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Introduction. In this paper we explore several concrete problems, all more or less
related to the intersection theory of the moduli space of (stable) curves, introduced by
Mumford [Mu 1].

In Section 1 we only intersect divisors with curves. We find a collection of necessary
conditions for ample divisors, but the question whether these conditions are also sufficient
is very much open.

The other sections are concerned with moduli spaces of curves of low genus, but we
use the ring structure of the Chow ring. In Sections 2, 3 we find necessary conditions for
very ample divisors on M2 and M3.

The intersection numbers of the kappa-classes are the subject of the Witten conjecture,
proven by Kontsevich. In Section 4 we show how to compute these numbers for g = 3
within the framework of algebraic geometry.

Finally, in Section 5 we compute λ9 on M4. This also gives the value of λ3
g−1 (for

g = 4), which is relevant for counting curves of higher genus on manifolds [BCOV].
Another corollary is a different computation of the class of the Jacobian locus in the
moduli space of 4-dimensional principally polarized abelian varieties; in a sense this gives
also a different proof that the Schottky locus is irreducible in dimension 4.

Acknowledgement. I would like to thank Gerard van der Geer for very useful discus-
sions in connection with Section 5. This research has been made possible by a fellowship
of the Royal Netherlands Academy of Arts and Sciences.

1. Necessary conditions for ample divisors onMg. Let g ≥ 2 be an integer and
put h = [g/2]. Cornalba and Harris [C-H] determined which divisors on Mg of the form
aλ − bδ are ample: this is the case if and only if a > 11b > 0. Divisors of this form are
numerically effective (nef) if and only if a ≥ 11b ≥ 0. (More generally, the ample cone
is the interior of the nef cone and the nef cone is the closure of the ample cone ([Ha],
p. 42)). Here δ =

∑h
i=0 δi with δi = [∆i] for i 6= 1 and δ1 = 1

2 [∆1].
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Arbarello and Cornalba [A-C] proved that the h+ 2 divisors λ, δ0, δ1, . . . , δh form for
g ≥ 3 a Z-basis of Pic(Mg) (the Picard group of the moduli functor), using the results
of Harer and Mumford (we work over C). As pointed out in [C-H] it would be interesting
to determine the nef cone in Pic(Mg) for g ≥ 3. (For g = 2 the answer is given by the
result of [C-H], because of the relation 10λ− δ0 − 2δ1 = 0.)

In [Fa 1], Theorem 3.4, the author determined the nef cone for g = 3. The answer
is: aλ − b0δ0 − b1δ1 is nef on M3 if and only if 2b0 ≥ b1 ≥ 0 and a − 12b0 + b1 ≥
0. That a nef divisor necessarily satisfies these inequalities, follows from the existence
of one-dimensional families of curves for which (deg λ,deg δ0,deg δ1) equals (1, 12,−1)
resp. (0,−2, 1) resp. (0, 0,−1). Such families are easily constructed: for the first family,
take a simple elliptic pencil and attach it to a fixed one-pointed curve of genus 2; for the
second family, take a 4-pointed rational curve with one point moving and attach a fixed
two-pointed curve of genus 1 to two of the points and identify the two other points; for
the third family, take a 4-pointed rational curve with one point moving and attach two
fixed one-pointed curves of genus 1 to two of the points and identify the two other points.

That a divisor on M3 satisfying the inequalities is nef, follows once we show that
λ, 12λ − δ0 and 10λ − δ0 − 2δ1 are nef. It is well-known that λ is nef. Using induction
on the genus one shows that 12λ − δ0 is nef: on M1,1 it vanishes; for g ≥ 2, writing
12λ − δ0 = κ1 +

∑h
i=1 δi one sees that 12λ − δ0 is positive on every one-dimensional

family of curves where the generic fiber has at most nodes of type δ0; if on the other
hand the generic fiber has a node of type δi for some i > 0, one partially normalizes the
family along a section of such nodes and uses the induction hypothesis (cf. the proof of
Proposition 3.3 in [Fa 1], which unfortunately proves the result only for g = 3). Finally,
the proof that 10λ − δ0 − 2δ1 is nef on M3 is ad hoc (see the proof of Theorem 3.4 in
[Fa 1]).

All we do in this section is come up with a couple of one-dimensional families of stable
curves for which we compute the degrees of the basic divisors. The naive hope is that at
least some of these families are extremal (cf. [C-H], p. 475), but the author hastens to
add that there is at present very little evidence to support this.

The method of producing families is a very simple one: we start out trying to write
down all the families for which the generic fiber has 3g − 4 nodes. This turns out to be
a bit complicated. However, the situation greatly simplifies as soon as one realizes that
the only one-dimensional moduli spaces of stable pointed curves areM0,4 andM1,1: for
the computation of the basic divisor classes on these families, one only needs to know the
genera of the pointed curves attached to the moving 4-pointed rational curve resp. the
moving one-pointed curve of genus 1 as well as the types of the nodes one gets in this
way. In other words, the fixed parts of the families can be taken to be general.

We now consider the various types of families obtained in this way and compute
on each family the degrees of the basic divisor classes. Each family gives a necessary
condition for the divisor aλ−

∑h
i=0 biδi to be nef. In order to write this condition, it will

be convenient to define δi = δg−i and bi = bg−i for h < i < g.
A) In the case of M1,1, there is very little choice: we can only attach a (general)

one-pointed curve of genus g − 1. Taking a simple elliptic pencil for the moving part, we
get—as is well-known—the following degrees: deg λ = 1, deg δ0 = 12, deg δ1 = −1 and
deg δi = 0 for 1 < i ≤ h. This gives the necessary condition a− 12b0 + b1 ≥ 0.

B) The other families are all constructed from a 4-pointed smooth rational curve
with one of the points moving and the other three fixed; when the moving point meets
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one of the fixed points, the curve breaks up into two 3-pointed smooth rational curves
glued at one point. We have to examine the various ways of attaching general curves to
this 4-pointed rational curve. E.g., one can attach one curve, necessarily 4-pointed and
of genus g − 3. All nodes are of type δ0 and the 3 degenerations have an extra such
node. Therefore deg δ0 = −4 + 3 = −1, while the other degrees are zero; one obtains the
necessary condition b0 ≥ 0.

C) Now attach a 3-pointed curve of genus i and a 1-pointed curve of genus j ≥ 1,
with i+ j = g − 2. One checks deg δ0 = −3 + 3 = 0 and deg δj = −1, the other degrees
vanish. One obtains bj ≥ 0 for j ≥ 1. Thus all bi are non-negative for a nef divisor.

R e m a r k. If one uses the families above, one simplifies the proof of Theorem 1 in
[A-C] a little bit.

D) If we attach two-pointed curves of genus i ≥ 1 and j ≥ 1, with i + j = g − 2, we
find deg δ0 = −4 + 2 = −2 and deg δi+1 = 1. So for 2 ≤ k ≤ h we find the condition
2b0 − bk ≥ 0.

E) Attaching a two-pointed curve of genus i and two one-pointed curves of genus j
and k, with i, j, k ≥ 1 and i + j + k = g − 1, we find that two of the degenerations
have an extra node of type δ0 while the third has an extra node of type δj+k. Therefore
deg δ0 = −2 + 2 = 0. It is cumbersome to distinguish the various cases that occur for
the other degrees, but is also unnecessary: one may simply write the resulting necessary
condition in the form bj + bk − bj+k ≥ 0, for j, k with 1 ≤ j ≤ k and j + k ≤ g − 2.

F) Attaching 4 one-pointed curves of genera i, j, k, l ≥ 1, with i + j + k + l = g, we
get the necessary condition bi + bj + bk + bl − bi+j − bi+k − bi+l ≥ 0.

G) If we identify two of the 4 points to each other and attach a two-pointed curve of
genus g− 2 to the remaining two points, we obtain the necessary condition 2b0 − b1 ≥ 0.

H) As in G), but now we attach 1-pointed curves of genera i, j ≥ 1 to the remaining
two points, with i+ j = g − 1. The resulting condition is bi + bj − b1 ≥ 0.

The only other possibility is to identify the first with the second and the third with
the fourth point. This gives a curve of genus 2, so this is irrelevant. We have proven the
following theorem.

Theorem 1. Assume g ≥ 3. A numerically effective divisor aλ−
∑h

i=0 biδi in Pic(Mg)
satisfies the following conditions:
a) a− 12b0 + b1 ≥ 0;
b) for all j ≥ 1,

2b0 ≥ bj ≥ 0;
c) for all j, k with 1 ≤ j ≤ k and j + k ≤ g − 1,

bj + bk ≥ bj+k;

d) for all i, j, k, l with 1 ≤ i ≤ j ≤ k ≤ l and i+ j + k + l = g,

bi + bj + bk + bl ≥ bi+j + bi+k + bi+l.

Here bi = bg−i for h < i < g, as before. The conditions in the theorem are somewhat
redundant. E.g., it is easy to see that condition (c) implies the non-negativity of the bi
with i ≥ 1.

As we have seen, the conditions in the theorem are sufficient for g = 3. The proof
proceeded by determining the extremal rays of the cone defined by the inequalities and
analyzing the (three) extremal rays separately. It may therefore be of some interest to
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find (generators for) the extremal rays of the cone in the theorem. We have done this for
low genus:

g = 4 :


λ
12λ− δ0
10λ− δ0 − 2δ1
10λ− δ0 − 2δ1 − 2δ2
21λ− 2δ0 − 3δ1 − 4δ2

g = 5 :


λ
12λ− δ0
10λ− δ0 − 2δ1 − δ2
10λ− δ0 − 2δ1 − 2δ2
32λ− 3δ0 − 4δ1 − 6δ2

g = 6 :



λ
12λ− δ0
10λ− δ0 − 2δ1 − 2δ2
10λ− δ0 − 2δ1 − 2δ3
10λ− δ0 − 2δ1 − 2δ2 − 2δ3
32λ− 3δ0 − 4δ1 − 6δ2 − 6δ3
98λ− 9δ0 − 10δ1 − 16δ2 − 18δ3

Unfortunately, we have not been able to discover a general pattern. (There are 10
extremal divisors for g = 7, 20 extremal divisors for g = 8 and 21 extremal divisors for
g = 9.) It is easy to see that λ, 12λ− δ0 and 10λ− 2δ + δ0 are extremal in every genus.
It should be interesting to know the answer to the following question.

Question.
a) Is 10λ− 2δ + δ0 nef for all g ≥ 4?
b) Are the conditions in the theorem sufficient?

Note that an affirmative answer to the first question implies the result of [C-H] men-
tioned above, since 12λ − δ0 is nef. Note also that a divisor satisfying the conditions
in the theorem is non-negative on every one-dimensional family of curves whose general
member is smooth. This follows easily from [C-H, (4.4) and Prop. (4.7)]. (I would like to
thank Maurizio Cornalba for reminding me of these results.)

2. Necessary conditions for very ample divisors on M2. We know which di-
visors on M2 are ample: it is easy to see that λ and δ1 form a Z-basis of the functorial
Picard group Pic(M2); then aλ + bδ1 is ample if and only if a > b > 0, as follows from
the relation 10λ = δ0 + 2δ1 and the fact that λ and 12λ− δ0 are nef.

Therefore it might be worthwhile to study which divisors are very ample on the space
M2. Suppose that D = aλ + bδ1 is a very ample divisor. Then for every k-dimensional
subvariety V of M2 the intersection product Dk · [V ] is a positive integer, the degree of
[V ] in the embedding ofM2 determined by |D|. We work this out for the subvarieties that
we know; we use Mumford’s computation [Mu 1] of the Chow ring (with Q-coefficients)
of M2. The result may be formulated as follows:

A∗(M2) = Q[λ, δ1]/(δ1(λ+ δ1), λ2(5λ− δ1)).

The other piece of information we need is on p. 324 of [Mu 1]: λ3 = 1
2880p. However, one
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should realize that the identity element in A∗(M2) is [M2]Q = 1
2 [M2], which means that

λ3 · [M2] =
1

1440
.

Therefore

D3 · [M2] =
a3 + 15a2b− 15ab2 + 5b3

1440
.

One of the requirements is therefore that the integers a and b are such that the expression
above is an integer. It is not hard to see that this is the case if and only if

60|a and 12|b.

It turns out that these conditions imply that D2 · [∆0] and D2 · [∆1] are integers. Also
D2 · 4λ is an integer, but D2 · 2λ is an integer if and only if 8|(a + b). Therefore, if for
some integer k the class (4k + 2)λ is the fundamental class of an effective 2-cycle, then
a very ample D satisfies 8|(a + b). We do not know whether such a k exists; clearly,
20λ = [∆0] + [∆1] is effective; the fundamental class of the bi-elliptic divisor turns out to
be 60λ+ 3∆1.

Turning next to one-dimensional subvarieties, the conditions 60|a and 12|b imply that
D · [∆00] and D · [∆01] are integers as well.

Proposition 2. A very ample divisor aλ+ bδ1 on the moduli space M2 satisfies the
following conditions:
a) a, b ∈ Z and a > b > 0;
b) 60|a and 12|b.

Corollary 3. The degree of a projective embedding of M2 is at least 516.

P r o o f. We need to determine for which a and b satisfying the conditions in the
proposition the expression 5(b−a)3 +6a3 attains its minimum value. Clearly this happens
exactly for b = 12 and a = 60. If 60λ + 12δ1 is very ample, the degree of M2 in the
corresponding embedding is (5(b− a)3 + 6a3)/1440 = 516.

R e m a r k. It is interesting to compare the obtained necessary conditions with the
explicit descriptions of M2 given by Qing Liu ([Liu]). The computations we have done
(in characteristic 0) indicate that 60λ+60δ1 mapsM2 to a copy of X (loc. cit., Théorème
2), that 60λ+ 36δ1 mapsM2 to the blowing-up of X with center JQ (loc. cit., Corollaire
3.1) and that 60λ+ 48δ1 is very ample, realizing M2 as the blowing-up of X with center
the ideal generated by I3

4 , J10, H2
6 and I2

4H6 (loc. cit., Corollaire 3.2).

3. Necessary conditions for very ample divisors on M3. In this section we
compute necessary conditions for very ample divisors on the moduli space M3. As we
mentioned in Section 1, a divisor D = aλ− bδ0− cδ1 ∈ Pic(M3) with a, b, c ∈ Z is ample
if and only if a − 12b + c > 0 and 2b > c > 0. The necessary conditions for very ample
D are obtained as in Section 2: for a k-dimensional subvariety V ofM3, the intersection
product Dk · [V ] should be an integer. We use the computation of the Chow ring of M3

in [Fa 1]. The computations are more involved than in the case of genus 2; also, we know
the fundamental classes of more subvarieties.
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First we look at the degree of M3:

D6 = (aλ− bδ0 − cδ1)6 = 1
90720a

6 − 1
576a

4c2 − 1
18a

3b3 + 1
48a

3bc2 + 35
3456a

3c3

+ 5
8a

2b2c2 − 43
96a

2bc3 + 13
512a

2c4 + 203
20 ab

5 − 145
12 ab

3c2

+ 25
4 ab

2c3 − 31
48abc

4 + 149
7680ac

5 − 4103
72 b6 + 55b4c2

− 505
18 b

3c3 + 65
16b

2c4 − 91
384bc

5 + 5
1024c

6,

as follows from [Fa 1], p. 418. The requirement that this is in Z2 implies, firstly, that
2|c, secondly, that 2|a and 4|c, thirdly, that 2|b. Looking in Q3 we get, firstly, that 3|a,
secondly, that 3|b. Modulo 5 we get 5|a or 5|(a + 3b + c). Finally, working modulo 7 we
find that 7|a should hold.

Writing a = 42a1, b = 6b1 and c = 4c1, with a1, b1, c1 ∈ Z, the condition D6 ·[M3] ∈ Z
becomes 5|a1 or 5|(3a1+2b1+c1). Interestingly, unlike the case of genus 2, these conditions
are not the only necessary conditions we find.

For instance, the condition D5 · δ0 ∈ Z translates in 3|c1; then [∆1] = 2δ1 gives no
further conditions; but the hyperelliptic locus, with fundamental class [H3] = 18λ−2δ0−
6δ1, improves the situation modulo 5: necessarily 5|(3a1 + 2b1 + c1). It follows that D5 ·λ
is an integer, so all divisors have integer-valued degrees.

In codimension 2, writing c1 = 3c2 with c2 ∈ Z, the condition D4·[∆01a] ∈ Z translates
in

5|a1 or 5|c2 or 5|(a1 + c2) or 5|(a1 + 3c2).
The (boundary) classes [∆00], [∆01b], [∆11], [Ξ0], [Ξ1] and [H1] ([Fa 1], pp. 340 sqq.) give
no further conditions.

In codimension 3, the class [(i)] = 8[(i)]Q forces 2|a1. Write a1 = 2a2 with a2 ∈ Z.
Somewhat surprisingly, the class [H01a] = 4η0 (loc. cit., pp. 386, 388) gives the condition
5|(a2 + 2c2). Consequently, combining the various conditions modulo 5, we obtain

5|a2 and 5|b1 and 5|c2.
Finally, we checked that the 12 cycles in codimension 4 and the 8 cycles in codimension
5 (loc. cit., pp. 346 sq.) do not give extra conditions.

Proposition 4. A very ample divisor aλ− bδ0− cδ1 on the moduli space M3 satisfies
the following conditions:
a) a, b, c ∈ Z with a− 12b+ c > 0 and 2b > c > 0;
b) 420|a and 30|b and 60|c.

Corollary 5. The degree of a projective embedding of M3 is at least

650924662500 = 22 · 32 · 55 · 7 · 826571.

P r o o f. We need to minimize the expression given for the degree ofM3 while fulfilling
the conditions in the proposition. Write a = 420A, b = 30B and c = 60C. One shows
that in the cone given by 7A− 6B + C ≥ 0 and B ≥ C ≥ 0 the degree is minimal along
the (extremal) ray (A,B,C) = (5x, 7x, 7x) (corresponding to 10λ− δ0−2δ1). Comparing
the value for (A,B,C) = (5, 7, 7) with that for (A,B,C) = (2, 2, 1), one concludes A ≤ 5,
B ≤ 7 and C ≤ 7. This leaves only a few triples in the interior of the cone; the minimum
degree is obtained for (A,B,C) = (2, 2, 1), corresponding to 840λ− 60δ.

R e m a r k. In [Fa 1], Questions 5.3 and 5.4, we asked whether the classes X (resp. Y )
are multiples of classes of complete subvarieties of M3 of dimension 4 (resp. 3) having
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empty intersection with ∆1 (resp. ∆0). We still do not know the answers, but we verified
that X and −Y = 504λ3 are effective:

X = 1
15δ00 + 1

6δ01a + 11
15δ01b + 8δ11 + 3

14ξ0 + 48
35ξ1 + 40

21η1;
−Y = 1

2 [(a)]Q + [(b)]Q + [(c)]Q + 11
30 [(d)]Q + 2

5 [(f)]Q + 2[(g)]Q + 2
3η0.

(For the notation, see [Fa 1], pp. 343, 386, 388.)

4. Algebro-geometric calculation of the intersection numbers of the tauto-
logical classes on M3. Here we show how to compute the intersection numbers of the
classes κi (1 ≤ i ≤ 6) on M3 in an algebro-geometric setting. These calculations were
done originally in May 1990 to check the genus 3 case of Witten’s conjecture [Wi], now
proven by Kontsevich [Ko]. We believe that there is still an interest, though, in finding
methods within algebraic geometry that allow to compute the intersection numbers of
the kappa- or tau-classes. For instance, the identity

K3g−2 = 〈τ3g−2〉 = 〈κ3g−3〉 =
1

(24)g · g!
(in cohomology) should be understood ([Wi], between (2.26) and (2.27)).

In [Fa 1] the 4 intersection numbers of κ1 and κ2 were computed; using the identity
κ1 = 12λ− δ0 − δ1, we can read these off from Table 10 on p. 418:

κ6
1 = 176557

107520 , κ4
1κ2 = 75899

322560 , κ2
1κ

2
2 = 32941

967680 , κ3
2 = 14507

2903040 .

To compute the other intersection numbers, we need to express the other kappa-classes
in terms of the bases introduced in [Fa 1]. The set-up is as in [Mu 1], §8 (and §6): if C is
a stable curve of genus 3, ωC is generated by its global sections, unless
a) C has 1 or 2 nodes of type δ1, in which case the global sections generate the subsheaf

of ωC vanishing in these nodes;
b) C has 3 nodes of type δ1, i.e., C is a P1 with 3 (possibly singular) elliptic tails, in

which case Γ(ωC) generates the subsheaf of ωC of sections vanishing on the P1.
(See [Mu 1], p. 308.) Let Z ⊂ C3 be the closure of the locus of pointed curves with 3
nodes of type δ1 and with the point lying on the P1. Working over C3 − Z we get

0→ F → π∗π∗ωC3/M3
→ I∆∗

1
· ωC3/M3

→ 0

with F locally free of rank 2. Working this out as in [Fa 1], p. 367 we get

0 = c3(F) = π∗λ3 −K · π∗λ2 +K2 · π∗λ1 −K3

− (π∗λ1 −K) · [∆∗1]Q + i1,∗(K1 +K2)

modulo [Z]. Multiplying this with K and using that ω2 is trivial on [∆∗1], we get

(1) 0 = K · c3(F) = K · π∗λ3 −K2 · π∗λ2 +K3 · π∗λ1 −K4 + ∗K · [Z].

It is easy to see that K2 · [Z] = 0, so we also get

0 = K2 · π∗λ3 −K3 · π∗λ2 +K4 · π∗λ1 −K5,(2)
0 = K3 · π∗λ3 −K4 · π∗λ2 +K5 · π∗λ1 −K6,(3)
0 = K4 · π∗λ3 −K5 · π∗λ2 +K6 · π∗λ1 −K7.(4)

Pushing-down to M3 we get

0 = 4λ3 − κ1λ2 + κ2λ1 − κ3 +N · [(i)]Q,(1′)
0 = κ1λ3 − κ2λ2 + κ3λ1 − κ4,(2′)
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0 = κ2λ3 − κ3λ2 + κ4λ1 − κ5,(3′)
0 = κ3λ3 − κ4λ2 + κ5λ1 − κ6.(4′)

To get κ3 from (1′) we use two things. Firstly, one computes Y = −504λ3, as mentioned
at the end of Section 3. This follows since both Y and λ3 are in the one-dimensional
subspace of A3(M3) of classes vanishing on all subvarieties of ∆0. The factor −504 is
computed using λ4 = 8λλ3 or λ3 · [(i)]Q = 1

6λ
3 · [(i)]Q. Secondly, to compute N , one uses

that κ3 vanishes on the classes [(b)]Q, [(c)]Q, [(f)]Q, [(g)]Q, [(h)]Q and [(i)]Q. This gives
6 relations in N of which 3 are identically zero; the other 3 all imply N = 1.

The formulas above allow one to express the kappa-classes in terms of the bases of the
Chow groups given in [Fa 1]. We give the formula for κ3 (from which the other formulas
follow):

κ3 = 1
280 [(a)]Q + 31

840 [(b)]Q + 19
420 [(c)]Q + 1

1260 [(d)]Q + 1
35 [(e)]Q

+ 19
840 [(f)]Q + 29

84 [(g)]Q + 11
35 [(h)]Q + 93

35 [(i)]Q + 11
252η0.

This gives the following intersection numbers:

κ3
1κ3 = 4073

161280 , κ1κ2κ3 = 149
40320 , κ2

3 = 131
322560 , κ2

1κ4 = 2173
967680 ,

κ2κ4 = 971
2903040 , κ1κ5 = 1

5760 , κ6 = 1
82944 .

5. A few intersection numbers in genus 4. Kontsevich’s proof of Witten’s conjec-
ture enables one to compute the intersection numbers of the kappa-classes on the moduli
space of stable curves of arbitrary genus. There are many more intersection numbers that
one would like to know, see e.g. [BCOV], (5.54) and end of Appendix A. As a challenge,
we pose the following problem:

Problem. Find an algorithm that computes the intersection numbers of the divisor
classes λ, δ0, δ1, . . . , δ[g/2] on Mg.

These numbers are known for g = 2 [Mu 1] and g = 3 [Fa 1]. Note that the problem
includes the computation of κ3g−3

1 .

Proposition 6. Denote by hg the intersection number λ2g−1 · [Hg]Q, where Hg is the
closure in Mg of the hyperelliptic locus. Then

h1 =
1
96

;

hg =
2

2g + 1

g−1∑
i=1

i(i+ 1)(g − i)(g − i+ 1)
(

2g − 2
2i− 1

)
hihg−i for g ≥ 2.

P r o o f. This follows from [C-H], Proposition 4.7, which expresses λ on Hg in terms of
the classes of the components of the boundary Hg−Hg. It is easy to see that λ2g−2ξi = 0
for 0 ≤ i ≤ [(g − 1)/2]. Also,

λ2g−2δj [Hg]Q = (2j + 2)(2g − 2j + 2)
(

2g − 2
2j − 1

)
hjhg−j ,

because λ = π∗jλ+ π∗g−jλ on ∆j ∩ Hg. Normalizing h1 to 1
96 , which reflects the identity

λ = 1
24p onM1,1 and the fact that an elliptic curve has four 2-torsion points, we get the

formula.
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This gives for instance h2 = 1
2880 , h3 = 1

10080 and h4 = 31
362880 . So this already gives

the value of λ3 onM2, and the value of λ6 onM3 follows very easily: we only need that
[H3]Q = 9λ in A1(M3), because clearly λ5δ0 = λ5δ1 = 0. We get λ6 = 1

90720 .

Proposition 7. λ9 = 1
113400 on M4.

P r o o f. We need to know the class [H4] modulo the kernel in A2(M4) of multiplica-
tion with λ7. We computed this class using the test surfaces of [Fa 2]; of the 14 classes
at the bottom of p. 432, only κ2, λ2 and δ2

1 are not in the kernel of ·λ7, and the result is:

[H4] ≡ 3κ2 − 15λ2 + 27
5 δ

2
1 (mod ker(·λ7)).

We also have the relation ([Fa 2], p. 440)

60κ2 − 810λ2 + 24δ2
1 ≡ 0 (mod ker(·λ7)).

Thus [H4] ≡ 51
2 λ

2 + 21
5 δ

2
1 . We compute

λ7δ2
1 =

(
7
1

)
(λ · [M1,1]Q)(λ6 · (−KM3,1/M3

) · [M3,1])

= 7 · 1
24 ·

−4
90720

= −1
77760 .

Therefore
λ9 = 2

51 (2 · 31
362880 + 21

5 ·
1

77760 ) = 1
113400 .

Also
λ7κ2 = 169

1360800 .

The hardest part of this proof is the computation of (three of) the coefficients of the class
[H4]. We present the test surfaces we need to compute these coefficients. Write

[H4] = 3κ2 − 15λ2 + cλδ0 + dλδ1 + eδ2
0 + fδ0δ1 + gδ0δ2

+ hδ2
1 + iδ1δ2 + jδ2

2 + kδ00 + lδ01a +mγ1 + nδ11.

The class [H4] ∈ A2(M4) was computed by Mumford ([Mu 1], p. 314).
a) Take test surface (α) from [Fa 2], p. 433: two curves of genus 2 attached in one point;

on both curves the point varies. We have [H4]Q = 6 · 6 = 36 and δ2
2 = 8. Thus j = 9.

b) Test surface (ζ): curves of type δ12, vary the elliptic tail and the point on the curve
of genus 2. We have [H4] = 0, δ0δ2 = −24 and δ1δ2 = 2. Thus i = 12g.

c) Test surface (µ): curves of type δ02, vary the elliptic curve in a simple pencil with 3
disjoint sections and vary the point on the curve of genus 2. Then δ0δ2 = −20 and
δ2
2 = 4. To compute [H4] we use a trick. Consider the pencil of curves of genus 3

which we get by replacing the one-pointed curve of genus 2 with a fixed one-pointed
curve of genus 1. On that pencil λ = 1, δ0 = 12 − 1 − 1 = 10, δ1 = −1, thus
[H3]Q = 9λ− δ0−3δ1 = 2. So on the test surface we get [H4]Q = 2 ·6 = 12. Therefore
−20g + 36 = 24 so g = 3

5 and i = 36
5 .

d) This test surface is taken from [Fa 3], pp. 72 sq. We take the universal curve over
a pencil of curves of genus 2 as in [A-C], p. 155, and we attach a fixed one-pointed
curve of genus 2. As in [Fa 3] we have λ = 3(G−Σ), δ0 = 30(G−Σ), δ2 = −2G+ Σ.
Since G2 = 2, GΣ = 0 and Σ2 = −2 we have δ0δ2 = −60 and δ2

2 = 6. To compute
κ2 we use the same trick as above: replacing the fixed one-pointed curve of genus 2
by one of genus 1, we get a test surface of curves of genus 3. This will not affect the
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computation of κ2; using the formulas of [Fa 1] we find κ2 = 6. Also δ0Σ = 2γ1 here,
thus γ1 = 30. Since [H4] = 0, we get 0 = 18−60g+ 6j+ 30m = 30m+ 36 so m = − 6

5 .
e) Test surface (λ) from [Fa 2]: curves of type δ12, vary both the j-invariant of the middle

elliptic curve and the (second) point on it. We have δ0δ2 = −12, δ1δ2 = 1, δ2
2 = 1,

κ2 = 1, δ01a = 12 and γ1 = 12. Since [H4] = 0, we get 0 = 3−12g+i+j+12l+12m =
12l − 12

5 so l = 1
5 .

f) Test surface (κ): curves of type δ12, vary a point on the middle elliptic curve and vary
the elliptic tail. Then δ0δ2 = −12, δ1δ2 = 1, δ01a = −12, δ11 = −1. Since [H4] = 0,
we find 0 = −12g + i− 12l − n so n = − 12

5 .
g) The final test surface we need is (γ) from [Fa 2]: we attach fixed elliptic tails to two

varying points on a curve of genus 2. Then δ2
1 = 16, δ2

2 = −2, κ2 = 2, δ11 = 6. When
the two varying points are distinct Weierstrass points, we get hyperelliptic curves. So
[H4]Q = 6 · 5 = 30 and we get 60 = 6 + 16h − 2j + 6n = 16h − 132

5 so h = 27
5 , as

claimed.
This finishes the proof of Proposition 7.

We can now evaluate the contribution from the constant maps for g = 4 (cf. [BCOV],
§5.13, (5.54)):

Corollary 8. λ3
3 = 1

43545600 on M4.

P r o o f. As explained in [Mu 1], §5, we have on M4 the identity

(∗) (1 + λ1 + λ2 + λ3 + λ4)(1− λ1 + λ2 − λ3 + λ4) = 1.

One checks that this implies λ3
3 = 1

384λ
9
1, which finishes the proof.

Corollary 9 (Schottky, Igusa). The class of M4 in A4 equals 8λ.

P r o o f. Since (∗) holds also on the toroidal compactification Ã4, we get λ10
1 =

384λ1λ
3
3 = 768λ1λ2λ3λ4. But it follows from Hirzebruch’s proportionality theorem [Hi 1,

2] that

λ1λ2λ3λ4 =
4∏

i=1

|B2i|
4i

=
1

1393459200
,

hence λ10 = 1
1814400 on Ã4. Using Theorem 1.5 in [Mu 2] we see that the class of M4

in A4 is a multiple of λ. Denote by t : M4 → A4 the Torelli morphism and denote by
J4 its image, the locus of Jacobians. Proposition 7 tells us that t∗λ9 = 1

113400 . Applying
t∗ we get [J4] · λ9 = 1

113400 , hence [J4] = 16λ, hence [J4]Q = 8λ, as claimed. (The
subtlety corresponding to the fact that a general curve of genus g ≥ 3 has only the trivial
automorphism, while its Jacobian has two automorphisms, appears also in computing
λ6 on M3 resp. on Ã3: we have already seen that t∗λ6 = 1

90720 ; applying t∗ we get
[J3] · λ6 = 1

90720 ; since [J3] = 2[Ã3]Q, we get λ6 = 1
181440 , which is also what one gets

using the proportionality theorem.)
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