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0. Introduction. The Bott Residue Formula gained renewed attention recently due
to its use in enumerative algebraic geometry (cf. [ES], [Ko]). If X is a smooth projective
variety over a field k of characteristic 0, then Bott’s formula makes sense purely algebra-
ically, with the Chern classes taken in the algebraic De Rham cohomology H·DR(X/k). In
this paper we survey an algebraic proof of the formula using Beilinson adeles, which was
discovered by R. Hübl and the author (see [HY]).

Suppose v ∈ Γ(X, TX) is a global vector field with isolated, simple, k-rational zeroes
(see Remark 3.2 for generalizations). Let E1, . . . , Em be locally free OX -modules. Suppose
Λi is an action of v on Ei, i.e. a differential operator Λi : Ei → Ei satisfying Λi(ae) =
v(a)e + aΛi(e) for local sections a ∈ OX , e ∈ Ei. Suppose Q(ti,j) is a homogeneous
polynomial of degree n = dimX in the variables ti,j (i = 1, . . . ,m; j = 1, . . . , ri; ri :=
rank Ei) which have degrees deg ti,j = j. For a zero z of v let us denote by Λi|z the
restriction of Λi to Ei|z := Ei ⊗ k(z), which is a k-linear endomorphism. Also let us
denote by ad v|z the restriction of ad v to TX ⊗ k(z); this is invertible. We let Pi denote
the ith conjugation-invariant polynomial on matrices (of unspecified size). Finally let∫
X

: H2n
DR(X/k)→ k be a canonical map (cap product with the fundamental class).

Theorem 0.1. (Bott Residue Formula).∫
X

Q(cj(Ei)) =
∑
v(z)=0

Q(Pj(Λi|z)) · det(ad v|z)−1

In Section 1 we discuss Beilinson’s adeles and the sheaves Ap,qX , Ãp,qX . These are ana-
logues of the sheaves of smooth (p, q)-forms on a complex manifold. In Section 2 we define
connections on the adelic sections Ã0

X(E) of a vector bundle. Finally in Section 3 we prove
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Theorem 0.1. The proof is almost identical to Bott’s proof in [Bo2]. In particular we use
a projector ω ∈ Ã1,0

X to localize the integral to the zero locus of v.
I should mention other proofs of Bott’s formula. Atiyah-Bott [AB] use a mix of analysis

and topology. Carrel-Lieberman [CL] state their proof for complex manifolds, but it
applies also to the purely algebraic setup.

Acknowledgements. The author thanks R. Hübl (the coauthor of [HY]), S. Kleiman
who suggested the problem, and V. Hinich for explaining the Thom-Sullivan construction.

1. Adeles. Let k be field of characteristic 0, and let X be a smooth n-dimensional
projective variety over k. According to Beilinson, to each quasi-coherent OX -module M
there is associated a cosimplicial sheaf A·(M) on X, the sheaf of adeles (see [Be] and
[Hr]). The definition of Aq(U,M) = Γ(U,Aq(M)) is by a zig-zag process of direct and
inverse limits, generalizing the classical adeles. (If X is a smooth curve then the classical
ring of adeles A(X) is just A1

red(X,OX).) One has a natural isomorphism Aq(M) ∼=
Aq(OX)⊗OXM. Denote by A·red(M) the standard normalization of A·(M) (namely the
common kernel of the codegeneracy maps), which is a complex of sheaves with coboundary
operator ∂. Then each Aqred(M) is a flasque sheaf, and the natural map M→ A·red(M)
is a quasi-isomorphism.

The adeles Aqred(M) are a subsheaf of the product of the local factors
∏
ξMξ, where

ξ = (x0, . . . , xq) runs over the set of reduced chains of length q in X. For M coherent
and q = 0 we simply have M(x) = M̂x, the mx-adic completion.

Now if D :M→N is a differential operator between OX -modules, there is an induced
operator D : A·(M)→ A·(N ), compatible with the cosimplicial structure. Applying this
to the De Rham complex Ω·X/k we get a cosimplicial differential graded algebra (DGA)

A·(Ω·X/k) =
⋃
q≥0

⊕
p≥0

Aq(ΩpX/k).(1.1)

Definition 1.1. For p, q ≥ 0 let Ap,qX := Aqred(ΩpX/k). Then A··X is a double complex,

with commuting operators d : Ap,q
X → Ap+1,q

X and ∂ : Ap,qX → A
p,q+1
X , called the De Rham-

adele double complex. Set D′ := d, D′′ := (−1)p∂, D := D′+D′′ and AiX :=
⊕

p+q=iA
p,q
X .

Then A·X , with Alexander-Whitney product and the operator D, is a sheaf of DGAs on X.

Proposition 1.2. The natural DGA map Ω·X/k → A
·
X is a quasi-isomorphism.

The proposition implies that H·DR(X/k) with its cup product can be calculated as
H·Γ(X,A·X). However, the DGA A·X is not (graded) commutative.

According to [Ye], for every maximal chain ξ = (x0, . . . , xn) in X there is a residue
map Resξ : ΩnX/k,ξ → k. This induces∫

X

=
∑
ξ

Resξ : H2nΓ(X,A·X)→ k.(1.2)

∫
X

coincides with cap product with the fundamental class of X. Thus for k = C we get
the usual integral (up to a factor of 2π

√
−1).

For ` ≥ 0 let
∆` := Spec Q[ t0, . . . , t` ]/(t0 + · · ·+ t` − 1)
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be the standard rational `-simplex, and let Ω·(∆`) be the De Rham complex on it, which
is a DGA over Q generated by t0, . . . , t`. Then Ω·(∆·) =

⋃
`≥0 Ω·(∆`) is a simplicial

DGA. The definition below is extracted from [HS].

Definition 1.3. Let

Ãp,qX ⊂
∞∏
`=0

(
A`(ΩpX/k)⊗Q Ωq(∆`)

)
be the subsheaf consisting of all sections u = (u0, . . . , u`, . . .) such that

(∂i ⊗ 1)u` = (1⊗ ∂i)u`+1

(1⊗ si)u` = (si ⊗ 1)u`+1

for 0 ≤ `, 0 ≤ i ≤ `+ 1. Here ∂i, si, ∂i, si are the (co)simplicial operators. Set D′ := d⊗1,
D′′ := (−1)p ⊗ d, D := D′ + D′′ and ÃiX :=

⊕
p+q=i Ã

p,q
X . The sheaf of Thom-Sullivan

adeles is the commutative DGA (Ã·X ,D).

Observe that for p, q ≥ 0,

Ãp,qX ⊂
∏
`≥0

∏
ξ=(x0,...,x`)

(
ΩpX/k,ξ ⊗Q Ωq(∆`)

)
.(1.3)

Usual integration on the real ` simplex ∆`(R) yields a Q-linear map
∫

∆` : Ω·(∆`)
→ Q, such that

∫
∆`(dt1 ∧ · · · ∧ dt`) = 1

`! . By linearity this extends to a map of sheaves∫
∆

: Ã·X → A·(Ω·X/k).

Theorem 1.4. ([HS]).
∫

∆
sends Ãp,qX into Ap,qX , and commutes with the operators D′,

D′′. Therefore
∫

∆
: Ã·X → A·X is a homomorphism of DG Ω·X/k-modules. For every open

set U ⊂ X the resulting map in cohomology H·(U,
∫

∆
) : H·(U, Ã·X) → H·(U,A·X) is an

isomorphism of graded k-algebras.

2. Connections over Adeles. Our construction is a fusion of ideas of Bott (in [Bo1])
and Parshin (in [Pa]). Let E be a locally free sheaf on X, and set Ãp,qX (E) := Ãp,qX ⊗OX E .
Suppose we are given a family {∇(x)}x∈X , where

∇(x) : E(x) → Ω1
X/k,(x) ⊗OX,(x) E(x)

is a connection over the k-algebra OX,(x). Let ξ = (x0, . . . , x`) be a chain in X. For
0 ≤ i ≤ ` consider the i-th covertex map ∂

(0,...,`)
(i) : Ω·X/k,(xi) → Ω·X/k,ξ. By extension of

scalars, ∇(xi) induces a connection

∇ξ,i : Eξ → Ω1
X/k,ξ ⊗OX,ξ Eξ

over the algebra OX,ξ. Set

∇ξ :=
∑̀
i=0

ti∇ξ,i : Eξ → Ω1
X/k,ξ ⊗Q O(∆`)⊗OX,ξ Eξ.

Proposition 2.1. Given a family of connections {∇(x)}x∈X , there is a unique con-
nection

∇ : Ã0
X(E)→ Ã1

X(E)
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over the algebra Ã0
X , such that under the embedding (1.3), (∇u)ξ = ∇ξu for every local

(algebraic) section u ∈ E.

Definition 2.2. The curvature form associated to {∇(x)}x∈X is

R = ∇2 ∈ Ã2
X(EndOX (E)).

Given an invariant polynomial P , one has DP(R) = 0. The resulting Chern-Weil
homomorphism

{invariant polynomials} → H·(X, Ã·X) ∼= H·(X,A·X),

P 7→ [P (R)], is a homomorphism of k-algebras, independent of the connection ∇.

Definition 2.3. The i-th Chern form of E with respect to the connection ∇ is
c̃i(E ,∇) := Pi(R) ∈ Γ(X, Ã2i

X).

Theorem 2.4. The Chern classes ci(E) = [
∫

∆
c̃i(E ,∇)] ∈ H2i

DR(X) satisfy the Whi-
tney Sum Formula and commute with pullback. The map dlog : PicX = H1(X,O∗X) →
H2

DR(X) sends the class of an invertible sheaf [L] to c1(L). Thus for k = C we get the
usual Chern classes (up to a factor of 2π

√
−1).

3. Proof of the Formula. Denote by Z the zero scheme of v, which is a finite
reduced scheme. Choose an open subset U ⊂ X containing Z, and sections f1, . . . , fn ∈
Γ(U,OX), such that the corresponding morphism U → An

k is unramified, and the fibre
over the origin is the scheme Z. This is possible since X is projective. Thus TX |U is
trivial, with a frame ( ∂

∂f1
, . . . , ∂

∂fn
). Moreover, we can choose U such that Ei|U are trivial,

with frames ei : OriU
'→ Ei|U .

From here we continue along the lines of [Bo2], but of course we use adeles instead
of smooth functions. The sheaf Ãp,qX plays the role of the sheaf of smooth (p, q) forms
on a complex manifold. The operator D′′ behaves like the anti-holomorphic derivative ∂̄;
specifically D′′α = 0 for α ∈ Ω·X/k.

Set E :=
⊕m

i=1 Ei, r :=
∑
ri, Λ :=

∑
Λi. Then e = (e1, . . . , em) is a frame for E|U . For

each point x ∈ U the isomorphism e : OrX,(x)

'→ E(x) induces a Levi-Civita connection∇(x)

on E(x). For x 6∈ U choose an arbitrary connection ∇(x). Let R = ∇2 ∈ Ã2
X(EndOX (E))

be the resulting curvature form. Note that R =
∑
Ri, and we can define

P (R) := Q(Pj(Ri)) ∈ Ã2n
X .

R decomposes into bi-homogeneous parts R = R2,0 +R1,1. We will work with R1,1. Since
Ãp,qX = 0 for p > n, we get P (R) = P (R1,1).

One shows, like in [Bo2], that

L := Λ− ι(v) ◦ ∇ ∈ Ã0
X(EndOX (E))

satisfies

−ι(v)R1,1 = D′′L(3.1)
L|z = Λ|z.(3.2)

Since ∇ is algebraic on U , it follows that

L|U ∈ EndOX (E)|U .(3.3)
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For every point z ∈ Z let

Ξz := {ξ = (x0, . . . , xn) | xn = z}.
This set of chains is the analogue of a small ball around z. Let Ξ :=

⋃
z∈Z Ξz.

Given α = (αξ) ∈ An,nX , we say α is holomorphic (resp. has a simple pole) along
a maximal chain ξ = (x0, . . . , xn) if for every a ∈ OX,xn (resp. a ∈ mxn) one has
Resξ aαξ = 0 (cf. [Ye] §4.2).

Denote the canonical pairing TX ⊗ Ω1
X/k → OX by 〈−,−〉. It extends to a pairing

Ã0
X(TX)⊗ Ã0

X(Ω1
X/k)→ Ã0

X .

Lemma 3.1. There is a global section ω ∈ Ã1,0
X
∼= Ã0

X(Ω1
X/k) such that:

(1) 〈v, ω〉 = 1 on X − Z.
(2)

∫
∆

(D′′ω)n is holomorphic along any maximal chain ξ 6∈ Ξ.
(3)

∫
∆

(D′′ω)n has at most a simple pole along any ξ ∈ Ξ. Moreover, for any z ∈ Z∑
ξ∈Ξz

Resξ
∫

∆

(D′′ω)n = det(ad v|z)−1.

The proof of the lemma is not difficult, but it is technical and we prefer to skip it.
Let us just say that writing v =

∑
ai

∂
∂fi

, ai ∈ Γ(U,OX), one can express ω in terms of
the ai.

Let t be an indeterminate, and define

η := P (L+ tR1,1) · ω · (1− tD′′ω)−1

= P (L+ tR1,1) · ω · (1 + tD′′ω + (tD′′ω)2 + · · ·) ∈ Ã·X[ t ]
(3.4)

(note that (D′′ω)n+1 = 0, so this makes sense). Writing η =
∑
i ηit

i we see that ηi ∈
Ãi+1,i
X . Just like in [Bo2], using formula (3.1) and Lemma 3.1, one shows that

D′′ηn−1 + P(R1,1) = 0 on X− Z.(3.5)

P r o o f o f T h e o r e m 0.1. By definition cj(Ei) = [
∫

∆
Pj(Ri)] ∈ H2j

DR(X). From
Theorem 1.4 we see that

Q(cj(Ei)) = [
∫

∆

Q(Pj(Ri))] = [
∫

∆

P (R)].

As observed before P (R) = P (R1,1) ∈ Ã2n
X . In view of formula (3.2) we must verify that∫

X

∫
∆

P (R1,1) =
∑
z∈Z

P (L|z) det(ad v|z)−1.

Now ∫
X

∫
∆

D′′ηn−1 =
∫

X

D′′
∫

∆

ηn−1 = 0

since X is proper. Every maximal chain is either in X − Z or in Ξ. Therefore, by (3.5)∫
X

∫
∆

P (R1,1) =
∫
X

∫
∆

(P (R1,1) + D′′ηn−1) =
∑
ξ∈Ξ

Resξ
∫

∆

(P(R1,1) + D′′ηn−1).

By construction the connection ∇ is integrable on U (it is a Levi-Civita connection there
with respect to the algebraic frame e), therefore on U one has: R = 0, P (R1,1) = 0 and
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D′′ηn−1 = P(L)(D′′ω)n. The map
∫

∆
is OX -linear, and by (3.3), P (L)|U ∈ OU . Hence∫

∆

P (L)(D′′ω)n = P(L)
∫

∆

(D′′ω)n on U.

In view of Lemma 3.1 this concludes the proof.

Remark 3.2. There are two easy extensions of Theorem 0.1.
(a) Dropping the assumption that the zeroes of v are simple (cf. [HY]).
(b) Suppose L ∈ EndOX (E) is a semi-simple endomorphism. Then there are well

defined classes Pj(L) ∈ H2j
DR(X/k), given by [

∫
∆
Pj(L+R)] for an appropriate

connection ∇. For example cj(E) = Pj(0E) (cf. [Bo2]). If L and Λ commute the
residue formula is:∫

X

P (L) =
∑
v(z)=0

P ((L+ Λ)|z) · det(ad v|z)−1.
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