ↪→ P(Sym2∧1
E)× · · · × P(Sym2∧r

E),

and B may be described as the closure of its image. The map B → B1 is proper and
smooth, and it is an isomorphism over U . The form u1 on B1 pulls back to a surjective
form u : Sym2EB → L, where L is the pullback of OB1(1). The i’th exterior power of u,
for i ≤ r, ∧iu : Sym2∧i

EB → L⊗i,

has as image an invertible subsheaf Mi of L⊗i. In fact, if pi denotes the map from
B into the i’th factor Bi := P(Sym2∧i

E) in (4.1.1), then Mi = p∗iOBi
(1). Moreover,
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for the invertible sheaves Li := Mi+1 ⊗M⊗−1
i there are canonical injective maps, for

i = 1, . . . , r − 1,
Li+1 ↪→ Li.

In fact, it follows from Proposition 3.6 that the concepts of degeneracy and tangency
are geometrically described on the parameter space as follows.

4.2. Proposition. Let B = B(E) be the scheme parametrizing the set of (complete)
quadrics in P = P(E). Then the zero scheme of the inclusion,

Lq+1 → Lq,

parametrizes the set of quadrics degenerated in rank q. Let L = P(E/K) be a linear
subspace of codimension d in P . Then the zero scheme of the composition,(∧d

KB

)⊗2 → Sym2∧d
EB →Md,

parametrizes the set of quadrics tangent to L.

4.3. Setup. The theory works over any base scheme. It yields, for any base scheme S
and a locally free sheaf E of rank r on S, a corresponding parameter scheme B(E). On
B, there is an invertible quotient Mi of Sym2∧i E and with Li :=Mi+1 ⊗M⊗−1

i there
is an inclusion Li+1 → Li.

In particular, for Schubert’s problem, let G := Grassr(V ) be the Grassmannian of
rank-r quotients of V , and E the universal rank-r quotient of VG. Then G parametrizes the
p-planes P of Q = P(V ). Moreover, the p-planes satisfying the given Schubert condition
of type A are parametrized by the corresponding Schubert subscheme Ω of G. Take Ω
as base scheme and form over Ω the parameter scheme B(E|Ω). Then the latter scheme
parametrizes the complete rank-r quadrics in Q satisfying the given Schubert condition.
Although the Schubert subscheme Ω depends on the given Schubert condition, we shall
usually indicate only the type A of the Schubert condition and write ΩA for Ω and BA

for B(E|ΩA).

5. Intersection theory on the space of quadrics.

5.1. In the setup of Section 4, let B = BA be the parameter scheme corresponding
to the given Schubert condition of type A. Then B maps to B1 = P(Sym2 E|Ω) by a
composition of blowups. In particular, the dimension of B is equal to the dimension of
B1. As E is of rank r, it follows that the relative dimension of B1 over Ω is equal to(
r+1
2

)
− 1. Moreover, the dimension of the Schubert scheme Ω is equal to

∑
i ai −

(
r
2

)
.

Hence the dimension of BA is equal to
∑
ai + r − 1, or, with the notation of 2.1, the

dimension is equal to N(A).
Let µd := c1(Md) be the first Chern class of the invertible sheafMd. By Proposition

4.2, a d-dimensional k-linear subspace K of V defines a section of Md, and the zero
scheme of the section parametrizes the set of quadrics tangent to L = P(V/K). Consider,
in the group of cycles modulo rational equivalence on BA, the following class,

(5.1.1) α = µm1
1 · · ·µmq

q ,

where m1 + · · ·+mq = N(A). It follows that the class α is represented by the subscheme
of BA corresponding to complete quadrics that are tangent to mi given codimension-i
planes in general position in Q and lie in a p-plane satisfying the Schubert condition.
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In other words, in Schubert’s notation (1.2.1), the number (A)α is equal to the integral∫
BA

α.
The integral of the class α can be obtained in two steps. First, push the class forward

from BA to the Schubert scheme ΩA, and then integrate the resulting class. The first
step is quite general. Consider any rank-r bundle E on a scheme S. Form the S-scheme
B = B(E). Take any class α which is a homogeneous polynomial,

α = f(µ1, . . . , µr),

in the first Chern classes µi = c1(Mi). Then, as is well known [14], the push forward of α
to S is a linear combination of the Schur functions sJ(E), indexed by strictly increasing
sequences J = (j1, . . . , jr). In fact, the coefficient to sJ(E) depends only on J and the
polynomial f defining the class α, and we denote it 〈J, f〉 or 〈J, α〉. Hence there is an
equation,

(5.1.2)
∫

B(E)/S

α =
∑

J

〈J, α〉sJ(E),

where the integral on the left hand side indicates the push forward from B(E) to the
base S.

5.2. Proposition. The coefficient 〈A,α〉 of 5.1 is equal to the number (A)α in Schu-
bert’s notation (1.2.1). Moreover, for the case α = µN

1 we have the equation,

(A)µN(A)
1 = ψA,

where ψ is the function of Schubert, defined in Section 8.

P r o o f. Take S = ΩA and B = BA in (5.1.2), and integrate the equation. On the left
we obtain Schubert’s number (A)α. On the right, we obtain 〈A,α〉, since by Giambelli’s
formula [5, p. 267], the integral over ΩA of sJ(E) is equal to 1 when J = A and equal to
0 otherwise. Thus (A)α = 〈A,α〉.

Consider in particular the class α = µN
1 . For any rank-r bundle E on any scheme S,

the invertible sheaf M1 on B = B(E) is the pullback of the tautological bundle O(1) on
B1 := P(Sym2 E). Consequently, by the Projection Formula, the push forward of α to B1

is equal to (c1O(1))N . Therefore, the following equation holds:∫
B(E)/S

µN
1 =

∫
P(Sym2 E)/S

(c1O(1))N .

The right hand side is, by definition, the (N − e + 1)’th Segre class of Sym2 E , where
e =

(
r+1
2

)
is the rank of Sym2 E , cf. [5, p. 46]. Therefore, by definition of the function ψ,

cf. Section 8, we have the equation,∫
B(E)/S

µN
1 =

∑
N(J)=N

ψJsJ(E).

It follows that ψJ = 〈J, µN
1 〉. Consequently, the asserted equation, (A)µN(A)

1 = ψA, follows
from the first part of the Lemma.

5.3. Definition. In the general setup of Section 4, the first Chern class µi := c1(Mi)
is called the i’th characteristic class. For i = 1, . . . , r−1, the zero scheme of the inclusion
Li+1 → Li is a divisor Di in B. Its first Chern class, δi := c1(Li ⊗ L⊗−1

i+1 ), is called the
i’th degeneration class. By definition of the Li we have that c1(Li) = µi+1 − µi. It is
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convenient to define λi := c1(Li+1) for i = 0, . . . , r − 1. Then, obviously, we have the
fundamental relations,

µi = λ0 + · · ·+ λi−1 for i = 1, . . . , r,
δi = λi−1 − λi for i = 1, . . . , r − 1.

In the sequel, a class will mean a class belonging to the ring generated by the characteristic
classes µi, that is, a class is a homogeneous polynomial with integer coefficients in the
classes µi. It follows from the first set of fundamental relations that a class alternatively
may be viewed as a polynomial in the classes λi.

The following result and its corollary are crucial for our application of intersection
theory to the parameter schemes. The result reflects the geometry of the degeneration
divisor Dq into properties of Chern classes. A simple case of the result is found in [14,
(6.2)(2), p. 175]; for a proof in general, see [20].

5.4. Key Result. Fix q < r. Consider two classes of the following forms,

α = f(µ1, . . . , µq), β = g(µq+1 − µq, . . . , µr − µq),

where f and g are polynomials in q and r−q variables. Then the following equation holds:

〈A,αβδq〉 =
∑

I∪J=A

sign(JI)〈I, f〉〈J, g〉 ,

where the sum is over all pairs of complementary subsequences (I, J) of A with q and
r − q elements respectively, and JI denotes the concatenated sequence.

5.5. Corollary. Consider a class of the following form,

γ = λ l0
0 λ

l1
q1
· · ·λ ls

qs
δq1 · · · δqs

,

where 1≤q1< · · ·<qs ≤ p. Assume that the degree l0 + · · ·+ ls + s of γ is equal to N(A).
Then the following formula holds:

〈A, γ〉 =
∑

J0∪···∪Js=A

sign(Js · · · J0)ψJ0 · · ·ψJs
,

where the sum is over all those shuffles (J0, . . . , Js) of A for which the number of elements
in J0 · · · Jt is equal to qt+1 and N(Jt) = lt for t = 0, . . . , s− 1.

P r o o f o f t h e C o r o l l a r y. An s-shuffle of A is a decomposition of the sequence A
into an ordered set (J0, . . . , Js) of s+1 subsequences. The concatenated sequence Js · · · J0

is then a permutation of the sequence A.
Assume first that s = 0. Then the class γ is of the form λ l0

0 , and by hypothesis
l0 = N(A). The only 0-shuffle of A is J0 = A. As λ0 = µ1, the asserted formula reduces
to the formula 〈A,µN(A)

1 〉 = ψA proved in 5.2. In general, the asserted formula follows by
induction on s using the Key Result 5.4.

6. Incidence formulas.

6.1. The class δq is the class of the divisor Dq of B(E) corresponding to complete
quadrics that are degenerated in rank q. The product class δ := δ1 · · · δr−1 is represented
by the intersection D := D1 ∩ · · · ∩ Dr−1. The intersection D parametrizes the set of
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completely degenerated quadrics, or equivalently, the set of complete flags in E . Over D,
there is a universal flag corresponding to (3.4.1),

ED = E0 ⊃ E1 ⊃ · · · ⊃ Er = (0),

such that the successive quotients Ej−1/Ej are invertible. Moreover, when restricted to
D, the invertible module Md is the square of the tensor product E0/E1 ⊗ · · · ⊗ Ed−1/Ed.
Hence the Chern class µd is twice the Chern class of the tensor product.

In the notation of 4.3, assume that B = BA. Then the subscheme D parametrizes the
set of complete rank-r flags in Q satisfying the given Schubert condition. The subscheme
D is of codimension r−1 in B. Hence the dimension of D is equal to N(A)−r+1 = ‖A‖.
Consider for m1 + · · ·+mr = ‖A‖ the number of complete rank-r flags in Q that satisfy
the given Schubert condition and are incident with mi given codimension-i planes for
i = 1, . . . , r. In Schubert’s notation [18, p. 171] the number is denoted by the symbol,

(6.1.1) η(A)µm1
1 · · ·µmr

r .

When restricted to D, the Chern class µd is equal to twice the Chern class of the tensor
product E0/E1 ⊗ · · · ⊗ Ed−1/Ed. The Chern class of the tensor product is represented by
the hypersurface in D consisting of flags that are incident with a given codimension-d
plane in Q. It follows, with α := µm1

1 · · ·µmr
r , that the integral over D of α is equal to

2‖A‖ multiplied by Schubert’s number (6.1.1). The integral over D of α is equal to the
integral over B of αδ and the latter integral is, by Lemma 5.2, equal to the coefficient
〈A,αδ〉. Hence the following equation holds:

(6.1.2) η(A)α = 2−‖A‖〈A,αδ〉 .

Naturally, we extend Schubert’s notation η(A)α by linearity to any class α.

6.2. Proposition. Let α = λ l0
0 · · ·λ

lp
p be a monomial in the Chern classes λi. Assume

that the degree l0+· · ·+lp of α is equal to ‖A‖. If the sequence (l0, . . . , lp) is a permutation
of the sequence A, then

(6.2.1) η(A)α = sign(lp, . . . , l0);

otherwise, η(A)α = 0.

P r o o f. The product γ := αδ is of the form in 5.5 with s := p and qj := j. Hence
〈A,αδ〉 is given by the sum in 5.5 over p-shuffles of A. The p-shuffles are the permutations
(j0, . . . , jp) of the sequence A and the sum is over those permutations for which N(jt) = lt
for t = 0, . . . , p−1, or equivalently, jt = lt for t = 0, . . . , p−1. It follows that the coefficient
〈A,αδ〉 vanishes unless (l0, . . . , lp) is a permutation of A. Moreover, if (l0, . . . , lp) is a
permutation of A, then there is only one term in the sum, and we obtain the equation,

(6.2.2) 〈A,αδ〉 = sign(lp, . . . , l0)ψl0 · · ·ψlp .

The function ψ in one variable is given by ψl = 2l. Hence ψl0 · · ·ψlp = 2‖A‖ when
(l0, . . . , lp) is a permutation of A. Thus (6.2.1) follows from (6.2.2) by dividing by 2‖A‖.

6.3. Corollary. Schubert’s number (6.1.1) is given by following sum over all per-
mutations (b1, . . . , br) of the sequence A:

(6.3.1) η(A)µm1
1 · · ·µ

mr
1 =

∑
b1,...,br

sign(b1, . . . , br)Cb1,...,br
,
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where Cb1,...,br
is the following product of r binomial coefficients,

Cb1,...,br
=
(
mr

b1

)(
mr−1 +mr − b1

b2

)
· · ·
(
m1 + · · ·+mr − b1 − · · · − br−1

br

)
.

Note that the last factor in the product is equal to 1, because b1, . . . , br is a permutation
of A and m1 + · · ·+mr = ‖A‖.

P r o o f. Since µi = λ0 + · · · + λi−1, the assertion follows from the proposition by
expanding the left hand side of (6.3.1) as a polynomial in the classes λj .

Example 5. Consider complete rank-2 flags in Q = Pn. Each flag consists of a point
P1 on a line P2. The Schubert condition for the flag to vary freely is of type A = (n−1, n),
and ‖A‖ = 2n− 1. Consider the number of flags that are incident with 1 hyperplane and
2n− 2 codimension-2 planes. In Schubert’s notation, the number is η(n− 1, n)µ1µ

2n−2
2 .

Thus, by 6.3, the number is the difference,

(6.3.2)
(

2n− 2
n− 1

)
−
(

2n− 2
n

)
=

1
n

(
2n− 2
n− 1

)
.

Note that a flag P1 ⊂ P2 is incident with a hyperplane H, if and only if the point P1

belongs to H. In other words, when H is given, then for the general flag incident with
H, the point P1 of the flag is simply the intersection of P2 and H. Hence, the number
(6.3.2) is also equal to the number of lines that are incident with 2n − 2 codimension-2
planes in Pn. For instance, in P3 there are 2 lines that are incident with four given lines.

6.4. The formula in 6.3 is due to Schubert [18, § 4]. By expanding the binomial
coefficients in the product Cb1,...,br in terms of factorials we obtain, since (b1, . . . , br) is
a permutation of A, a fraction with the denominator a1! · · · ar!. For special sequences of
exponents (m1, . . . ,mr) the expression can be simplified. For instance, for the sequence
(r−1, r−2, . . . , 1,m), where m = ‖A‖−

(
r
2

)
, the following formula of Schubert [17, p. 117]

is obtained:

(6.4.1) η(A)µr−1
1 µr−2

2 · · ·µr−1µ
m
r =

m!
a1! · · · ar!

∆(a1, . . . , ar),

where ∆(a1, . . . , ar) =
∏

j>i(aj − ai). As in Example 5, when a Schubert condition of
type A is given in Pn, the number (6.4.1) is equal to the number of rank-r planes in Pn

that satisfy the given Schubert condition and are incident with m given codimension-r
planes. For example, in P3 take r = 2 and A = (23). Then m = 4 and we recover the
result of Example 5.

7. Tangency formulas.

7.1. It is not hard to see from the fundamental relations that any class α has an
expansion as a linear combination of classes γ of the form considered in 5.5, for s =
0, . . . , p. In fact there is an explicit formula for expressing any polynomial in the classes
µi (or in the classes λj) as a linear combination of the classes γ. Hence, corresponding
to the equation of 5.5, there is an explicit formula for the intersection coefficient 〈A,α〉.
When the expansion is applied to a monomial in the classes λj , the following result is
obtained from 5.5, see [20]:
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7.2. Theorem. Let α = λ l0
0 · · ·λ

lp
p be a monomial in the Chern classes λi. Assume

that l0 + · · ·+ lp = N(A). Then the intersection coefficient 〈A,α〉 is equal to the following
expression:

(7.2.1)
∑

1≤q1<···<qs≤p

(−1)s
∑′

A=J0∪···∪Js

sign(Js · · · J0)ψJ0 · · ·ψJs
.

The outer sum is over all strictly increasing sequences 1≤q1< · · ·<qs≤p for s = 0, 1, . . . , p.
The inner sum is over all shuffles (J0, . . . , Js) of A such that, for t = 1, . . . , s, the number
of elements in J0 · · · Jt−1 is equal qt and the following inequality holds:

(7.2.2) N(Jt · · · Js) < lqt + lqt+1 + · · ·+ lp for t = 1, . . . , s.

7.3. In the sum (7.2.1), for s = 0 there is only the single term ψA. In general, for
s > 0, there is a huge number of s-shuffles of A, but the inequalities (7.2.2) limit the
number of s-shuffles that contribute to the sum. For instance, assume for some q < p
that lq+1 = · · · = lp = 0. If qs > q, then for t = s the right side of (7.2.2) is zero and the
left side is positive. Hence no s-shuffle satisfying the conditions if qs > q. Therefore, in
the sum (7.2.1) the summation may be restricted to sequences q1< · · ·<qs ≤ q.

Clearly, if α is a polynomial in the classes λi, then the value of the coefficient 〈A,α〉
can be obtained as a linear combination of the values given in Theorem 7.2 when α is a
monomial. In particular, for α = µm1

1 · · ·µmr
r it is possible, see [20], to obtain an explicit

formula for 〈A,α〉 by expanding µmi
i = (λ0 + · · · + λi−1)mi . In particular, the following

result is obtained from Theorem 7.2.

7.4. Theorem. Consider a class of α of the form,

α = µm1
1 · · ·µmq

q µm
q+1µ

n
q+2

(where 0 ≤ q < p). Set l := m1 + · · ·+mq. Assume that

l +m+ n = N(A).

In addition, assume that the following q − 1 inequalities are satisfied:

(7.4.1)
h∑

i=1

mi >

h∑
i=1

ar−i+1 + h− 1 for h = 1, . . . , q − 1.

Then the intersection coefficient 〈A,α〉 is equal to 1m12m2 · · · qmq multiplied by the fol-
lowing expression,

ψA(q + 1)m(q + 2)n −
∑

I∪J=A

sign(JI)ψIψJDI,J

−
∑

K∪L=A

sign(LK)ψKψLEK,L +
∑

I∪a∪L=A

sign(LaI)ψIψaψLFI,a,L.

The three sums are over shuffles of A, the first over pairs (I, J) with q and r−q elements
respectively, the second over pairs (K,L) with q + 1 and r − q − 1 elements respectively,
and the third over triples (I, a, L) with q, 1 and r−q−1 elements respectively. The terms
in the sums are given by the following expressions:
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DI,J =
n∑

j=0

(
n

j

)N(I)−l∑
t=0

(
m+ j

t

)
qt,

EK,L =
N(K)−l−m∑

j=0

(
n

j

)
(q + 1)m+j ,

FI,a,L =
N(I,a)−l−m∑

j=0

(
n

j

)N(I)−l∑
t=0

(
m+ j

t

)
qt.

7.5. Consider first the case q = 1 of Theorem 7.4. Then formula (7.4.1) is an expression
for the intersection coefficient,

〈A,µl
1µ

m
2 µ

n
3 〉,

where l + m + n = N(A), and there is no restriction for its validity. The formula is
essentially the formula proved by Schubert [18, §9]. Indeed, it is easily checked that the
sums D and E correspond to the sums denoted similarly by Schubert. Moreover, the sum
F is over all pairs (b, a) with 2 elements of A and L is the complementary subsequence.
Clearly, every subset {b, a} with 2 elements yields two terms Fb,a,L and Fa,b,L with
opposite signs in the formula. The difference Fb,a,L − Fa,b,L, for b < a, corresponds to
the term denoted Fb,a by Schubert. Thus, replacing in F the term Fb,a,L by the latter
difference and restricting the summation to pairs (b, a) such that b < a, it follows that F
corresponds to the sum denoted similarly by Schubert.

Consider next the case n = 0 of Theorem 7.4. Then the upper limits for the summation
over j in the sums E and F are negative since N(A) = l+m. Hence E = F = 0. Moreover,
the upper limit for the summation over t in the sum D is equal to m − ‖J‖ − (r − q),
because J, I is a shuffle of A. So the expression for the sum D reduces to the following:

DI,J =
m−‖J‖−(r−q)∑

t=0

(
m

t

)
qt.

Therefore, the formula of Theorem 7.4 for n = 0 reduces to the formula of Laksov–
Lascoux–Thorup [14, p. 176].

Example 6. For m + n = 5, how many plane conics go through n given points and
are tangent to m given lines? By 5.2, the answer is the coefficient cm,n := 〈012, µm

1 µ
n
2 〉.

Hence Theorem 7.4 applies with A = (012) and q := 0. As q = 0, the terms D and F
vanish. So, the answer is given by the expression,

cm,n = ψ0122n −
(
ψ0ψ12E0(m)− ψ1ψ02E1(m) + ψ2ψ01E2(m)

)
,

where Ek(m) :=
∑k−m

j=0

(
n
j

)
. Obviously, ψ012 = 1 and the sums Ek(m) vanish for m =

3, 4, 5. Evaluating the sums Ek(m) for m = 0, 1, 2 and the necessary values of ψ, we
obtain the well known table,

c5,0 = 1, c4,1 = 2, c3,2 = 22 = 4,
c2,3 = 23 − ψ2ψ01 = 4,
c1,4 = 24 − (5ψ2ψ01 − ψ1ψ02) = 2,
c0,5 = 25 − (16ψ2ψ01 − 6ψ1ψ02 + ψ0ψ12) = 1.
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Curiously enough, if we apply instead Theorem 7.4 with q := 1 and n := 0, then we
obtain immediately the last three entries of the table. At any rate, the symmetry in the
table is no surprise since, by duality, cm,n = cn,m.

Example 7. By definition, a cone in Pp is a complete rank-r quadric (i.e., of maximal
rank) degenerated in rank 1. The condition for a p-plane to be fixed is of type A =
(01 . . . p). So the parameter space B of complete quadrics of maximal rank is of dimension
equal to N(A) = p(p + 3)/2. The cones are parametrized by the hypersurface D1 in B,
of dimension equal to N := p(p+ 3)/2− 1. Hence, the number of cones that are tangent
to N codimension-2 planes in Pp is equal to the coefficient,

(7.5.1) 〈01 . . . p, µN
2 δ1〉.

As µ2 = λ0 + λ1, we obtain the expansion of µN
2 as a linear combination of monomials,

µN
2 =

∑
k

(
N
k

)
λk

0λ
N−k
1 . Hence, the coefficient (7.5.1) is equal to the corresponding linear

combination of coefficients 〈A, λk
0λ

N−k
1 δ1〉. The class λk

0λ
N−k
1 δ1 is of the type in 5.5, with

s := 1 and q1 := 1. The sum in 5.5 is over 1-shuffles (J0, J1) of A such J0 is a singleton
and N(J0) = k. As A = (01 . . . p), there are no such shuffles if k > p. If k ≤ p, then the
shuffle is (k | 01 . . . k̂ . . . p), and we obtain, using the values of ψ from the appendix, the
equation,

〈A, λk
0λ

N−k
1 δ1〉 = (−1)p−kψkψ0,1,...,k̂,...,p = (−1)p−k2k

(
p+ 1
k + 1

)
.

Consequently, we obtain for the number of cones (7.5.1) the following expression,

(7.5.2) 〈01 . . . p, µN
2 δ1〉 =

p∑
k=0

(−1)p−k2k

(
N

k

)(
p+ 1
k + 1

)
.

In particular, in P3 the number of cones tangent to 8 given lines is equal to

−
(

4
1

)
+ 2
(

8
1

)(
4
2

)
− 4
(

8
2

)(
4
3

)
+ 8
(

8
3

)
= 92.

7.6. The parameter scheme B parametrizing quadrics of maximal rank in Pp is of
dimension N := N(01 . . . p) = p(p+ 3)/2. In the parameter scheme, the quadrics tangent
to a given quadric form a hypersurface representing the class 2α where α = µ1 + · · ·+µp.
Consequently, the number of quadrics in Pp that are tangent to N given quadrics in
general position is equal to the number,

(7.6.1) 2N 〈01 . . . p, (µ1 + · · ·+ µp)N 〉.

By the fundamental relations in 5.3, α = pλ0 + · · ·+ 2λp−2 + λp−1. Therefore, using the
Multinomial Theorem and Theorem 7.2, the following explicit formula is obtained [20]:

7.7. Proposition. The number of quadrics in Pp tangent to N = p(p+3)/2 quadrics
in general position is given by the expression,

(7.7.1) 2N
∑

1≤q1<···<qs≤p−1

(−1)s
∑′

sign(Js · · · J0)ψJ0 · · ·ψJsCJ0,...,Js .

The inner sum is over all s-shuffles (J0, . . . , Js) of the sequence (01 . . . p) such that, for
t = 1, . . . , s, the number of elements in J0 · · · Jt−1 is equal qt. The number CJ0,...,Js

is the
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restricted sum, ∑′

i1,...,ip

(
N

i1, . . . , ip

)
1ip2ip−1 · · · pi1 ,

where the sum is over all sets (i1, . . . , ip) of non-negative integers satisfying the following
s inequalities,

i1 + i2 + · · ·+ iqt ≤ N(J0 · · · Jt−1) for t = 1, . . . , s.

Example 8. For plane conics, p = 2 and N = 5. For s = 0, the contribution in
the sum (7.7.1) is equal to (2 + 1)5 = 35. If s > 0, then, since 1≤q1< · · ·<qs < 2, it
follows that s = 1 and q1 = 1. Hence, the only shuffles contributing to the sum are the
three 1-shuffles (0|12), (1|02), and (2|01). The corresponding numbers C are C0|12 = 1,
C1|02 = 1 +

(
5
1

)
2 = 11, and C2|01 = 1 +

(
5
1

)
2 +

(
5
2

)
22 = 51. Hence, the number of conics

tangent to 5 given conics is the well known number,

25(35ψ012 − (ψ0ψ12 − 11ψ1ψ02 + 51ψ2ψ01)) = 25 · 3 · 34 = 3264.

Naturally, the value could have been obtained directly from the values of cm,n =
〈012, µm

1 µ
n
2 〉 for m+ n = 5 given in Example 6.

8. Appendix: Schubert’s function.

8.1. Schubert [18] defined his function ψ recursively. For the applications in enumer-
ative geometry, it is more natural to define it in terms of symmetric polynomials. Let
x1, . . . , xr be a sequence of r independent variables. For any strictly increasing sequence
I = (i1, . . . , ir) of r non-negative integers denote by si1,...,ir

the corresponding Schur func-
tion in the variables x1, . . . , xr, see [14, p. 182]. Then, by definition, ψI = ψi1,...,ir is the
integer coefficient to the Schur function si1,...,ir in the expansion of

∏
i≤j(1−(xi +xj))−1,

that is, ∏
i≤j

1
1− (xi + xj)

=
∑

I

ψIsI ,

where the sum is over all strictly increasing sequences I = (i1, . . . , ir) of non-negative
integers. The value ψJ on an arbitrary sequence J = (j1, . . . , jr) of non-negative integers
is equal to 0 if J has two equal entries and equal to sign(J)ψI if J is a permutation of a
strictly increasing sequence I.

The following properties of the functions ψ are proved in [14, Appendix]:

8.2. The functions ψ are given by the explicit formula,

(8.2.1) ψI =
∑

J

detEI
J ,

where the sum is over all strictly increasing sequences J = (j1, . . . , jr) of non-negative
integers. The (infinite) matrix E is Pascal’s triangular matrix,

E :=


1 0 0 0 . . .
1 1 0 0 . . .
1 2 1 0 . . .
1 3 3 1 . . .
...

...
...

...

 ,



PARAMETER SPACES FOR QUADRICS 215

given by Ei
j :=

(
i
j

)
for i, j = 0, 1, 2, . . . . The determinant detEI

J in (8.2.1) is the minor
of E obtained by selecting row entries from I and column entries from J .

8.3. The functions ψ in one and two variables are given by

(8.3.1) ψi = 2i and ψi,j =
∑

i<k≤j

(
i+ j

k

)
.

Moreover, for r > 2, the functions ψ are determined by the functions ψi and ψi,j through
the following recurrence formula:

(8.3.2) ψi1,...,ir =
{ ∑r

k=1(−1)k−1ψik
ψ

i1,..., îk,...,ir
, if r is odd.∑r

k=2(−1)kψi1,ik
ψ

i2,..., îk,...,ir
, if r is even.

8.4. The functions ψ are given by the following explicit formula:

(8.4.1) ψi1,...,ir
=
{

Pf(ψik,il
)k,l=1,...,r , if r is even,

Pf(ψik,il
)k,l=0,...,r , if r is odd,

where Pf denotes the Pfaffian and where, for odd r, the undefined entry ψi0,il
is inter-

preted as ψil
.

8.5. The following recurrence formulas hold for all strictly increasing sequences 0 ≤
i1 < · · · < ir:

rψi1,...,ir
− 2

r∑
k=1

ψi1,...,ik−1,...,ir
= 0, if i1 > 0.(8.5.1)

rψ0,i2,...,ir
− 2

r∑
k=2

ψ0,i2,...,ik−1,...,ir
= ψi2,...,ir

.(8.5.2)

8.6. The recurrence formulas in 8.3 and 8.5 were proved by Schubert, who in fact
took 8.3 as the definition of ψ. The formulas given in 8.4 appeared in [15].

Schubert was unable to prove the formula,

(8.6.1) ψ0,1,...,r−1 = 1,

directly from his recursive definition, but had to appeal to the geometric interpretation of
the function ψ. The formula (8.6.1) follows immediately from the explicit formula (8.2.1).
Similarly, it follows from (8.2.1) that

(8.6.2) ψ
0,1,...,̂i,...,r

=
(
r + 1
i+ 1

)
.
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