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Consider a connected reductive algebraic group G over an algebraically closed field k,
and a principal G-bundle π : X → Y , where X and Y are non-singular algebraic varieties
over k. For any parabolic subgroup P ⊂ G, the map π factors through the flag bundle
h : X/P → Y . In this note, we describe the push-forward (or Gysin homomorphism)
h∗ : A∗(X/P ) → A∗(Y ) where A∗ denotes the Chow group. Moreover, we compute the
Todd class of the tangent bundle to h in A∗(X/P )Q. In the case when k is the field
of complex numbers, our results hold when the Chow ring is replaced by the rational
cohomology ring, and the proofs are the same.

The push-forward is described in [P] when G is the general linear group, and in [AC]
for the canonical map G/B → G/P where G is arbitrary and B is a Borel subgroup
of P . Note that this map is a flag bundle associated with the principal P/R(P )-bundle
G/R(P ) → G/P , where R(P ) denotes the radical of P . Our formula for the Todd class
seems to be new.

1. Complete flag bundles. Denote by G a connected reductive algebraic group,
and by B a Borel subgroup. Choose a maximal torus T ⊂ B with Weyl group W . Denote
by X∗(B) the character group of B, and by S the symmetric algebra of X∗(B) over Q.
The root system of (G,T ) is denoted by R; the set R+ of positive roots consists in the
opposites of roots of (B, T ). Finally, denote by ρ the half-sum of positive roots, and by
N their number.

Let π : X → Y be a principal G-bundle where X and Y are non-singular. Then π
factors through the complete flag bundle f : X/B → Y . The morphism f is smooth and
proper of relative dimension N .

For any λ ∈ X∗(B), we denote by kλ the one-dimensional B-module with weight λ.
Then X×B kλ is the total space of a line bundle Lλ over X/B. We denote the first Chern
class of Lλ by c(λ) ∈ A1(X/B). Since Lλ+µ

∼= Lλ ⊗ Lµ, we have c(λ+ µ) = c(λ) + c(µ).
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Therefore, c defines a ring homomorphism c : S → A∗(X/B)Q called the characteristic
homomorphism; see [D1] and [D2].

Proposition 1.1. For any u ∈ S, we have

f∗f∗c(u) = c
(∑

w∈W det(w)w(u)∏
α∈R+

α

)
.

P r o o f. Choose a dominant weight λ. Then f∗f∗Lλ is the vector bundle over X/B
associated with the B-module Γ(G/B,Lλ). Therefore, the Chern roots of f∗f∗Lλ are the
images by c of the weights of Γ(G/B,Lλ). Now Weyl’s character formula implies that

ch(f∗f∗Lλ) = c
(∑

w∈W det(w)ew(λ+ρ)∏
α∈R+

(eα/2 − e−α/2)

)
.

Here, for µ ∈ X∗(B), we denote by eµ the formal power series
∑∞
n=0 µ

n/n!. Observe that
c(eµ) makes sense in A∗(X/B), because c(µ) is nilpotent.

On the other hand, we have by the Grothendieck-Riemann-Roch theorem:

ch(f∗Lλ) = f∗
(
ch(L−λ) td(Tf )

)
,

where td(Tf ) is the Todd class of the relative tangent bundle. Observe that the Chern
roots of Tf are c(α), α ∈ R+. It follows that

f∗f∗c
(
eλ

∏
α∈R+

α

1− e−α
)

= c
(∑

w∈W det(w)ew(λ+ρ)∏
α∈R+

(eα/2 − e−α/2)

)
.

Now we set

u0 :=
∏
α∈R+

α

eα/2 − e−α/2

(then u0 is W -invariant) and µ := λ+ ρ (then µ is dominant and regular). So we have

f∗f∗c(u0e
µ) = c

(
u0

∑
w∈W det(w)ew(µ)∏

α∈R+
α

)
.

By the lemma below, it follows that

f∗f∗c(u0u) = c
(∑

w∈W det(w)w(u0u)∏
α∈R+

α

)
for any u ∈ S. Now observe that u0− 1 is a sum of classes of positive degree, to conclude
the proof.

Lemma. The Q-vector space c(S) is generated by c(eµ), µ a dominant regular weight.

P r o o f. First observe that the Q-vector space S is generated by all non-negative
powers of all dominant regular weights. Therefore, it suffices to show that c(µ) is a
(finite) linear combination with rational coefficients of the c(enµ)n≥1 for any regular
dominant weight µ. There exists a sequence (an)n≥1 of rational numbers such that µ =∑
n≥1 an(eµ−1)n as a formal power series. Furthermore, c(eµ−1) is nilpotent in A∗(X/B)

and this implies our statement.
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Proposition 1.2. For any u ∈ SW , we have in A∗(X/B)Q:

f∗f∗c
(
u
ρN

N !
)

= c(u) =
1
|W |

f∗f∗c
(
u
∏
α∈R+

α
)
.

P r o o f. By Proposition 1.1, we have

f∗f∗c
(
u
ρN

N !
)

= c(u)c
(∑

w∈W det(w)w(ρN )
N !

∏
α∈R+

α

)
.

On the other hand, the identity∑
w∈W

det(w)ew(ρ) =
∏
α∈R+

(eα/2 − e−α/2)

implies that ∑
w∈W

det(w)w
(ρN
N !
)

=
∏
α∈R+

α.

This proves the first equality. For the second one, we apply Proposition 1.1 to the anti-
invariant element u

∏
α∈R+ α.

R e m a r k. Proposition 1.2 can be reformulated as follows: The restriction to invariants
c|SW : SW → A∗(X/B)Q is the composition of cW : SW → A∗(Y )Q with f∗, where

cW (u) = f∗c
(
u
ρN

N !
)

=
1
|W |

f∗c
(
u
∏
α∈R+

α
)
.

Moreover, cW is an algebra homomorphism, because f∗ is injective.

Proposition 1.3. The Todd class of the relative tangent bundle of f : X/B → Y is
given by

td(Tf ) = ec(ρ)f∗(f∗ec(ρ))−1.

Equivalently,
td(Tf ) = ec1(Tf )/2f∗(f∗ec1(Tf )/2))−1.

P r o o f. With the notation of the proof of Proposition 1.1, we have

td(Tf ) = c
( ∏
α∈R+

α

1− e−α
)

= ec(ρ)c(u0).

Furthermore, u0 is invariant under W . Therefore, by Proposition 1.2, there exists v ∈
A∗(Y )Q such that c(u0) = f∗v. On the other hand, f∗ td(Tf ) = 1 and hence vf∗ec(ρ) = 1.

R e m a r k. The class f∗f∗ec(ρ) ∈ A∗(X/B)Q is even, and its part of degree at most
two is 1 + 1

24c(
∑
α∈R+ α2). Indeed, we have by Proposition 1.1:

f∗f∗e
c(ρ) = c

(∑
w∈W det(w)ew(ρ)∏

α∈R+
α

)
= c
( ∏
α∈R+

eα/2 − e−α/2

α

)
.

Moreover, the formal power series

ex/2 − e−x/2

x
= 1 +

x2

24
+ · · ·

is even.
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2. General flag bundles. Let P ⊃ B be a parabolic subgroup of G. Denote by L
the Levi subgroup of P which contains T , with root system RL and Weyl group WL.
The morphism f : X/B → Y is the composition of g : X/B → X/P with h : X/P →
Y . Observe that g is the complete flag bundle associated with the principal L-bundle
X/Ru(P ) → X/P . Therefore, we have a homomorphism cWL : SWL → A∗(X/P ). We
will describe h∗ and the Todd class of the relative tangent bundle to h as well.

Proposition 2.1. For any u ∈ SWL , we have

h∗h∗c
WL(u) = cWL

( ∑
w∈W/WL

w(u
/ ∏
α∈R+\RL

α)
)
.

The right-hand side makes sense, because both u and
∏
α∈R+\RL

α are invariant
under WL.

P r o o f. By the remark after Proposition 1.2, we have

cWL(u) =
1
|WL|

g∗c
(
u
∏
α∈R+

L

α
)
.

It follows that

g∗h∗h∗c
WL(u) =

1
|WL|

f∗f∗c(u
∏
α∈R+

L

α)

=
1
|WL|

c
(∑
w∈W

det(w)w(u
∏
α∈R+

L

α)
/ ∏
α∈R+

α
)

= c
( ∑
w∈W/WL

w(u
/ ∏
α∈R+\RL

α)
)
.

Proposition 2.2. The Todd class of the relative tangent bundle of h : X/P → Y is
given by

td(Th) = cWL(u)h∗
(
h∗c

WL(u)
)−1

where u stands for

eρ−ρL

∑
w∈WL

det(w)ew(ρL)
/ ∏
α∈R+

L

α.

P r o o f. Observe that td(Tf ) = td(Tg)g∗ td(Th) and that g∗ td(Tg) = 1, whence
td(Th) = g∗ td(Tf ). Furthermore, by Proposition 1.3, we have

td(Tf )f∗(f∗ec1(Tf )/2) = ec1(Tf )/2.

It follows that
td(Th)h∗(h∗g∗ec1(Tf )/2) = g∗e

c1(Tf )/2.

Now c1(Tf ) = c1(Tg) + g∗c1(Th). Therefore, we have td(Th)h∗(h∗v) = v where v :=
ec1(Th)/2g∗e

c1(Tg)/2. But c1(Th) = 2c(ρ− ρL) and moreover

g∗e
c1(Tg)/2 = cWL

( ∑
w∈WL

det(w)ew(ρL)
/ ∏
α∈R+

L

α
)

by Proposition 1.1 applied to the complete flag bundle g.
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3. The case of classical groups. For any root system R, we set

u(R) :=
∑
w∈W det(w)ew(ρ)∏

α∈R+
α

=
∏
α∈R+

eα/2 − e−α/2

α

where W is the Weyl group, R+ is a set of positive roots, and ρ is the half-sum of positive
roots. This defines u(R) as a formal sum of Weyl group invariants, independently of the
choice of R+. To finish the computation of the Todd class of flag bundles, we need formulas
for u(R): for example, it follows from Proposition 2.2 that

td(TG/P ) = cWL
(
eρ−ρLu(RL)

)
.

Observe that u(R) is the product of the u(Ri) over all irreducible components Ri of R.
For R an irreducible root system of type A, B, C or D, we will obtain a determinantal
formula and an expansion of u(R) into S-functions (for these, see [M] 1.3).

Type An: The positive roots are the xi − xj (1 ≤ i < j ≤ n+ 1). We claim that

u(An) = det
(
e(n−2i+2)xj/2

)
1≤i,j≤n+1

∏
1≤i<j≤n+1

(xi − xj)−1

=
∑

λ1≥...λn+1≥0

n!(n− 1)! · · · 1!
2λ1+···+λn+1(λ1 + n)!(λ2 + n− 1)! · · ·λn+1!

× sλ(n, n− 2, . . . ,−n)sλ(x1, . . . , xn+1).

Indeed, u(An) can be written as∏
1≤i<j≤n+1

(
e(xi−xj)/2 − e−(xi−xj)/2

) ∏
1≤i<j≤n+1

(xi − xj)−1

and the first formula follows by the classical expression of the Vandermonde determinant.
To obtain the second formula, we simply expand each exponential in the determinant into
its power series.

Type Bn: The positive roots are the xi + xj , xi − xj (1 ≤ i < j ≤ n) and x1, . . . , xn. We
obtain similarly

u(Bn) = 2n det
(
sh((n− i+ 1/2)xj)/xj

)
1≤i,j≤n

∏
1≤i<j≤n

(x2
i − x2

j )
−1

=
∑

λ1≥···≥λn≥0

(2n− 1)!(2n− 3)! · · · 1!
(2n− 1 + 2λ1)!(2n− 3 + 2λ2)! · · · (1 + 2λn)!

× sλ
((
n− 1

2
)2
,
(
n− 3

2
)2
, . . . ,

(1
2
)2)

sλ
(
x2

1, . . . , x
2
n

)
.
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Type Cn: The positive roots are the xi+xj , xi−xj (1 ≤ i < j ≤ n) and 2x1, . . . , 2xn.
We have

u(Cn) = det
( sh((n− i+ 1)xj)

xj

)
1≤i,j≤n

∏
1≤i<j≤n

(x2
i − x2

j )
−1

=
∑

λ1≥···λn≥0

(2n− 1)!(2n− 3)! · · · 1!
(2n− 1 + 2λ1)!(2n− 3 + 2λ2)! · · · (1 + 2λn)!

× sλ(n2, (n− 1)2, . . . , 12)sλ(x2
1, . . . , x

2
n).

Type Dn: The positive roots are the xi + xj , xi − xj (1 ≤ i < j ≤ n). We have

u(Dn) = 2n−1 det
(
ch((n− i)xj)

)
1≤i,j≤n

∏
1≤i<j≤n

(x2
i − x2

j )
−1

=
∑

λ1≥···≥λn−1≥0

(2n− 2)!(2n− 4)! · · · 2!
(2n− 2 + 2λ1)!(2n− 4 + 2λ2)! · · · (2 + 2λn−1)!

× sλ((n− 1)2, (n− 2)2, . . . , 12)sλ(x2
1, . . . , x

2
n).
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