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1. Introduction. Let G be a finite group acting on a compact differentiable manifold
X. Then in [D*1], [D*2] an orbifold Euler number of X is defined by

e(X,G) :=
1
|G|

∑
gh=hg

e(Xg ∩Xh),

where the sum runs over all commuting pairs in G and Xg denotes the set of fixed points
of the action of g. According to [H-H] and [D*2] the formula above can be rewritten as
follows: Let C(g) := {h ∈ G | hg = gh} be the centralizer of g ∈ G. Then C(g) acts on
Xg and

e(X,G) =
∑
[g]

e(Xg/C(g)),

where g runs over a system of representatives for the conjugacy classes of G. e(X,G) is
expected to coincide with the Euler number of a crepant resolution of the quotient X/G.
This fact has been shown in many cases (see e.g. [H-H], [Ro]).

Now let X be a compact Kähler manifold or a Moishezon manifold of complex dimen-
sion d. The Hodge polynomial h(X,x, y) is defined by h(X,x, y) :=

∑
p,q h

p,q(X)xpyq,
where the hp,q(X) are the Hodge numbers of X. Then, motivated by [V] and [Z], orbifold
Hodge numbers hp,q(X,G) are introduced in [B-D] as follows: For any point x ∈ Xg, the
eigenvalues of g on the tangent space TX,x are roots of unity e2πiα1 , . . . , e2πiαd , where
0 ≤ αj < 1 and the αj are locally constant functions on Xg. Let X1(g), . . . , Xr(g) be the
connected components of Xg. For i = 1, . . . , r we put Fi(g) equal to the value of

∑d
j=1 αj

on Xi(g) and set

hp,qg (X,G) :=
r∑
i=1

dim(Hp−Fi(g),q−Fi(g)(Xi(g))C(g)).
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Here C(g) is the centralizer of g in G and (·)C(g) denotes the C(g)-invariant part. Then
the orbifold Hodge numbers are defined by

hp,q(X,G) :=
∑
[g]

hp,qg (X,G),

where g runs again over a system of representatives for the conjugacy classes of G. The
orbifold Hodge polynomial of X is h(X,G, x, y) :=

∑
p,q h

p,q(X,G)xpyq.
The Xi(g) are smooth and thus the quotients Xi(g)/C(g) are V -manifolds, thus their

Hodge numbers are well defined and satisfy hp,q(Xi(g)/C(g)) = dim(Hp,q(Xi(g))C(g)).
We get therefore the formula

h(X,G, x, y) =
∑
[g]

r∑
i=1

h(Xi(g)/C(g), x, y)(xy)Fi(g). (1.1)

It is conjectured that, for any crepant resolution X̃/G of X/G, the orbifold Hodge
numbers satisfy h(X,G, x, y) = h(X̃/G, x, y). In [B-D] this conjecture is related to the
“strong MacKay conjecture” ([B-D] conjecture 5.3, see also [Re]). In [B-D] the conjecture
is also shown in several cases and the orbifold Hodge numbers are related to “string-
theoretic” Hodge numbers.

We want to show this conjecture in two cases, where the acting group is the symmetric
group, and the resolutions are (related to) Hilbert schemes of points.

(1) Let S be an algebraic surface. Let G(n) be the symmetric group on n letters
acting on Sn by permuting the factors. Then Sn/G(n) is the symmetric power S(n),
which has the Hilbert scheme Hilbn(S) of n points on S as a natural desingularisation
via the Hilbert-Chow morphism ωn : Hilbn(S) −→ S(n) (see e.g. [Fo1]). It is easy to see
that Sn/G(n) is Gorenstein and this resolution is crepant (see e.g. [Be]). In [H-H] it was
shown that e(Sn, G(n)) = e(Hilbn(S)).

Theorem 1. h(Sn, G(n), x, y) = h(Hilbn(S), x, y).

(2) Let A be an abelian surface. Then the symmetric group G(n) acts on An−1 as
follows. An−1 is embedded in An as the subvariety

An0 :=
{

(x1, . . . , xn) ∈ An
∣∣∣ ∑

i

xi = 0 in the group A
}
.

Obviously the action of G(n) on An by permuting the factors restricts to an action on An0 .
The quotient An−1/G and its desingularisation can be described as follows: Let again A(n)

be the n-fold symmetric power of A. Then there is a natural morphism σ : A(n) −→ A,
associating to a 0-cycle

∑
[xi] its sum

∑
xi in the group A. Then An−1/G(n) ' σ−1(0),

and a resolution of An−1/G(n) is the higher order Kummer variety Kn−1 := ω−1
n σ−1(0),

where again ωn : Hilbn(A) −→ A(n) is the Hilbert-Chow morphism.
Again it can easily be shown that the quotient An−1/G(n) is Gorenstein and the

resolution is crepant [Be].

Theorem 2. h(An−1, G(n), x, y) = h(Kn−1, x, y).

This paper was inspired by the paper [B-D] and a question of one of its authors
D. Dais.
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2. The formula for Hilbert schemes. We first introduce some notations and
definitions on partitions and the symmetric group.

Definition 2.1. Let P (n) be the set of partitions of n. We write an α ∈ P (n) as α =
(1α1 , 2α2 , . . . , nαn), where αi is the number of repetitions of i in the partition α, and put
|α| :=

∑
i αi. For α ∈ P (n) we put Sα := Sα1 × . . .×Sαn and S(α) := S(α1)× . . .×S(αn).

The cycle type α(g) of g ∈ G(n) is the partition (1α1(g), . . . , nαn(g)), where αi(g) is
the number of cycles of length i in the representation of g as a product of disjoint cycles.
As usual we denote by (n1, . . . , nr) the cycle defined by mapping ni to ni+1 for i < r and
nr to n1.

By [G-S] (see also [Gö1] Thm. 2.3.14) we have

h(Hilbn(S), x, y) =
∑

α∈P (n)

(xy)n−|α|h(S(α), x, y). (2.1)

In this section we want to show that (2.1) coincides termwise with (1.1). It is elementary
that α(g) only depends on the conjugacy class of g and that the map [g] 7→ α(g) is a
bijection from the conjugacy classes of G(n) to P (n).

Lemma 2.2. For g ∈ G(n) we have (Sn)g/C(g) ' S(α(g)).

P r o o f. We see that (Sn)g is the set of all (x1, . . . , xn) ∈ Sn such that xi = xj if
there exists a cycle of g containing i and j. Thus we get (Sn)g = Sα(g). The centralizer
C(g) acts on the elements of [g] by permuting the cycles of the same length. Therefore it
acts on Sα(g) by permuting the factors of the Sαi(g), and the result follows.

In order to show Theorem 1 we therefore only have to show the following.

Lemma 2.3. For any g ∈ G(n) we have F (g) = n− |α(g)|.

P r o o f. We can write

Sn = Sα1(g) × (Sα2(g))2 × . . .× (Sαn(g))n,

and g operates on Sn by permuting cyclically the factors Sαi(g) of each (Sαi(g))i. From
this it follows easily that F (g) =

∑r
i=1 F (gi), where g = g1 . . . gr is the representation of

g as a product of disjoint cycles, and the gi are considered as acting on Si. Therefore it
is enough to show the result in the case that g has cycle type (n1), and we can assume
that g = (1, 2, 3, . . . , n).

Let s ∈ S and x, y local coordinates on S centered at s. We denote by xj , yj the
pullback of x, y from the jth factor of Sn. x1, . . . , xn, y1, . . . , yn obviously give local co-
ordinates of Sn near the point p = (s, . . . , s) ∈ (Sn)g. For k = 1, . . . , n we put

wk :=
n∑
j=1

xj · e2πikj/n, zk :=
n∑
j=1

yj · e2πikj/n.

Then also (w1, . . . , wn, z1, . . . , zn) form a system of local coordinates, and we get

g(wk) = e−2πik/n · wk, g(zk) = e−2πik/n · zk.
Therefore the action of g on the tangent space TSn,p is given by

g( ∂
∂wk

) = e2πik/n ∂
∂wk

, g( ∂
∂zk

) = e2πik/n ∂
∂zk

.

So we get F (g) = 2 · (1 + 2 + . . .+ n− 1 + 0 + 0)/n = n− 1, and the result follows.
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3. The formula for higher order Kummer varieties. By [G-S] (see also [Gö1]
2.4.17) we have

h(Kn−1, x, y) =
∑

α∈P (n)

(xy)n−|α| gcd(α)h(A(α), x, y)/h(A, x, y). (3.1)

Here we denote for a partition α = (1α1 , . . . , nαn) of n by gcd(α) the greatest common
divisor of the numbers k with αk 6= 0. Again we want to show that (3.1) coincides
termwise with (1.1).

Let g ∈ G(n) of cycle type α = (1α1 , . . . , nαn). Then (An0 )g = (An)g ∩ An0 = Kα,
where we denote by Kα the subvariety

Kα :=
{(

(x1
j )
α1
j=1, . . . , (x

n
j )αn
j=1

)
∈ Aα

∣∣∣ ∑ i · xij = 0
}
.

Then in the proof of Theorem 6 in [G-S] the following is shown:

Lemma 3.1.
(1) If gcd(α) = 1, then A×Kα ' Aα.
(2) In general we have

Kα =
∐

y∈A(gcd(α))

Kα
y .

Here A(gcd(α)) is the set of gcd(α)-division points of A and

Kα
y :=

{(
(x1
j )
α1
j=1, . . . , (x

n
j )αn
j=1

)
∈ Aα

∣∣∣ ∑
i,j

i

gcd(α)
xij = y

}
.

Furthermore we have an isomorphism Kα
y ' K(β), where β := (1β1 , . . . , nβn) with

βi := αgcd(α)·β for all i.

It is easy to see that both isomorphisms A×Kα ' Aα and Kα
y ' Kβ commute with

the G(n)-action.
As above we see that the centralizer C(g) acts on Aα = Aα1× . . .×Aαn by permuting

the factors of each factor Aαi . So we get

(An0 )g/C(g) = K((α)) :=

{( α1∑
j=1

[x1
j ], . . . ,

αn∑
j=1

[xnj ]
)
∈ A(α)

∣∣∣ ∑
i,j

i · xij = 0

}
.

Again by the proof of Theorem 6 in [G-S] we have:

Lemma 3.2.
(1) If gcd(α) = 1, then h(A×K((α)), x, y) = h(A(α), x, y).
(2) In general we have

K((α)) =
∐

y∈A(gcd(α))

K((α))
y .

Here

K(α)
y :=

{( α1∑
j=1

[x1
j ], . . . ,

αn∑
j=1

[xnj ]
)
∈ A(α)

∣∣∣ ∑
i,j

i

gcd(α)
xij = y

}
.

Furthermore we have an isomorphism K
((α))
y ' K((β)), where β := (1β1 , . . . , nβn) with

βi := αgcd(α)·β for all i.

If we put these results together, it is enough (for the proof of Theorem 2) to show:
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Lemma 3.3. For the action of g on An0 we have F (g) = n− |α|.
P r o o f. The action of G(n) on An0 is just the restriction of the action on An. Therefore

in the same way as in the proof of Lemma 2.3 we can assume that g = (1, 2, . . . , n). Let
again (xi, yi) be pullbacks of local coordinates from the ith of An near a point

p ∈ (An0 )g :=
{

(a, . . . , a)
∣∣ a ∈ A(n)

}
.

We can assume that a is the neutral element of the group A. Now we define local co-
ordinates w1, . . . , wn, z1, . . . , zn on An by the same formulas as in the proof of Lemma
2.3. Then the subvariety An0 ⊂ An is near p defined by the equations wn = 0, zn = 0,
and w1, . . . , wn−1, z1, . . . , zn−1 are local coordinates on An0 . We get as above g( ∂

∂wj
) =

e2πij/n ∂
∂wj

, g( ∂
∂zj

) = e2πij/n ∂
∂zj

. Therefore we obtain F (g) = 2 ·(1+2+ . . .+(n−1))/n =
n− 1, and the result follows.
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[Gö2] L. Göttsche, Hilbert schemes of zero-dimensional subschemes of smooth varieties, Lec-
ture Notes in Math. 1572, Springer Verlag, Berlin, Heidelberg, New York, 1994.
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