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Abstract. In this paper we extend the definition of the linearly invariant family and the
definition of the universal linearly invariant family to higher dimensional case. We characterize
these classes and give some of their properties. We also give a relationship of these families with
the Bloch space.

1. Introduction. Ch. Pommerenke has introduced ([1]) the notion of a linearly in-
variant family M as a class of functions f holomorphic in the unit disc A = {2z : z €
C, |z| < 1} such that

1) f(0) =0, f(0)=1, f'(z) #0 in A,

2) for all f € M and 0 € R, f(zeif))efie €M,
zta y_ a
3) forall fe MandaeA fo(z):= 1T — 0y e,

The number "0
o — sup L)
acA 2
was called, by Ch. Pommerenke ([1]), the order of a locally univalent function f, and the
number

ordM = sup ordf
feM

- the order of the family M. Moreover,
(M :ordM < 0} =T,
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was called the universal linearly invariant family.

Linearly invariant families play an important part in the theory of conformal map-
pings. Furthermore an interest in the families U, grows, because of their relationship
with the Bloch class ([2]).

The main goal of this paper is to extend the definition of the linearly invariant families
onto the case of functions defined on the unit polydisc A™ C C™, m > 1, and establish
several properties

Let T={z:2z € C, |z| =1} and T™ be the unit torus. We will consider the class
H(A™) of all functions f : A™ — C holomorphic in A™. The gradient of a holomorphic

function f we denote by V f; that is Vf = (aa—zfl, cee 3azf ). For z = (21, -+, zm) € C™ we
define the norm
el = ma )

Let O = (0,---,0) € C™. Recall that to every a € A corresponds an automorphism ¢,
of A: ¢o(2) = (a+2)/(1 4+ az), z C A. The same can be done in the polydisc A™. For
a=(ay, - ,anmn) € A™ the Mobius mapping ¢, of A™ onto A™ we define by the formula

ba(2) = (1(21), s Pm(2m))s

where
zZj + aj .
¢j(zj):1:_7 (szjj, Jj=1--,m.

Now, we are ready to introduce the linearly (Mé&bius) invariant family.

DEFINITION 1.1. Let I = 1,---,m be fixed. The [-Mdbius invariant family M, is the
class of all functions f, f € H(A™), such that

1) f(0)=0, §£(0)=1, §L(z)#0, forzeAm,
2) for all f € M; and 6 = (61,---,0,,) € R™ | f(ze®)e € M, where ze? =
(1€, zppe?fm).

3) forall f € M; and a = (a1,---,a,) € A™,
f(¢a(z)) — f(¢a(o))

P iy <M

EXAMPLES:

(i) K; - the class of functions f € H(A™) satisfying 1) of the above Definition and such
that f(A™) is a convex domain.

(ii) S} - the class of functions f € H(A™) satisfying 1) of the above Definition and such
that there exists a point wy € f(A™), such that the domain f(A™) is starlike with
respect to wy.

(iii) SF, where k = 1,---,m is fixed, - the class of all functions fi, € H(A™) satisfying 1)
of the above Definition such that F(z) = (f1(2), -, fm(2)) is a univalent mapping
of A™ into C™.

The following definition extends the Pommerenke’s conception of the order of a func-
tion, ([1]).
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DEFINITION 1.2. Let f satisfy the conditions 1) of Definition 1.1 and let g’: (2) =
L+c1(f)z1+ -+ em(f)zm + o(||z]]). The l-order of the function f is defined as follows:
ord;f = sup f||V

e 0))1= 5 s lelfo).senL
aEAm acA™

THEOREM 1.1 If f € M, a € A™, then

2
ord; f = max - sup |628’;" 1=tz 2 * —ZoL| =
<k<m zeAm ngl (Z) 2 Uk
of _
sup ||7V10g( O¢G)( ) (07""076”’07""0)“’
acA™

where

sl— 1, fork=1
k710, fork #IL

Proof. Let us observe that

Ofa, . |
8Zl()_%a

Then

Ofa 0 )
( )=  ax 737’[,((1)

Q)
X
Q|
Q
>

IV

The above gives the result. m
Now, we introduce the order of a family M;.
DEFINITION 1.3. The l-order of a I-Md&bius invariant family M is defined as

ord;M; = sup ord;f.
feM,
EXAMPLES:
1) My ={f(z) =®(z) : ® € Uy} is the I-Mobius invariant family of the l-order a.
2) Let k # 1 and let @ (zx) be functions holomorphic in A such that ®4(0) = 0. Then

My = {f(2) ZM% (21) : By € Ugy A € C, N = 1}
k=1
is the [-Mobius invariant family of the l-order a.
3) Let

W(z) = 1[H(”'Z’w

2 pals 11—z,
Then for all I = 1,---, m the class
(U (2™ ac A™, §cR™}

is the [-Mobius invariant family of the l-order a.

2. Universal linearly (M&bius) invariant family. In the next definition we in-
troduce a universal linearly (Mobius) invariant family.
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DEFINITION 2.1. The universal I-M&bius invariant family U/, of the l-order « is defined
as the union of all families M; such that ord; M; < «; that is
UL = U{M; : ord; M; < a}.

THEOREM 2.1. For any f € UL and all z € A™ we have

1+ |z

(21) log((1 1) 52 ()] < alog H 2,

|Zk\ < 9f 1+ |Zk|
2.2
( ) 1—‘21|2H 1+|Z ‘ le( |Zl|2 H 1—|Zk|
The above inequalities are rendered by the functions

1 1+ Zk
v -1
()= 2a[kH(1 e,

for a > 1 and real zy,.

Proof. From Theorem 1.1 we have

8% f
57 ()1 - |2

| E) _Zl <a.
3; (2) 2

Thus for z; = e’ (if z; # 0) we get

0 of (32{(2) 2r 2a
log 1—1?))]| = | S—ei — L< .
arl[ (azl( )( l))“ ngl(z) 17”2‘—1 le
Now, let
2l = (Zla ) Zl71707 Zl41y 0y Zm)
Then we obtain
of / 2
2.3 log(=—— 1— I = 1-— dry| <
03) oGl - —tos gL = | [ S-los(pL () — Pl an <
L 2 1+m
dr; = al .
/0 1—r? " aOglfrl
By Theorem 1.1 we have
82
9 = 2
oL (2) 1=
for all kK #1 and z € A™.
Let 25 be a point in A™ for which z; = z;, = 0. Then
(24) og 9. (21) —10g 2L (214 = | / Wk 0 dry| <
0z 8
Tk 1
/ @ 5 dry = alog +rk.
0 1 — Tk 1 — Tk
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Now, if [ # p # k, I # k, then analogously to (2.4) we get

of 1k of 1k L+

2.5 log <L (20k) —log 2L (21hP)| < qlog — 2
(25) o8 52(214) ~10g 3L (:47)] < o 22,
where a point 2P € A™ and z = 2, = zp, = 0. Using the above scheme we obtain, in
the end, an estimation of the type (2.5) of the expression
of of
1 ——(0)|,
flog 2L.(2+) ~10g 2 0)
where a point z* € A™ and it has only one component different from zero. Summing
(2.3), (2.4), (2.5),...we obtain (2.1). If we put the function ¥ in (2.1), with z;, = |zx], for
all k =1,---,m then we have the equality in (2.1).

For the proof of (2.2) let us observe that from (2.1) we obtain

of

d
alog H T | —log(1 — |z]?) < R[log =~ 9 /

() ~log 5 (0)

IN

|2 |

For the function ¥, with 2z, = +|z| for all K = 1,---,m, we have the equality in (2.2). m

71
alog H 1 Ik log(1 — |z%).
k=1

Remark. For m = 1 the above Theorem gives the well known result for the class
Uas ([1])-

COROLLARY. In the Definition of U, we have a > 1, because U, = ) for o < 1.

Indeed, if we suppose that o < 1, then from (2.2) it follows that lim,, |- |g—zfl(z) =
oo for fixed rest components of z = (21,-++,2;,++, zm). The holomorphic, with respect

to z;, function g—zfl is not equal zero. Thus min|; ., (z)] is attained on {|z;| = r} and

5%
this minimum tends to oo, if » — 17. The above contradicts f (O) =1.

THEOREM 2.2. The family U, is the set of all functions holomorphic in A™ and satis-
Jying the conditions 1), 2), 8) of Definition 1.1 and the condition (2.2) in a neighbourhood

of O.

Proof. Let F be a family of functions satisfying the conditions mentioned in our
theorem. It is enough to show that F' C U,(l). Let f € F. Thus, by 2), for all z from a
neighourhood of O we have

af

(2.6) —log(1 — rl) < Rlog a—

g(1—17),
where z;, = rkeza’“.

The above inequalities are true for a function f,, for every a € A™. For z = O both
left and right expression of (2.6) are 0. Thus, after the differentiation, with respect to r,
k=1,---,m, of (2.6) in the point O we get (if k # )

a fa O
—2a < %Mk() < %2

3e0)

)
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which is equivalent to
o f
a
(2.7) |%k”(1 —Jax|?)] < 20
oo (a)

Moreover, if k =1 we get

(1 — lai?) = 2015 (a)

—2a < 3%[ 57 e < 2a,
72 (@)
for all v; € R; which is equivalent to
62f(a
(2.8) (1~ [auf?) — 2] < 2a.

5z (@)
From (2.7) and (2.8) it follows that ord;f < . Thus f € U,. =

Remark. Form =1 we get known result in the class Uy, ([3]).

Now, let for z € [0,1), ¢ [—1 1]

_ V1 —q2t2 V1= g2+ 21— ¢
=2(x,q) = ~———dt = \/ q?1
(#:9) /0 1—¢ o8 \/ — 222 — /1 — ¢2

\/1 —q?log —— —|—arc51na:

sm)\)

+ qarcsinz <

Observe, that the function o=(]z], is increasing with respect to a.

In the paper [1] Ch. Pommerenke has obtained an estimate of [RR{e~**log f’(2)}| in
the class U,. Now, we give a similar result for the class U..

THEOREM 2.3. For all f € U and all real A

of

, in Al
Rle— N og 2L | sin
[R{e™" log =

14 |zil -
(1 = )} < attog [T 12 4 221,

k£l

))-

Proof. Let us denote
U(? 1yt T ) = max Slu{e i lOg 7(21 e, R )}
I yIm ‘ k‘< . 9 . ) » ~Mm .

By the maximum principle for harmonic functions

, 9 ,
U(Tl, L ’,rm) _ %{e—m log 875(7“161950)(7"17"'%%)7 T et 09 (rq,-- ,rm))}
1

Then
) T ,
—— (Rf{e P log == (r 6191,"',7”mel0’" _
89k ( { & 82’1 ( ! )}) 0=0(0)

ok 10(0) TIONTACH
(29) \S{ —iA azlazk (7’16101 . Tmewm )ezak Tk} —0;

le
where 0 = 9O (4 ... 1) = (950)(7“1, s Tm)s 9(0)( ,7m)). The function

w(ry, -+, Tm) increases with respect to every variable 7y € [0, ) Thus, by the Lebesgue
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theorem everywhere on [0,1) there exists finite derivative g“ (P, Tl 1,k oy T )
Then
; 0 o) (0) (0) (0) )
R{e ™ log —a‘zfl (rien o 1@ ek rpggeen o e etn )} <
(210) u(’rlv"'77Ak*17tark+17"'771m),

with equality for ¢ = ri. From the above it follows,that for almost all r:

. (0) (0) ()
—iX 020z, i6° i6° 9y 0"
%{eliaf (7"1611 ’...7rkelk7...7rn ? )7’ }—
9z
ou
87' (rlv yTky e ,’I"m)
k
By (2.9) we get
9% f
ou NPT 5(0) 5(0) (0) . 5p(0)
—i\ 02,0z 6 0 6(0) 6
ar (7’1’ '7Tk7"'7rm):e g 7;3]01‘7(7’1@11 ,"',Tkez’f ’...,lrmezm)elk .
0z

From the above and from Theorem 1.1 it follows that for almost all r (the rest of
variables of the function u are fixed) we have

0 1—r?

u e "k

5~ redte ™ < a,

— 10k cos \)? 4 126l sin? X < o?,

Vo —Télsm)\
Ou _ b} Tk2c05A|<2 il .

ory, k1 r? 1—r?

and

For k =1 we have

a?—r? sin? A

0
|—[u—|—cos)\log(1—rl)}|<2 5
1—r
Integrating, we obtain

|U(Tl,"',Tl,"',Tm) +COS)‘10g(1 _TIQ) _u(/rla"'7rl7170arl+1a"'77‘m)| <

);

| sin A

202 (ry,
and for k # [:

|U(T1, e 77nl71707/rl+17 o 'arm) - u('f'l, e 770167170771]64»17 e 7/’1l7170arl+11 e 7Tm)| S

Tk au Tk
/ (T17 Tk‘—lasaTk‘-‘rlv"'7rl—1a07’rl+la"'arm)|d8SZ/
o Ok 0

«
1—s2
1+7rg
].—T‘k'

alog
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Having (m-1) similar inequalities with k # [ and summing them we obtain

1
|u(r1, +,7m) + cos Alog(1 — r7) — u(0)| < aZbg + 7k +2E(m,
].—7“1€

Thus we get the Theorem. m

For A = 2mn, n an integer, we have Theorem 2.1, and for e = i we get

COROLLARY.
af 14 |2k 1
—_— < afl 2= —)) <
|arg 52 ()] < alog [ | 7= + 25 (1), ) <
k#l
1 1
alogH * ld +va?—1log adlll + 2arcsin |z

1 — [2g] 1— |z

k£l

For the proof see [1]. Here arg %(O) = 0 and it is continuous with respect to z.
For m =1 we get Pommerenke’s result for Ul,.

Remark. The above estimation is not rough.

To support this we give the following example of function.

i iva2—
Wolz) = — 1 11 1+ 2 L+ "l e
0 2iva? — 1 1— 2 1—2 ’ :

k#1
1 1
(2.11) arg Wo(ry, ..., rm) = alogH il +Va?—1log + s
1—rg 1—mn
k#l
Indeed
92T,
821—2l2 _ 1—2:[2, _
sup 8;0 72| | — Zj| = sup |71 | 2| (Va2 —1—-142z)—-z| =«
zeam | G lzf<1 L= %

(see:[1], page 128). For all k # 1
2>Wg

sup |20 LIl (1= |z =«
seam | G 2 i<t L5

By the Theorem 1.1 ord ;¥ = « and the equality (3.11) is fulfilled.

3. Bloch class. Now, we introduce the Bloch class of holomorphic functions.

DEFINITION 3.1. A holomorphic function g : A™ — C is called a Bloch function if
dg
= |g(O (1 — |z]?)] < oo.
lglls :=19(O)| +, max = sup |57(1 = |27 < o0

The set of all Bloch functions we will denote by B := B(A™).
The following result give a condition which is equivalent to the definition of the Bloch
function. For m = 1 the result was given by the authors in [2].
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THEOREM 3.1. Let I = 1,---,m be fired. Then the following conditions are equivalent
(i) g € B,
(i) There ezists f € Uy, co UL, such that
of
— g(0O) = log =
9(2) = 9(0) = log 7= (2),

where o = ord; f. Moreover
2(a—1) <lg(z) —9(0)llp < 2(a+1).
Proof. (i) = (i1) Let g € B and let F' be a function such that
O (2) = expl9(2) — 9(0)).
Now, let us consider a function f defined by the formula
f(z) = F(z) — F(O).

One can see, that f satisfies 1) in Definition 1.1. Moreover

of OF
log 2L (2) = log 2= (2) = ¢(2) — ¢(O).
08 g(2) = 1o 51() = 4(2) ~ 9(0)
Since )
a=ord,f = X zseuApm |%(z)% — Z6L |
we have ) )
3l9(2) =9(O)l[s —1 < a < 5lg(2) —g(O)lls +1
and f € UL.
(ii) = (i) Let f € U,coo UL and ord; f = av. Let

oz) = 10g g2

We have g(O) = 0. From Theorem 2.1 it follows that for every k =1,---,m

dg
sup (

CAm aizk(zﬂ(l —|ze[?) < 2a 4+ 26F < 2(a +1).

Thus g € B and

0
2(a—1llgls < max  sup (|2 (2)|(1 - |=[*) < 2(a+1). =
k:l,---,mzeAm aZk
Now, let us give some properties of Bloch functions in terms of the order.
THEOREM 3.2. Let g be a holomorphic function in A™. Then g € B if and only if
there exists a positive constant Cy such that for all z € A™,

_ 14z
B 5w 19(6(2) - 9(a) - 2log(1 + av) + log(1 ~ || < Cylog [ 11
wEAm Pt
The best value of the constant Cy is equal ord fozl expg(z1, -, 21,8, Zm) ds.

Proof. Let us suppose that g(O) = 0.
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19, Let g € B. Then there exists a function f € U}, such that g(z) = log g—g’(z) Since
f(¢a(z)) — f(¢a(0))

fa(Z) = %(a)(l — |al|2)
we get
O,y 5L(a(2))
02" DL(a)(1 +a@z)?
By (2.1)
2 9fa(z) 1 L+ [z
log((1 = [) =5 =) Salogk:1 -
Thus

af w2 = |22 moq
g Bzg(qu (2))( 7| d )| <ol [[ + |2kl
O (a)(1 + @z1)? ptelt Bl £
which is equivalent to (3.1).

20. Now, let a holomorphic function g satisfies (3.1) (with g(O) = 0). Let us consider
a function

z
f(Z):/ eng(Zl,"',Zl_l,S,"',Z"L)dS.
0

Then of
2L (h, (2))(1 = |z|? m
g BN la) 1l
o (@) (1 +@z) Pt |2k
Thus
of of _ 1+ [z 2
el —log 22 (a) — < - - .
[Rllog 7~ (¢a(2)) — log 5= (a) — 2log(1 +@z)] < alogkl;[l Ty s =)

From the above inequality (differentiating with respect to |zx| in O) for every k and | we
get

02f(a) (1 arl2) i
—lax|?)e
—2a < R{ 920, (1~ ax)

— 2a;e"% 6L} < 20,

5 (a)
Hence ordf = a, f € U} and
dg 2
max sup |=——(a)|(1 — |ag]?) < 2(a+1).

k=1,-;m gcAm 8Z]€
Thus g € B. n

Now, we give corollaries.

COROLLARY 3.1. The condition (3.1) we give in the following equivalent form:

/ K LS |2k |
(3.1) 9(0a(2)) ool < Srog [T 710

where the best constant K, is equal ||g(z) — g(O)|| 5.
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Proof. If g € B, then

zZ] a
l9(2) — g(z \—\/ g (21, 21-1, -+, 21)ds| <
&l K, 1

/ 2d — 91 +|Zl|

0 1—r 2 1—|Z|

where z; = (21, -+, 21-1,0,- -+, 2m,). Using this scheme we get
Ky 17 L2l
3.2 —g(0) < =41 )
(32 9() —9(0)] = g hoe T 127

If g € B, then g(¢q(2)) — g(a) € B. Thus, by (3.2) we get the result.
Now, let (3.1’) be fulfilled. Then for all « € A™:

[R{g(6a(2)) — gl@)}] < 52 10g []

k=1

1+ |z
1— |zi|

Differentiating with respect to zj, = |z;|e?’* in a neighbourhood of O we get
0 .
RS2 (@)(1 = ar?)e ™} < K,
8Zk

forall k=1,---,m. Thus
dg
— 1— K
S @10 ~laxf?) < Ky,

for all @ € A™ and this ends the proof. m

COROLLARY 3.2. The following conditions are equivalent:
(i) ge B
(ii) the family of functions g(¢.(2)) — g(a) is finitely normal for a € A™.

Proof. Let g € B. By (3.1) we get that g(¢,(2)) — g(a) belongs to the class B for
all @ € A™. Thus we have (ii).

Now, let (ii) is fulfilled. The for every sequence a, € A™ there exists a subsequence
an, such that a sequence Gp(2) = g(¢a,, (2) — g(an,) is uniformly convergent, in A™
to an analytic function (which is not equal o). For every k the function %Gp(z) is
uniformly convergent to an analytic function. Thus for every k the function % 9(da(2))
is uniformly bounded (with respect to a € A™) on compact sets K C A™. Then there is
a constant K, such that

2
e 9(6a(e))] = [ G | < K

Thus P
g
877.3(&)(1 — lax|*)| < Ky,
foralla e A™. =

COROLLARY 3.3. Let g € B, A € [0,2n]. Then the function g(z) — g(O) maps the
polydisc {z : z € C,|z| < r}™ into a domain with the boundary:

e (log(1 )) ~log(1— |rf?).

in A
ym=1 4 28 (r, 20
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4. Class Ul. Now, we define a class of derivatives of functions from the class U/
and give some of its properties.

7l _ [9f . 1
DEFINITION 4.1. U, = {5 : f € Ug}-
The following result give a relationship between classes U/ (I) (thus between classes
Ul) with different parameters .
THEOREM 4.1. For all « > 2 and all l,k,n € {1,---,m}:
Un_y C UL C Uy
Proof. From the Definitions of U, and U/ (1) it follows that h € UL if and only if

(i) h(O) =1, h(z) #0 for z € A™,
(ii) for all a € A™ and t = [t1,- - -, t,n] € R™, if h € UL, then
h(¢a(2)) 71
@)1 +az)e < Ve
and

it

h(ze') e UL, where ze' = [z€ tm],

RN Zmei
(iti) if ~(2) = 14 c121 + -+ + em2m + 0([|2]]), then
H(Cla T 7Cm)|| S 2a.

Let us suppose that h € U/,(I). Let ¢;(a) be a coefficient with z; in the expansion of
the function % Since (1+az)~2 =1 —2a;z + 3(az)? + - - -, then

h(¢a(2))
h(a)(1+ a;z;)?

Using (iii) we get

— 1t er(@)z + -+ (@) — 20z + -+ en(@)zm + o 12])-

[(er(a), -+ ala) = 2ag, -+, em(a))|| < 20

for all @ € A™. This is a necessary and sufficient condition that a function h holomorphic
in A™ with h(O) = 1 belongs to U/ (I). Thus, for k # [ and all a € A™

[(c1(a), -, erla) = 2ak, - -, em(a))|| < 2(a + 1),

and this means that h € Uy41(k) and moreover U4, C UF, ;. Let us observe that for ar>2
we have U, CUL. »

Remark 4.1. Let us consider the function
1 0 2k

_ _ 9 Tk
hO(Z) - (1 —Zk)2 8zk 1-— Zk < Ul '

For the function h, we have that cg(a) = %Z:P), and sup,eam |ck(a)] = 4. Thus

ho ¢ Ul for a < 2. Moreover, we see that in Theorem 4.1 the constant o + 1 is the best.

THEOREM 4.2. For all o €< 1,00) the family Ué is compact in the topology inducted
by locally uniform convergence in A™.
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Proof. From Theorems 1.1 and 2.1 it follows that for every compact set K C A™
and every function h € U} there exists a constant C(«, K) such that

VA
sup —————5 < C(a, K).
RTE R =
From the result of R.M. Timoney ([4], theorem 3.10) it follows that U’ is a normal family.
Ifh, eU ! is a sequence which converges uniformly to h on a compact K C A™, then,
by the Theorem 2.1, h(O) = 1 and h(z) # 0 in A™. Thus h is in Ul if the conditions

(ii), (iii) in the proof of Theorem 4.1 are fulfield. But these conditions are equivalent to
the following one

E7
ordl/ h(s)ds; < a,
0

where s = (s1,- -, 8, ); which is equivalent to

oh
7o (2) 1 — |22
max sup | S

k=1,-;m zc Am h(Z) 2

— Z0;| < .

The above inequality is true for h,, and thus for h, too. m

Remark 4.2. Let us observe that unlike the case m = 1, the families U} are not
compact in the topology inducted by locally uniform convergence in A" for m > 2.

Indeed, let
Q") = Q(z1,-++ 211, 2141, Zm)
be a function holomorphic in A™~! such that Q(0O)=0. Then for a fixed function he U},
we have

£() = /0 h(s)dsi + Q=) € UL.

Now, we can take a sequence of functions Q,,(z!) (of the type of the function Q(z!)) such
that for all z € Am~1\ {0} , Q. (z!) — o0, if n — oco. But, it is not possible to choose
(from the corresponding sequence f,,) a subsequence convergent to a function from UY,.
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