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0. Introduction.
This paper explores some of the connections between the objects of its title. It is based

on a new approach to McMullen’s polytope algebra, and on its relation with equivariant
cohomology of toric varieties. In particular, we give another proof of a recent result of
Fulton and Sturmfels, which identifies the polytope algebra with the direct limit of all
Chow rings of smooth, complete torus embeddings (see [14]). On the other hand, we obtain
a version of the classical theorem of Bézout, which holds in any spherical homogeneous
space. This generalizes a theorem of Bernstein and Kouchnirenko: The number of common
points to d hypersurfaces in general position in a d-dimensional torus is d! times the mixed
volume of the associated Newton polytopes (see [2], [18] and also [13] 5.5).

Given a finite-dimensional vector space V over an ordered field K, there is a well-
known correspondence between convex polytopes in the dual space V ∗ and piecewise
linear convex functions on V . Namely, to any convex polytope, we associate its support
function. Denote by R the algebra generated by the support functions of all convex
polytopes, in the algebra of continuous functions on V . In the first section of this paper,
we study the algebra R when K is the field of rational numbers. It turns out (see 1.5)
that R is the algebra of continuous, piecewise polynomial functions on V ; in particular,
R contains the algebra of polynomial functions. We prove that any choice of coordinate
functions on V defines a regular sequence in R; moreover, the quotient of R by the ideal
generated by V ∗ is isomorphic to the rational polytope algebra of McMullen (see 1.3, 1.5;
our proof is based on work of Morelli, see [21]). This explains the non-trivial grading of
the polytope algebra, by the obvious grading of R. More generally, the quotients of R by
powers of the ideal generated by V ∗, are isomorphic to the higher versions of the polytope
algebra, considered recently by McMullen, Pukhlikov and Khovanskii; see [20], [24].

In fact, we study the algebra R as the direct limit of its subalgebras RΣ consisting of
functions which are piecewise polynomial with respect to a fixed fan Σ. To such a fan is
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associated a toric variety XΣ. In the second and third sections of this paper, we identify
RΣ with the equivariant cohomology algebra of XΣ (see 2.2); moreover, the quotient of
RΣ by the ideal generated by V ∗ identifies with the rational Chow ring of XΣ (see 3.1;
here XΣ is assumed to be smooth, but not necessarily complete). In this way, we recover
the result of Fulton and Sturmfels mentioned above, as well as the Jurkiewicz-Danilov
presentation of the Chow ring of a smooth, complete toric variety.

Consider a regular subdivision Σ′ of a regular fan Σ, and denote by π : XΣ′ → XΣ the
associated toric morphism. Then the maps π∗ and π∗ between Chow rings lift canonically
to equivariant cohomology (see 2.3 and 3.2). Of course, the pull-back π∗ : RΣ → RΣ′ turns
out to be the inclusion of RΣ into RΣ′ . But the push-forward π∗ : RΣ′ → RΣ is more
subtle: it provides a canonical way of “smoothing” piecewise polynomial functions. We
compute π∗ in 2.3, and we find relations between push-forward, Fourier transform and
mixed volume in 2.4. Using the push-forward, we generalize Hadwiger’s characterization
of the volume of convex polytopes (see [19] Section 7) to a characterization of the integral
of polynomial functions on convex polytopes. On the other hand, the push-forward deter-
mines the “intersection form” on the Chow rings of smooth, complete torus embeddings.
In this way, we recover the above-mentioned theorem of Bernstein and Kouchnirenko
(see 3.3).

This theorem is generalized from the torus (C∗)d to any spherical homogeneous space,
in the fourth section of this paper. Namely, to any effective divisor in such a space, we
associate a “Newton polytope” (a convex polytope with rational vertices). Moreover, we
compute the number of common points to effective divisors in general position, in terms of
their Newton polytopes. For this we use a “mixed integral” which generalizes the mixed
volume occurring in Kouchnirenko’s theorem. Our result is a refinement of [8] where
an integral formula was obtained for the degree of ample divisors on projective spherical
varieties. Another generalization of Bernstein-Kouchnirenko’s theorem has been obtained
by B. Y. Kazarnovskii (see [16]); it holds in any connected reductive group Γ. Observe that
Kazarnovskii’s result can be deduced from ours, because Γ is a spherical homogeneous
space under the action of Γ×Γ by left and right multiplication. Our Bézout theorem can
also be applied to the space of smooth quadrics of rank d in Pr; namely, this space is
homogeneous and spherical under PGL(r + 1). In the case of plane conics (d = r = 2),
classical results of Halphen, updated and generalized by Casas and Xambó (see [9]),
can be explained in our framework. It turns out that our notion of a Newton polytope is
closely related to Halphen’s first formula (see [9] and [23]). Moreover, our Bézout theorem
specializes to Halphen’s second formula. These connections will be developed elsewhere.

A technical point of the paper is the distinction between embeddings of a torus T
(i.e. normal varieties where T acts faithfully with a dense orbit) and what we call toric
varieties (the action of T need no longer be faithful, but its kernel is connected). Toric
varieties are classified by generalized fans; the cones in a generalized fan need not be
acute, but all cones have the same linear part. These technicalities are required at several
points, in particular in the study of the push-forward.

Note added in proof (December 1995). For extensions of the results of Section 1 to
convex polytopes over an arbitrary subfield of R, see my preprint The structure of the
polytope algebra. For a study of equivariant K-theory and equivariant cohomology of
simplicial toric varieties, with applications to an Euler-MacLaurin summation formula
for convex lattice polytopes, see my joint preprint with Michèle Vergne An equivariant
Riemann-Roch theorem for complete simplicial toric varieties.
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1. Piecewise polynomial functions.
1.1. Notation. Let d be a positive integer. Let N be a free abelian group of rank d;

set NQ = N ⊗Z Q. We denote by M the dual lattice of N , and by MQ the dual vector
space of NQ.

A closed half-space in NQ is defined by an inequality m ≥ 0 where m is a non-zero
element of MQ. We normalize m by assuming that m ∈ M and that m is not divisible
in M .

A (polyhedral convex) cone σ in NQ is the intersection of finitely many closed half-
spaces. If we write σ =

⋂r
i=1 (mi ≥ 0) with all mi normalized as before and with r

minimal, then the set {m1, . . . ,mr} is uniquely determined. The hyperplanes (mi = 0)
are called the walls of σ. The largest linear subspace of σ is l(σ) :=

⋂r
i=1 (mi = 0). On

the other hand, the smallest linear subspace which contains σ is L(σ) = σ−σ. We call σ
simplicial if m1, . . . ,mr are linearly independent, i.e. if r = codim(σ). When m1, . . . ,mr

can be completed to a basis of M , the cone σ is called regular.
A generalized fan in NQ is given by a linear subspace l of NQ and a finite set Σ of

cones, such that:
(i) l(σ) = l for any σ ∈ Σ.

(ii) If σ ∈ Σ and τ is a face of σ, then τ ∈ Σ.
(iii) If σ, τ ∈ Σ then σ ∩ τ is a face of σ.

When l = 0, we recover the usual notion of a fan. For arbitrary l, a generalized fan
consists in the preimages in NQ of an ordinary fan in NQ/l.

The support |Σ| of the generalized fan Σ is the union of its cones. A mapping f :
|Σ| → Q is piecewise polynomial if for any σ ∈ Σ, the map f |σ : σ → Q extends to a
polynomial function on the linear space L(σ). In other words, a piecewise polynomial
function f on Σ is a collection of polynomial functions fσ : σ → Q which are compatible
in an obvious sense. In particular, such a function is continuous. Furthermore, if f = (fσ)
is piecewise polynomial and n is a non-negative integer, then the collection (fσ,n) of all
homogeneous components of degree n of the fσ’s is piecewise polynomial, too. Equiva-
lently, any piecewise polynomial function decomposes uniquely as a sum of homogeneous
piecewise polynomial functions.

We denote by RΣ the set of all piecewise polynomial functions on Σ. Then RΣ is a
ring for the operations of pointwise addition and multiplication. We denote by S•(MQ)
the symmetric algebra of MQ, i.e. the algebra of polynomial functions on NQ; another
notation for S•(MQ) is RN . The decomposition of piecewise polynomial functions as
sums of their homogeneous components defines a grading on RΣ, with S•(MQ) = RN as
a graded subalgebra.

1.2. The algebra of piecewise polynomial functions. Let Σ be a simplicial generalized
fan in NQ, and let τ ∈ Σ be a minimal cone. Then we have dim(τ) = 1 + dim(l) where
l is the linear space associated to Σ. Therefore, the additive semigroup (τ ∩N)/(l ∩N)
has a unique generator. We denote by nτ a representative of this generator in τ ∩N .

If σ ∈ Σ contains τ , then there exists a unique maximal face τ ′ of σ which does not
contain τ . Furthermore, there exists a unique linear form ϕσ,τ : L(σ)→ Q such that ϕτ,σ
is identically zero on τ ′ and that ϕτ,σ(nτ ) = 1. By the first condition, ϕτ,σ vanishes on l;
it follows that ϕτ,σ does not depend on the choice of nτ . Moreover, ϕτ,σ is non-negative
on σ.

The linear forms ϕτ,σ glue together to a piecewise linear function ϕτ on the star of τ ;
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observe that ϕτ is invariant under translation by l. Moreover, ϕτ is zero on the boundary
of the star of τ . So we have constructed ϕτ ∈ RΣ. It is easy to see that the ϕτ (τ a
minimal cone in Σ) form a basis of the space of piecewise linear functions on Σ which are
invariant under translation by l.

For any cone σ ∈ Σ, we set ϕσ =
∏
τ ϕτ (product over all minimal cones τ ⊂ σ).

Then ϕσ is homogeneous of degree dim(σ) − dim(l), and invariant under translation by
l. Moreover, the support of ϕσ is the star of σ. If σ is a maximal cone in Σ, then ϕσ is
the product of the equations of its walls, up to some constant multiplicative term.

Proposition. For any simplicial generalized fan Σ, and for any maximal cone σ ∈ Σ,
restriction to Σ \ {σ} defines an exact sequence

0→ ϕσ RL(σ) → RΣ → RΣ\{σ} → 0.

P r o o f. First of all, observe that the support of ϕσ is σ. Therefore, we have in RΣ that
ϕσRΣ = ϕσRL(σ) and this subset is mapped to zero by restriction to RΣ\{σ}. Conversely,
if f ∈ RΣ restricts to zero on RΣ\{σ}, then fσ is divisible in RL(σ) by the equation of
each wall of σ. Hence fσ ∈ ϕσRL(σ) and our sequence is left exact.

To check the surjectivity of restriction, it is enough to show that any piecewise poly-
nomial function (fτ )τ⊂σ on the boundary of σ, extends to a polynomial function on σ.
Choose coordinates x1, . . . , xd on NQ such that σ =

⋂r
i=1 (xi ≥ 0). By assumption, for

any proper subset I of {1, . . . , r}, we have a polynomial function fI(xi)i∈I on the face
τI = σ ∩

⋂
i6∈I (xi = 0). Now set

f(x1, . . . , xd) =
∑
I

(−1)r−1−card(I) fI(xi)i∈I .

Then f is the desired extension.

By induction over the number of maximal cones in Σ, we obtain the following result,
which is essentially due to L. J. Billera (see [5] 3.17 and 4.4).

Corollary. (i) For any simplicial generalized fan Σ, the S•(MQ)-module RΣ is
generated by the ϕσ, σ ∈ Σ. In particular, the S•(MQ)-module RΣ is finite, and the
graded algebra RΣ is generated by finitely many elements of degree 1.
(ii) If moreover Σ′ is a generalized sub-fan of Σ, then the restriction RΣ → RΣ′ is
surjective.
(iii) The Hilbert series of RΣ is

∞∑
n=0

dim(RΣ,n) zn =
∑
σ∈Σ

zdim(σ)−dim(l) (1− z)− dim(σ).

(iv) The Krull dimension of the algebra RΣ is the maximal dimension of cones in Σ.

1.3. Relation with the Reisner-Stanley algebra. Let Σ be a simplicial generalized fan,
with its associated linear space l. Define the Reisner-Stanley algebra RΣ to be the (com-
mutative, associative) Q-algebra with generators xτ (τ a minimal cone of Σ) and relations∏n
i=1 xτi = 0 whenever τ1, . . . , τn are distinct minimal cones, which do not generate a

cone of Σ. Clearly,
∏n
i=1 ϕτi = 0 in this case. Therefore, there is a unique algebra homo-

morphism from RΣ to RΣ, which sends xτ to ϕτ . This homomorphism is bijective when
Σ is a fan; see [5] 2.3 and 3.6, and also [6] 4.2. Let us recover this result, and extend it
to generalized fans.
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Choose a direct sum decomposition N = (l ∩ N) ⊕ S, hence an injection Rl → RN
and an algebra homomorphism hΣ : Rl ⊗RΣ → RΣ.

Proposition. Notation being as above, the map hΣ is an isomorphism.

P r o o f. First observe that Σ ∩ S is a fan, and that each cone σ ∈ Σ decomposes as
σ = l ⊕ (σ ∩ S). It follows easily that RΣ ' Rl ⊗ RΣ∩S . Therefore, we can assume that
l = 0, i.e. that Σ is a fan.

First assume that Σ has only one maximal cone σ. Then RΣ ' RL(σ). On the other
hand, the algebra RΣ is freely generated by the equations of the walls of σ, so our
statement holds in this case.

In the general case, we choose a maximal cone σ ∈ Σ and we consider the diagram
0 → (

∏
τ⊂σ xτ ) Q[xτ ]τ⊂σ → RΣ → RΣ\{σ} → 0

↓ ↓ ↓
0 → ϕσ RL(σ) → RΣ → RΣ\{σ} → 0

This diagram commutes, its rows are exact, and the left vertical map is an isomorphism.
By induction, we may assume that the right vertical arrow hΣ\{σ} is an isomorphism.
Therefore, hΣ is, too.

Using [25] II.3 and II.4, we obtain easily the following result, which can also be deduced
from [6] 4.5.

Corollary. Let Σ be a simplicial generalized fan whose support is convex, of di-
mension d. Then the algebra RΣ is Cohen-Macaulay, and any basis of MQ is a regular
sequence in RΣ. In particular, the S•(MQ)-module RΣ is free.

1.4. The completion of the algebra of piecewise polynomial functions. Let Σ be a
simplicial generalized fan. For any integer n, we denote by RΣ,n the component of RΣ of
degree n, and we set

RΣ,≥n :=
⊕
m≥n

RΣ,n.

This defines a decreasing filtration of RΣ; we denote by R̂Σ the associated completion.
Denote by MnRΣ the ideal of RΣ generated by all products of n linear forms. Clearly,

we have RΣ,≥n ⊃ MnRΣ for any n ≥ 0. We will obtain an opposite inclusion, and a
description of the ring R̂Σ as well. First observe that R̂N is the ring of formal power
series in d variables, with rational coefficients.

Proposition. (i) For any n ≥ 0, we have RΣ,≥n+d ⊂MnRΣ.
(ii) The filtration (RΣ,≥n) is equivalent to the filtration by powers of the ideal MRΣ.
(iii) The ring R̂Σ is isomorphic to the subring of

⊕
σ∈Σ R̂L(σ) consisting of all (fσ)σ∈Σ

such that fσ|τ = fτ whenever τ ⊂ σ.

P r o o f. (i) We argue by induction over the number of cones in Σ. In the case of one
cone, we have MnRΣ = RΣ,≥n. In general, let σ be a maximal cone in Σ. By Proposition
1.2 and the induction hypothesis, we have

RΣ,≥n+d ⊂MnRΣ + ϕσ RL(σ),≥n+d−deg(ϕσ).

Moreover, we have

ϕσ RL(σ),≥n+d−deg(ϕσ) ⊂ ϕσ RL(σ),≥n = ϕσM
nRN ⊂MnRΣ.

(ii) is obvious now.
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(iii) We set

SΣ := {(fσ) ∈
⊕

σ∈Σ
R̂L(σ) | fσ|τ = fτ ∀τ ⊂ σ}.

Clearly, the ring R̂Σ embeds into SΣ, and this embedding commutes with restriction to
any generalized sub-fan. Moreover, the analogue of Proposition 1.2 holds for SΣ, with the
same proof. On the other hand, the exact sequence in 1.2 involves only finitely generated
S•(MQ)-modules. By completing this sequence with respect to the MRΣ-adic topology,
we obtain an exact sequence

0→ ϕσ R̂L(σ) → R̂Σ → R̂Σ\{σ} → 0.

Now the equality of R̂Σ and SΣ follows by the standard argument.

1.5. Relation with the polytope algebra. Denote by P the set of all convex polytopes
in MQ. Let Π̃ be the quotient of the free Q-vector space on P by the relations [P ]+ [Q]−
[P ∪Q]− [P ∩Q] whenever P , Q and P ∪Q are in P. The Minkowski sum of polytopes
endowes Π̃ with a ring structure. The additive group MQ acts on P by translations, and
this gives rise to an action of MQ on Π̃ by automorphisms.

We denote by A = Q[MQ] the algebra of the group MQ over Q, and by I the
augmentation ideal of A. The canonical basis of A is denoted by (em) (m ∈ MQ); then
the Q-vector space I is generated by the em − 1 (m ∈ MQ). The ring Π̃ is an algebra
over A; the quotient Π̃/IΠ̃ := Π is a version of the polytope algebra (see [19], [21], [14]).

Denote by R the direct limit of the algebras RΣ for all complete, regular fans Σ. Then
R is the algebra of piecewise polynomial functions on NQ. Similarly, we define R̂ to be
the direct limit of the algebras R̂Σ. Every polytope P ∈ P defines an element of R, as
follows. Introduce the support function

HP : NQ → Q
n → minm∈P 〈m,n〉.

Then HP is an element of degree 1 in R. Observe that the vector space R is generated
by the non-negative powers of support functions of all convex polytopes. Namely, the
algebra R is generated by its elements of degree 1, i.e. by the piecewise linear functions
(this follows from Corollary 1.2 and from the fact that any ϕσ is a product of elements of
degree 1). Moreover, any piecewise linear function is the difference of two convex piecewise
linear functions.

To any P ∈ P we associate the formal exponential of its support function

exp(HP ) =
∞∑
n=0

Hn
P /n!.

This exponential can be seen as an element of R̂; denote it by γ(P ). Observe that
γ(P + Q) = γ(P ) γ(Q) (because HP+Q = HP + HQ). Therefore, γ induces an algebra
homomorphism γ : Π̃→ R̂.

Theorem. Notation being as above, the homomorphism γ : Π̃→ R̂ is injective and it
sends InΠ̃ to MnR̂ for any n ≥ 1. Moreover, the induced morphism

γn : Π̃/InΠ̃→ R̂/MnR̂ = R/MnR

is an isomorphism.
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In particular, the polytope algebra is isomorphic to R/MR. By work of McMullen,
the action of the group of dilations on P leads to a grading of Π by integers between 0
and d. More generally, the quotient Π̃/In+1Π̃ is graded by integers between 0 and n+ d.
This can be verified by using the theorem above, together with Proposition 1.4 (i). The
component of highest degree in Π̃/In+1Π̃ will be described in 2.5 below.

P r o o f. First consider the restriction of γ to A, i.e.
δ : A → R̂N

em → exp(m).

Clearly, δ is injective. Moreover, δ sends In toMnR̂N (because the power series (em−1)/m
is invertible for any m 6= 0). Introduce the map

ϕ : MQ → I/I2

m → 1− em (mod I2).
It is easy to check that ϕ is an isomorphism of Q-vector spaces, and that ϕ induces an
isomorphism

ϕ : S•(MQ)→
⊕∞

n=0
In/In+1.

It follows that the map

gr δ :
⊕∞

n=0
In/In+1 →

⊕∞

n=0
MnR̂N/M

n+1R̂N = S•(MQ)

is an isomorphism; namely, ϕ is the inverse map of gr δ. So δ induces isomorphisms
A/In → R̂N/M

nR̂N = RN/M
nRN for any n ≥ 1. Hence, we have In = A ∩MnR̂N .

Now consider a regular fan Σ. For any σ ∈ Σ, set

Aσ = Q[MQ/σ
⊥]

(the algebra of the group MQ/σ
⊥ = L(σ)∗ over the field of rational numbers). There is

a canonical restriction map Aσ → Aτ whenever τ ⊂ σ. We set

AΣ = {(fσ)σ∈Σ | fσ ∈ Aσ and fσ|τ = fτ ∀ τ ⊂ σ}.
Then AΣ is an algebra over A. By the first part of the proof, each Aσ is contained in
R̂σ, and moreover R̂σ is the I-adic completion of Aσ. So it follows from 1.4 that AΣ is
contained in R̂Σ. Moreover, we have InAΣ ⊂MnR̂Σ by the first part of the proof.

We claim that R̂Σ is the I-adic completion of the A-module AΣ. The proof of this
claim requires some care, because the ring A is not Noetherian.

For any maximal cone σ in Σ, we have an exact sequence of A-modules (as in 1.2)

0→ ΦσAσ → AΣ → AΣ\{σ} → 0

where Φσ denotes the product of the 1− em over all walls m of σ. Observe that Φσ/ϕσ
is a unit in R̂N . Moreover, we have (by 1.3 and 1.4)

(InAΣ) ∩ (ΦσAσ) ⊂ (MnR̂Σ) ∩ (ϕσR̂σ) ⊂Mn−dϕσR̂σ

and therefore

(InAΣ) ∩ (ΦσAσ) ⊂ Φσ(Aσ ∩Mn−dR̂σ) = In−dΦσAσ.

So the I-adic topology on AΣ induces the I-adic topology on ΦσAσ. Therefore, the
sequence of I-adic completions

0→ ΦσÂσ → ÂΣ → ÂΣ\{σ} → 0

is exact. Now our claim is proved by the standard argument.
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Using [11] 7.2.12, it follows that the maps AΣ/I
nAΣ → RΣ/M

nRΣ are isomorphisms.
To conclude the proof, we use the following result of Morelli (see [21] Section 5 and also
[22] 4.5). Consider the map

P → lim AΣ

P → eHP

where lim AΣ denotes the direct limit of the algebras AΣ associated to all complete,
regular fans Σ. Then the induced map Π̃→ lim AΣ is an isomorphism.

2. Toric varieties and their equivariant cohomology.
2.1. Generalized fans and toric varieties. Denote by T = Hom(M,C∗) the algebraic

torus with character group M ; then N is the group of one-parameter subgroups of T . A
normal algebraic variety X where T acts faithfully with a dense orbit, is called a torus
embedding. If we do not require that T acts faithfully, but only that the kernel of the
action is connected, then we call X a toric variety.

Torus embeddings (resp. toric varieties) are classified by fans (resp. generalized fans)
as follows. Choose a point x in the open T -orbit of the toric variety X. Let Y be a
T -orbit in X. Consider the set of all λ ∈ N such that limt→0 λ(t)x exists and belongs
to Y . This set is a semi-group, which generates a cone σY in NQ (the semi-group is the
intersection of N with the relative interior of σY ). It is easy to see that the σY (Y a
T -orbit in X) patch together into a generalized fan ΣX . The linear part l of each cone of
ΣX is generated by the one-parameter subgroups which act trivially on X.

Conversely, given a cone σ ∈ Σ, we denote by σ̌ ⊂ MQ its dual cone, and by Xσ the
affine algebraic variety whose coordinate ring is the algebra of the semigroup σ̌∩M . Then
T acts on Xσ with a connected kernel Tσ :=

⋂
m∈σ̌∩M ker(m). Moreover, the Xσ (σ ∈ Σ)

can be glued together to a toric variety XΣ, and the assignments X → ΣX , Σ→ XΣ are
mutually inverse. A toric variety is smooth (resp. has only quotient singularities) if and
only if its fan consists in regular (resp. simplicial) cones.

There is a bijection between Σ and the set of T -orbits in XΣ. Namely, for any σ ∈ Σ,
the affine toric variety Xσ contains a unique closed orbit Oσ. The linear space L(σ)
is generated by the one-parameter subgroups which act trivially on Oσ. It follows that
dim(Oσ) = d− dim L(σ) = codim(σ). We denote by F (σ) the closure of Oσ in XΣ. The
map σ → F (σ) is an order-reversing bijection from Σ to the set of all irreducible, closed
and T -stable subvarieties of XΣ.

Proposition. (i) Given two toric varieties X, X ′ with generalized fans Σ, Σ′, there
is a bijection π → µπ between equivariant morphisms π : X ′ → X, and order-preserving
maps µ : Σ′ → Σ which satisfy

σ′ ⊂ µ(σ′) + L(µ(l′)) ∀σ′ ∈ Σ′ (∗)

(ii) π is dominant (resp. a closed immersion) if and only if µπ(l′) = l (resp. σ′ =
µπ(σ′) + L(µπ(l′)) for all σ′ ∈ Σ′).
(iii) π is proper if and only if |Σ′| = |Σ|+ l′.

P r o o f. Let π : X ′ → X be an equivariant morphism. For any σ′ ∈ Σ′, we have
π(Oσ′) = Oσ for a unique σ ∈ Σ. We set µ(σ′) = σ and we denote µ(l′) by σ0. Then π
factorizes as X ′ → F (σ0)→ X where the second map is the inclusion. Observe that the
generalized fan of F (σ0) consists in the cones σ + L(σ0) for all cones in Σ which contain
σ0. Moreover, π sends the open affine subset X ′σ′ to F (σ0)σ. It follows that σ′ ⊂ σ+L(σ0).
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Hence µ satisfies condition (∗). Moreover, if τ ′ ∈ Σ′ and τ ′ ⊂ σ′, then Oτ ′ contains Oσ′

and therefore
Oµ(τ ′) ⊃ π(Oτ ′) ⊃ π(Oτ ′) ⊃ Oσ

whence µ(τ ′) ⊂ µ(σ′). Conversely, the construction of a morphism from a map µ which
satisfies (∗) is routine, as well as assertions (ii) and (iii).

2.2. Equivariant cohomology of toric varieties. Given an algebraic torus T , we can
choose a T -principal bundle ET → BT such that ET is contractible. If T ' (C∗)d we
can take ET = (C∞ \ {0})d with the diagonal action of T , where C∗ acts on C∞ \ {0}
by scalar multiplication. Then BT = (P∞)d. For any T -space Z, we construct the fiber
product Z×T ET over (ET )/T = BT . The cohomology algebra of Z×T ET with rational
coefficients, is called the (rational) equivariant cohomology of Z, and denoted by H∗T (Z).
Observe that H∗T (point) = H∗(BT ) is a graded polynomial algebra on d generators of
degree 2. Moreover, H∗T (Z) is a graded algebra over H∗(BT ). In fact, there is a canonical
isomorphism S•(MQ)→ H∗(BT ) which doubles the degree. Namely, to any m ∈M , we
associate the first Chern class of the line bundle Cm×T ET over BT , where Cm is the
one-dimensional T -module with weight m. For more on equivariant cohomology, we refer
to [1].

Consider now a smooth toric variety X, its generalized fan Σ, and a cone σ ∈ Σ.
Denote by iσ : Xσ → X the inclusion of the open, affine T -stable subset associated to σ.
The Euler class of F (σ) (the orbit closure associated to σ) is an element of H∗T (X) and
its degree is codimF (σ) = dim(σ)− dim(l).

Proposition. (i) The algebra H∗T (Xσ) is isomorphic to RL(σ).
(ii) The morphism ⊕

σ∈Σ

i∗σ : H∗T (X)→
⊕
σ∈Σ

H∗T (Xσ)

is injective, and its image is isomorphic to RΣ.
(iii) This isomorphism maps the Euler class of F (σ) to ϕσ, for any σ ∈ Σ.

In particular, the S•(MQ)-algebras H∗T (X) and RΣ are isomorphic.

P r o o f. (i) Recall that Xσ is the total space of an equivariant vector bundle over Oσ
(the unique closed T -orbit in Xσ). Therefore, restriction to Oσ induces an isomorphism
H∗T (Xσ)→ H∗T (Oσ). But Oσ ' T/Tσ where Tσ is the subtorus of T whose lattice of one-
parameter subgroups is L(σ)∩N . So we have H∗T (Oσ) = H∗T (T/Tσ) = H∗(BTσ) = RL(σ).
(ii) Let τ be a face of σ; denote by iστ : Xτ → Xσ the inclusion. Then we have a
commutative diagram

H∗T (Xσ) → H∗T (Xτ )
↓ ↓

RL(σ) → RL(τ)

where the bottom horizontal map is restriction to L(τ). Therefore, the image of i∗σ is
contained in RΣ, and there is a canonical homomorphism hΣ : H∗T (X)→ RΣ. We prove
that hΣ is an isomorphism by induction over the number of cones in Σ. The case of one
cone is covered by (i). In the general case, we choose a maximal cone σ ∈ Σ, and we
consider the following diagram:

0 → H∗T (XΣ, XΣ\{σ}) → H∗T (XΣ) → H∗T (XΣ\{σ}) → 0
↓ ↓ ↓

0 → ϕσRL(σ) → RΣ → RΣ\{σ} → 0



34 M. BRION

By a direct generalization of [4] Lemma 3, the top line is exact, as well as the left vertical
arrow. But the bottom line is exact by Proposition 1.2; the assertion follows.
(iii) The variety F (σ) is the transversal intersection of the F (τ) for all minimal cones
τ ⊂ σ. On the other hand, recall that ϕσ =

∏
τ ϕτ . Therefore, we may assume that σ

is minimal; then F (σ) is an irreducible divisor in X. By restricting to XC for some cone
C ∈ Σ, we may assume furthermore that X is affine; then Σ consists in the faces of C.
Let (m = 0) be the equation of the unique maximal face of C which does not contain
σ. Then the Euler class of F (σ) is the equivariant Chern class of the line bundle on C
associated to m. So this class identifies to m = ϕσ|C .

2.3. Pull-back and push-forward. Consider two smooth toric varieties X, X ′ with
generalized fans Σ, Σ′, and an equivariant morphism π : X ′ → X. Then π induces a
morphism of graded S•(MQ)-algebras π∗ : H∗T (X) → H∗T (X ′), i.e. π∗ : RΣ → RΣ′ . If
moreover π is proper, then it induces a morphism of H∗T (X)-modules π∗ : H∗T (X ′) →
H∗T (X) where H∗T (X) acts on H∗T (X ′) via π∗. So we have a morphism of RΣ-modules
π∗ : RΣ′ → RΣ.

We will describe π∗ and π∗ in combinatorial terms, using the notation and results of
2.1. Let µ : Σ′ → Σ be the map associated to π. Observe that condition (∗) implies that
L(σ′) ⊂ L(µ(σ′)) for all σ′ ⊂ Σ′. Therefore, any polynomial function on µ(σ′) defines a
polynomial function on σ′.

Theorem. (i) For any f = (fσ) ∈ RΣ, we have (π∗f)σ′ = fµ(σ′).
(ii) If π is proper, then for any σ′ ∈ Σ′, we have

π∗ϕσ′ =
{
ϕσ when µ(σ′) = σ and dim(σ′)− dim(l′) = dim(σ)− dim(l)
0 otherwise.

(iii) If π is proper and all maximal cones of Σ and Σ′ are d-dimensional, then we have

(π∗f)σ = ϕσ
∑

µ(σ′)=σ

ϕ−1
σ′ fσ′

for any f = (fσ′) ∈ RΣ′ , and any maximal cone σ ∈ Σ.

P r o o f. (i) Choose σ′ ∈ Σ′ and set µ(σ′) := σ. Then π restricts to p : X ′σ′ → Xσ.
Denote by i : Xσ → X and i′ : X ′σ′ → X ′ the inclusions. Then π ◦ i′ = i ◦ p. So we have

(π∗f)σ′ = i′∗π∗f = p∗i∗f = p∗fσ.

Therefore, we may assume that X and X ′ are affine. Then T has a unique closed orbit
Oσ (resp. Oσ′) in X (resp. X ′). Denote by j : Oσ → X and j′ : Oσ′ → X ′ the inclusions,
and by q : Oσ′ → Oσ the restriction of p. Then j∗ and j′∗ are isomorphisms (because X
is the total space of an equivariant vector bundle over Oσ, and the same holds for X ′).
Moreover, as observed in the proof of Proposition 2.2, the map q∗ : H∗T (Oσ)→ H∗T (O′σ)
identifies with the inclusion of RL(σ) into RL(σ′). The assertion follows.

(ii) Denote by i : F (σ) → X and i′ : F (σ′) → X ′ the inclusions, and by p : F (σ′) →
F (σ) the restriction of π. Then Proposition 2.2 (iii) gives ϕσ′ = i′∗(1). Therefore, we have
π∗ϕσ′ = π∗i

′
∗(1) = i∗p∗(1). But p∗ is homogeneous of degree

dim F (σ)− dim F (σ′) = dim(σ′)− dim(l′)− dim(σ) + dim(l) ≤ 0.

Therefore, p∗(1) = 0 if dim F (σ) 6= dim F (σ′). On the other hand, p is birational when
dim F (σ) = dim F (σ′), because all isotropy groups of toric varieties are connected. So
p∗(1) = 1 in this case, and π∗ϕσ′ = i∗(1) = ϕσ.
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(iii) First consider the very special case where π : F (τ) → X is the inclusion of the
orbit closure associated to τ ∈ Σ, and where the cone τ is maximal. Then F (τ) is a fixed
point, and H∗T (F (τ)) = RN . The map π∗ is RN -linear, and it sends 1 to the Euler class
of F (τ), i.e. to ϕτ . Therefore, our formula holds in this case.

Now consider the general case. The set of fixed points in X identifies with the set
Σ(d) of maximal cones in Σ. Denote by i : XT → X and by i′ : X ′T → X ′ the inclusions
of the fixed point sets. By (i), the morphism i∗ : H∗T (X)→ H∗T (XT ) identifies with

RΣ →
⊕

σ∈Σ(d) RN
f → (fσ)σ∈Σ(d).

Therefore, i∗ is injective; in particular, the RN -module RΣ is torsion-free. By the first
step of the proof, we have

i∗i∗(fσ)σ∈Σ(d) = (fσϕσ)σ∈Σ(d).

So the image of i∗ generates the RN -module RΣ up to inversion of all equations of walls
of Σ. Hence it is enough to check our formula when f = i′∗g for some g = (gσ′)σ′∈Σ′(d).
Then fσ′ = ϕσ′ gσ′ for all σ′ ∈ Σ′(d), by the first step of the proof. In this case, we have

π∗f = π∗i
′
∗g = i∗p∗g

where p : X ′T → XT is the restriction of π. But for any σ ∈ Σ, we have

p∗(gσ′)σ =
∑

µ(σ′)=σ

gσ′

and therefore, by the first step of the proof:

(π∗f)σ = ϕσ
∑

µ(σ)′=σ

gσ′ = ϕσ
∑

µ(σ′)=σ

ϕ−1
σ′ fσ′ .

2.4. Push-forward, Fourier transform and mixed volume. Let Σ be a complete, regular
fan; then Σ is a subdivision of N , and therefore we have a push-forward (πΣ)∗ : RΣ →
S•(MQ). Recall that R denotes the algebra of piecewise polynomial functions on N , i.e.
the direct limit of the algebras RΣ over all complete, regular fans. By functoriality, the
(πΣ)∗ define a push-forward π∗ : R→ S•(MQ).

Recall that the vector space R is generated by the functions Hn
P for all d-dimensional

polytopes P , and all non-negative integers n (see 1.5). Therefore, to determine the map
π∗ : R → S•(MQ), it is enough to compute all π∗(Hn

P ). Notation being as in 1.5, this
amounts to extending π∗ : R→ RN to π∗ : R̂→ R̂N and computing π∗ exp(HP ) ∈ R̂N .

Theorem. Let π∗ : R̂→ R̂N be the push-forward. Then for any d-dimensional convex
polytope P , with support function HP , the formal power series π∗ exp(HP ) represents an
entire function. Moreover, for all v ∈ NQ, we have

(π∗ exp(HP ))(v) = (−1)d
∫
P

exp〈m, v〉 dm.

P r o o f. Choose a complete, regular fan Σ such that HP is linear on every cone of
Σ. For any d-dimensional cone σ in Σ, denote by m1(σ) . . . ,md(σ) the equations of its
walls, normalized as in 1.1. Denote by fσ the linear form HP |σ; then fσ is some vertex
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of P . By 2.3, we have

π∗ exp(HP ) =
∑

σ∈Σ(d)

exp(fσ)
d∏
i=1

mi(σ)−1.

On the other hand, it follows from Théorème 3.2 in [7] that∫
P

exp〈m, v〉 dm = (−1)d
∑

σ∈Σ(d)

exp(fσ)(v)
d∏
i=1

〈mi(σ), v〉

for any v ∈ NQ outside of the walls of all maximal cones in Σ. The result follows.

Corollary. For any convex polytopes P1, . . . , Pd with respective support functions
f1, . . . , fd, we have

π∗(f1 · · · fd) = (−1)d d!V (P1, . . . , Pd)
where V denotes the mixed volume.

P r o o f. By 2.3, the map π∗ is homogeneous of degree −d. So the previous theorem
implies the identity

π∗(Hd
P ) = (−1)d d!

∫
P

dm = (−1)d d!V (P, . . . , P )

for any d-dimensional convex polytope P . The corollary follows by polarizing this identity.

2.5. Integrals of polynomial functions on convex polytopes. Consider the algebra R
of piecewise polynomial functions on NQ, and its quotient R/Mn+1R for some integer
n ≥ 0. By Proposition 1.4 (i), the degree of each non-zero element in R/Mn+1R is at
most n+ d. Using the isomorphism

R/Mn+1R ' Π̃/In+1Π̃

of 1.5, let us construct linear functionals on the component of highest degree
(R/Mn+1R)n+d. Namely, let g be any polynomial function on MQ which is homoge-
neous of degree n. Then the map∫

g : P → Q
P →

∫
P
g(m) dm

is compatible with the defining relations of Π̃. Moreover, it is easy to check that the
induced map

∫
g : Π̃ → Q vanishes on In+1, and is homogeneous of degree −n − d.

Therefore, we have defined a map∫
g : (Π̃/In+1Π̃)n+d → Q.

When n = 0, this construction reduces to the volume map vol : Πd → Q. By [19] Section
7, this map is an isomorphism. Let us extend this result to higher degrees.

Proposition. The bilinear form
Sn(NQ)× (Π̃/In+1Π̃)n+d → Q

(g, [P ]) →
∫
P
g

is non-degenerate.

In particular, the space (Π̃/In+1Π̃)n+d is isomorphic to the space of homogeneous
polynomials of degree n on NQ.



CONVEX POLYTOPES AND ENUMERATIVE GEOMETRY 37

P r o o f. As in 2.4, let us consider the map π∗ : R → S•(MQ). Recall that π∗ is a
morphism of S•(MQ)-modules of degree−d. Therefore, it induces a morphism of S•(MQ)-
modules of degree −d

grπ∗ :
⊕∞

n=0
MnR/Mn+1R→

⊕∞

n=0
Mn/Mn+1 = S•(MQ).

Let us check first that the restriction grπ∗ : (R/MR)d → Q is an isomorphism. Namely,
it follows from 2.4 that this map identifies with the volume map from Πd to Q; hence
our claim follows from [19] Theorem 1 c). Now recall that any basis of MQ is a regular
sequence in R (this is a consequence of Corollary 1.3). Therefore, the natural map

S•(MQ)⊗R/MR→
⊕∞

n=0
MnR/Mn+1R

is an isomorphism of graded S•(MQ)-modules. So the map grπ∗ restricts to an isomor-
phism of degree −d ⊕∞

n=0
(MnR/Mn+1R)n+d → S•(MQ).

Let P be a d-dimensional convex polytope, and let v ∈ N . By 2.4, we have∫
P

〈m, v〉n

n!
dm = (−1)d

π∗(Hn+d
P )

(n+ d)!
(v).

Remember that the non-negative powers of the functions HP generate the vector space
R/Mn+1R = Π̃/In+1Π̃. Hence, for any v ∈ NQ and f ∈ R/Mn+1R, the evaluation of
our bilinear form at (vn, f) is a non-zero multiple of (π∗f)(v). But the map

π∗ : (R/Mn+1R)n+d = (MnR/Mn+1R)n+d → SnMQ

is injective (because the map grπ∗ is injective). Therefore, our bilinear form is non-
degenerate on the left. We conclude by the equality

dim Sn(MQ) = dim(R/Mn+1R)n+d

which follows from the first part of the proof.

Our statement can be reformulated in a more concrete way, by using the language
of valuations on convex polytopes. Let Γ be an abelian group. Then a map v : P → Γ
is a valuation if v(P ∪ Q) + v(P ∩ Q) = v(P ) + v(Q) whenever P , Q and P ∪ Q are
convex polytopes. The notion of a polynomial valuation can be defined in an inductive
way. Namely, a valuation is called polynomial of degree 0 if it is translation-invariant.
Moreover, the valuation v : P → Γ is called polynomial of degree at most n if the
valuation P → v(P +m)− v(P ) is polynomial of degree at most n− 1 for any m ∈M .

Observe that the polynomial valuations of degree at most n, with values in Γ, identify
with the group homomorphisms from Π̃/In+1Π̃ to Γ. So we are led to the following

Corollary. For any valuation v : P → Q which is homogeneous of degree n+ d and
polynomial of degree n, there exists a unique g ∈ Sn(NQ) such that v =

∫
g.

3. The Chow ring of a smooth toric variety.
3.1. Equivariant cohomology and Chow ring. Notation being as in 2.2, consider any

T -space Z. Then the map Z ×T ET → BT is a fibration with fiber Z. So we have a
restriction map H∗T (Z) = H∗(Z ×T ET )→ H∗(Z) which vanishes on the ideal of H∗T (Z)
generated by the augmentation ideal of H∗(BT ), i.e. on M H∗T (Z). The induced map

vZ : H∗T (Z)/MH∗T (Z)→ H∗(Z)
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is not an isomorphism in general (take for example Z = T where T acts by multiplication).
However, if Z has no odd rational cohomology, then vZ is an isomorphism, and the image
of any basis of M is a regular sequence in H∗T (Z); see [4] 1.1. This leads to the Jurkiewicz-
Danilov presentation of the Chow ring of any smooth, complete toric variety, see [3].
Namely, such a variety Z has no odd rational cohomology, see e.g. [13] 5.2. Moreover, the
cycle map from the Chow ring to the cohomology ring of Z, is an isomorphism.

We will describe the image of vZ when Z is a smooth, but not necessarily complete,
toric variety.

Theorem. For any smooth toric variety X, the map

vX : H∗T (X)/MH∗T (X)→ H∗(X)

factors through an isomorphism

H∗T (X)/MH∗T (X) ' A∗(X)

followed by clX : A∗(X)→ H∗(X).

Here A∗(X) denotes the rational Chow ring of X, and clX is the cycle map; see [12]
Chapter 19.

P r o o f. Using Proposition 1.3, it is easy to reduce to the case where X is a torus
embedding, i.e. Σ is a fan. Then, again by 1.3, the algebra RΣ is defined by generators
xτ (τ an edge of Σ) and relations xτ1 · · ·xτn = 0 if τ1, . . . , τn do not generate a cone
of Σ. For any such edge τ , denote by nτ the generator of the semigroup τ ∩N . Choose
m ∈M ; then the function

∑
τ 〈m,nτ 〉ϕτ coincides with the image of m in RΣ. Therefore,

the algebra RΣ/MRΣ is defined by generators and relations as before, plus the relations∑
τ 〈m,nτ 〉xτ for any m ∈M .
On the other hand, the classes of F (τ) in A∗(X) satisfy the same relations; see [13] 3.3.

Therefore, vX factorizes through wX : RΣ/MRΣ → A∗(X) followed by clX : A∗(X) →
H∗(X). If X is complete, then vX is an isomorphism, and clX is, too. Therefore, wX
is an isomorphism. For the general case, because every smooth torus embedding has a
smooth, equivariant completion, it is enough to prove the following assertion: Let Σ be a
regular fan, and let σ be a maximal cone in Σ. Set Σ′ = Σ \ {σ} and X ′ = XΣ′ . If wX is
an isomorphism, then so is wX′ . But this assertion follows from the diagram

Zϕσ → RΣ/MRΣ → RΣ′/MRΣ′ → 0
↓ ↓ ↓

ZF (σ) → A∗(X) → A∗(X ′) → 0
Namely, the diagram commutes, the left and middle vertical arrows are isomorphisms,
and the rows are exact.

Corollary. For any smooth toric variety X, with generalized fan Σ, there is an
isomorphism of graded algebras RΣ/MRΣ → A∗(X) which maps the image of ϕσ to the
class of F (σ), for any σ ∈ Σ. If moreover Σ is a fan whose support is convex, of dimension
d, then we have

d∑
n=0

dim An(X) zn =
∑
σ∈Σ

zdim(σ) (1− z)codim(σ).

The first assertion results from the proposition above and from 2.2; the last assertion
follows from Corollaries 1.2 (iii) and 1.3.
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3.2. Pull-back, push-forward and intersection product. As in 2.3, consider two smooth
toric varieties X, X ′ with generalized fans Σ, Σ′, and an equivariant morphism π : X ′ →
X. By Corollary 3.1, we can identify A∗(X) with RΣ/MRΣ and A∗(X ′) with RΣ′/MRΣ′ .

Proposition. (i) The pull-back (for Chow rings) π∗ : A∗(X)→ A∗(X ′) is compatible
with the pull-back defined in 2.3.
(ii) If π is proper, then the push-forward (for Chow groups) π∗ : A∗(X ′) → A∗(X) is
compatible with the push-forward defined in 2.3.

P r o o f. (i) First consider the case where π is an open immersion. Then Σ′ is a
generalized sub-fan of Σ, and moreover l′ = l. Let τ be a minimal cone in Σ. Then for
any σ′ ∈ Σ′, we have

(π∗ϕτ )σ′ =
{
ϕτ,σ′ if σ′ ∈ Σ′

0 otherwise
and therefore

π∗ϕτ =
{
ϕτ if τ ∈ Σ′

0 otherwise.
On the other hand, we have

π∗F (τ) = F (τ) ∩X ′ =
{
F (τ) if τ ∈ Σ′

0 otherwise.
Our assertion follows, because the ring RΣ/MRΣ is generated by the images of the ϕτ .

Now consider the case where X and X ′ are complete. Then we can identify the
pull-back map π∗ : A∗(X) → A∗(X ′) with π∗ : H∗(X) → H∗(X ′). Moreover, the map
RΣ/MRΣ → H∗(X) identifies with i∗ : H∗(X×T ET )→ H∗(X) where i : X → X×T ET
is the inclusion of X in X ×T ET as an arbitrary fiber of the fibration X ×T ET → BT .
In this case, our assertion follows from functoriality of pull-back in cohomology.

Finally, consider the general case. Then there exist equivariant completions i : X → X
and i′ : X ′ → X ′ and an equivariant morphism π : X ′ → X which extends π. Therefore,
our assertion follows from the preceding discussion.
(ii) By Corollary 1.2, the images of the ϕτ ′ (τ ′ ∈ Σ′) generate the vector space RΣ′/MRΣ′ .
Moreover, it follows from 2.3 that

π∗ϕτ ′ =
{
ϕτ if the restriction of π to F (τ ′) is finite over its image
0 otherwise.

On the other hand, the same property holds for the π∗F (τ ′). We conclude by 3.1.

Corollary. For any smooth, complete torus embedding X, with fan Σ, the following
diagram commutes:

RΣ → RN
↓ ↓

A∗(X) → Q
where

∫
X

: A∗(X)→ Q is the degree, π∗ : RΣ → RN is the push-forward for the morphism
π : X → point, and the map RN → Q is evaluation at 0.

3.3. The Halphen ring of the torus. Given a d-dimensional torus T , we denote by
Hal(T ) the direct limit of the rational Chow rings of all smooth, complete embeddings of
T . We call Hal(T ) the Halphen ring of T . This terminology is due to Casas and Xambó,
who introduced and described the Halphen ring of conics; see [9]. Then DeConcini and
Procesi defined the Halphen ring (or “ring of conditions”) of any spherical homogeneous
space, see [10].
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A recent result of Fulton and Sturmfels asserts that Hal(T ) is isomorphic to the
polytope algebra; see [14]. This result can be rederived as follows: by 3.1, the algebra
Hal(T ) is isomorphic to R/MR where R denotes the algebra of piecewise polynomial
functions on NQ. On the other hand, R/MR is isomorphic to the polytope algebra by 1.5.

By work of DeConcini and Procesi (see [10]), the algebra Hal(T ) governs intersection
theory on T . More precisely, given n cycles Y1, . . . , Yn in T whose codimensions sum up
to d, we can define an intersection number (Y1 · · ·Yn)T as the number of common points
to translates t1Y1, . . . , tnYn for all (t1, . . . , tn) in a non-empty open subset of Tn. This
intersection number gives rise to a bi-additive map Zn(T )×Zd−n(T )→ Z where Zn(T )
is the free abelian group on cycles of codimension n in T . Denote by Cn(T ) the quotient
of Zn(T ) by the orthogonal of Zd−n(T ) for this pairing. Then the graded vector space
C∗(T ) =

⊕
n C

n(T )⊗Z Q is isomorphic to Hal(T ), and this isomorphism is compatible
with intersection products. In fact, this result holds for any spherical homogeneous space;
see [10] Theorem 6.3 and also [9] for the space of conics.

Theorem. Let Y1, . . . , Yn be cycles in T such that
∑n
i=1 codimT (Yi) = d.

(i) There exists a smooth, complete T -embedding X such that the closures of Y1, . . . , Yn
in X have proper intersection with all orbit closures.
(ii) For X as in (i), there exist T -stable cycles Z1, . . . , Zn such that [Yi] = [Zi] in A∗(X)
for 1 ≤ i ≤ n. Moreover, if fi denotes the equivariant cohomology class of Zi in H∗T (X) ⊂
R, then the image of fi modMR depends only on Yi.
(iii) For f1, . . . , fn as in (ii), we have

(Y1 · · ·Yn)T = π∗(f1 · · · fn)

where π maps X to a point, and π∗ is described in 2.3.
(iv) If moreover Y1, . . . , Yd are divisors in T , with equations F1, . . . , Fd ∈ C[T ] and New-
ton polytopes N1, . . . ,Nd, then we can take for fi the opposite of the support function of
Ni, and we have

(Y1 · · ·Yd)T = d!V (N1, . . . ,Nd)

where V denotes the mixed volume.

Observe that the functions F1, . . . , Fd in (iv) are only defined up to multiplicative
units in C[T ]. Therefore, the Newton polytopes are defined up to translation by elements
of M . But this does not change the image of fi in R/MR, neither the mixed volume of
N1, . . . ,Nd.

P r o o f. (i) is a special case of [10] Theorem 4.7.
(ii) The existence of Zi follows from [15]. Moreover, by 3.1, the image of fi in R/MR
identifies with the class of Zi in Hal(T ), i.e. with the class of Yi.
(iii) By [10] Theorem 6.3, we have

(Y1 · · ·Yn)T =
∫
X

[Y1] · · · [Yn]

and hence

(Y1 · · ·Yn)T =
∫
X

[Z1] · · · [Zn].
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On the other hand, the diagram
H∗T (X) → RN
↓ ↓

A∗(X) → Q

commutes by 3.2. Moreover, π∗(f1 · · · fn) is a constant function, because f1 · · · fn has
degree d, and π∗ has degree −d. Therefore, we have∫

X

[Z1] · · · [Zn] = π∗(f1 · · · fn).

(iv) Choose X as in (i), and denote its fan by Σ. For any one-dimensional cone τ ∈ Σ,
denote by nτ the generator of the semigroup τ ∩N . Then Fi is a rational function on X,
with divisor

Yi +
∑
τ

Hi(nτ )F (τ)

where Hi denotes the support function of Ni. So we can take

[Zi] = −
∑
τ

Hi(nτ )F (τ)

which amounts to
fi = −

∑
τ

Hi(nτ )ϕτ = −Hi.

Finally, the formula for (Y1 · · ·Yn)T follows from Corollary 2.4.

R e m a r k. Statement (iv) is a variant of a result of Bernstein and Kouchnirenko; see
[2], [18] Théorème III’ and also [13] 5.5. It can be considered as a generalization of the
theorem of Bézout.

4. Enumerative geometry in spherical homogeneous spaces.
4.1. The Newton polytope of a divisor in a spherical homogeneous space. Let G be

a connected reductive complex algebraic group, and let H be a closed subgroup. The
homogeneous space G/H is spherical if it contains a dense orbit for the action of some
Borel subgroup of G. We will extend Bernstein-Kouchnirenko’s theorem to spherical
homogeneous spaces. We begin with some notation and results on these spaces; see e.g.
[17] for more on this topic.

Let G/H be a spherical homogeneous space. Then we may choose a Borel subgroup
B of G such that BH is open in G, and such a B is unique up to conjugation by H. The
dense B-orbit in G/H is BH/H ' B/B ∩H.

We denote by K the field of rational functions on G/H, and by K(B) the multiplicative
group of eigenvectors of B in K. Observe that any invariant of B in K is a constant
function. It follows that every F ∈ K(B) is determined by the associated character χF
of B, up to a scalar. We denote by M the set of all χF for F ∈ K(B); then M is a free
abelian group of finite rank d. The integer d is called the rank of G/H.

We denote by V the set of all G-invariant discrete valuations v : K → Q ∪ {∞}.
Restriction to K(B) defines a map ρ : V → HomZ(M,Q) := NQ. This map is injective,
and its image is a cone in NQ; see [17]. We identify V with its image, and we call it the
valuation cone.

We denote by D the set of all irreducible, B-stable divisors in G/H. Then D is a
finite set; any D ∈ D defines a B-invariant normalized, discrete valuation vD of K. To
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any D ∈ D we associate a character χD of B, which is determined up to translation by
a character of G. For this, we assume that the ring of regular functions on G is a UFD
(this assumption can always be fulfilled if we replace G by a finite cover G̃, and H by its
preimage in G̃). Then the inverse image of D in G is an effective divisor, which is stable
by left multiplication by B. Hence any equation FD of this divisor is an eigenvector of B,
and we take for χD the weight of FD. If F1, F2 are two such equations, then F2F

−1
1 := ϕ

is a regular, nowhere vanishing function on G, and hence ϕ is a scalar multiple of a
character of G. This explains the indeterminacy of χD. For any F ∈ K(B), we have
χF =

∑
D∈D vD(F )χD modulo the character group of G.

Let Y ⊂ G/H be an effective divisor. Translating Y by some g ∈ G, we may assume
that no component of Y belongs to D. It means that Y ∩(B/B∩H) is dense in Y . Because
the ring of regular functions on B/B ∩H is a UFD, we may choose a generator F of the
ideal of Y ∩ (B/B ∩H) in this ring. Then F belongs to K, and F is determined up to
multiplication by an element of K(B) (the group of regular, nowhere vanishing functions
on B/B ∩H). We define the Newton polytope of Y by

NY = {−
∑
D∈D

vD(F )χD +m | m ∈MQ and v(m) ≥ v(F ) ∀v ∈ V ∪ D}.

Proposition. (i) The set NY is a convex polytope in MQ. Moreover, NY is uniquely
determined up to translation by a character of G.
(ii) For any effective divisors Y ′, Y ′′ in G/H, we have NY ′+Y ′′ = NY ′ +NY ′′ .
(iii) In the case where G is a torus and H is the trivial subgroup, NY is the usual Newton
polytope.

P r o o f. (i) The set NY depends on the choice of g and F . We use the notation Ng,F
until we have proved the “unicity” of this object.

First observe that the map

F : V → Q
v → v(F )

is convex and piecewise linear. Therefore, the set Ng,F is defined by finitely many linear
inequalities. Moreover, Ng,F does not contain any half-line. Otherwise, there would exist
m ∈ M such that m 6= 0 and v(m) ≥ 0 for all v ∈ V ∪ D. This m would be the weight
of a non-constant F ∈ K(B) with F regular on any equivariant completion of G/H, a
contradiction. Therefore, Ng,F is a convex polytope.

Denote by ΩY the set of all g ∈ G such that no component of gY belongs to D.
Then ΩY is an open subset in G, and ΩY contains the identity element 1 ∈ G. For any
g ∈ ΩY , an equation of gY in B/B ∩ H is gF . Moreover, we have by semi-continuity
vD(gF ) = vD(F ) for all g ∈ ΩY . It follows that Ng,gF = N1,F .

Let F1, F2 be two generators of the ideal of Y ∩ (B/B ∩H). Denote by N1 and N2

the corresponding Newton polytopes. Write F2 = ϕF1 for some ϕ ∈ K(B). Then the
character χϕ −

∑
D∈D vD(ϕ)χD of B, extends to a character of G. Now it is easy to

check that N1 and N2 differ by translation by χ.
(ii) is a direct verification.
(iii) If G is a torus, then B is equal to G, and hence the set D is empty. Moreover, the val-
uation cone V identifies with NQ, and the value of v ∈ V at a regular function F on T can
be computed as follows. Decompose F as a linear combination of characters m1, . . . ,mr
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of G, with non-zero coefficients; then v(F ) is the minimum of v(m1), . . . , v(mr). The
assertion follows.

4.2. A Bézout theorem for spherical homogeneous spaces. Keep the notation of 4.1.
Denote by M̃ the subgroup generated by the χD for all D ∈ D, and by the character
group of G; then M̃ contains M , and moreover any element of M̃ is the difference of
two dominant weights which are in M̃ . For such a dominant weight λ, the dimension of
the corresponding simple G-module is the value at λ of a polynomial function Φ (Weyl’s
dimension formula). Denote by ϕ the leading term of Φ. Then it follows from [8] 4.1 that
the degree of ϕ is n− d where n denotes the dimension of G/H.

For any d-dimensional convex polytopes P1, . . . , Pn in M̃Q, the integral of ϕ over the
polytope t1P1 + · · ·+ tnPn is a polynomial function of the non-negative rational numbers
t1, . . . , tn (this follows e.g. from 2.5). This polynomial is clearly homogeneous of degree n;
its coefficient over the monomial t1 · · · tn will be denoted by Vϕ(P1, . . . , Pn). In the case
where G/H is a torus, ϕ is the constant function 1, and Vϕ is the mixed volume.

Theorem. Notation being as above, for any effective divisors Y1, . . . , Yn in G/H, with
Newton polytopes N1, . . . ,Nn, we have

(Y1 · · ·Yn)G/H = n!Vϕ(N1, . . . ,Nn).

Recall that the symbol (Y1 · · ·Yn)G/H stands for the number of common points to
translates g1Y1, . . . , gnYn for generic (g1, . . . , gn) ∈ Gn; see 3.3. In the case where G/H
is a connected reductive group Γ, the result above is due to B. Y. Kazarnovskii by a
different method, based on the moment map; see [16]. In this case, we can take G = Γ×Γ
and H = Γ embedded diagonally in Γ×Γ. Moreover, the groups M and M̃ coincide, and
they identify with the character group of a maximal torus of Γ; then the function ϕ is a
scalar multiple of the product of all positive roots.

P r o o f. Consider an effective divisor Y in G/H, its equation F and its Newton
polytope N as in 4.1. Choose a projective, smooth embedding X of G/H where the
closure of Y contains no G-orbit (such an X exists by [10] Theorem 4.7). Then we have
(as in 3.3)

(Y · · ·Y )G/H =
∫
X

[Y ]n.

Observe that the divisor Y is base-point-free. Namely, replacing G by a finite cover, we
may assume that the invertible sheaf OX(Y ) is G-linearized. Denote by σ the canonical
section of Y ; then σ generates OX(Y ) over X \ Y . Therefore, the G-translates of σ
generate OX(Y ) over X, because Y contains no G-orbit.

We denote by (Xv)v∈V(X) the set of all irreducible, G-stable divisors in X; then V(X)
is considered as a subset of V. In the Picard group of X, we have 0 = div(F ) = Y − Z
where Z denotes the B-stable divisor

−
∑
D∈D

vD(F )D −
∑

v∈V(X)

v(F )Xv.

Moreover, Z is base-point-free, because Y is. Therefore, it follows from [8] that∫
X

Zn = n!
∫
N
ϕ(m) dm.
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Namely, when Z is ample, this formula is equivalent to Théorème 4.1 in [8]. When Z
is base-point-free, then Z is a limit of ample, B-stable divisors Zi, and the polytopes
associated to Zi converge to NY . Now our statement follows by polarizing the formula
above.
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