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Abstract. Our concern is with the group of conformal transformations of a finite-dimen-
sional real quadratic space of signature (p, q), that is one that is isomorphic to Rp,q, the real
vector space Rp+q, furnished with the quadratic form

x(2) = x · x = −x21 − x22 − ...− x2p + x2p+1 + ...+ x2p+q,

and especially with a description of this group that involves Clifford algebras.

1. Introduction. Let X and Y be finite-dimensional quadratic spaces and f :
X >→Y a smooth map, where the tail on the arrow indicates that the domain of definition
of the map is an open subset of X and not necessarily the whole of X. Then f is said to
be conformal if the differential dfx of f at any point x is of the form ρ(x)t, where ρ(x)
is a non-zero real number and t : X→Y is an orthogonal map, that is, is such that for
any u, v ∈ X, dfx(u) · dfx(v) = (ρ(x))2u · v; that is it is conformal if it preserves angles.
More generally, let X and Y be finite-dimensional smooth manifolds and f : X >→Y a
smooth map. Then f is said to be conformal if the differential dfx of f at any point
x of X is a non-zero real multiple of an orthogonal map. It is well-known that any
holomorphic map f : C>→C, with C identified as a quadratic space with R2 with its
standard scalar product, is conformal. Conformal transformations of quadratic spaces
of dimension greater than 2 are more restricted, as follows, in the positive-definite case
at least, from a theorem of Liouville (1850). It turns out that in studying such maps it
is appropriate to compactify the quadratic spaces in question in a particular way that
is known as the conformal compactification, this being quite distinct from the possibly
more familiar projective compactification.
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2. Liouville’s Theorem. The original Theorem of Liouville concerns smooth maps
f : R3>→R3, the vector space R3 being assigned its standard Euclidean metric. It follows
from the standard theory of the curvature of a smooth surface in R3 that the parallels to
such a surface together with the families of surfaces generated by the normals to either set
of lines of curvature form a triply orthogonal set of families of surfaces. Dupin showed that
the converse is true, in the sense that if one has such a triply orthogonal system then the
surfaces of any two of the families cut out lines of curvature on the surfaces of the third
family. Clearly a conformal transformation of R3 sends any such triply orthogonal system
to another, so maps lines of curvature on any smooth surface to lines of curvature on the
image surface. In particular it maps umbilical points of such a surface to umbilical points
of the image surface. It then follows, by a theorem of Meusnier (1785), that the image by
any conformal map of a sphere or plane is a sphere or plane. Such a map, by a theorem
of Möbius, is representable as the composite of a finite number of orthogonal maps,
translations or inversions of R3 in spheres, the simplest such inversion being inversion in
the sphere, centre the origin, with unit radius, namely the map R3>→R3 : x 7→ x/|x|2.
Moreover all such Möbius maps are conformal. This is the Theorem of Liouville.

The obvious analogue of this theorem then holds for positive-definite quadratic spaces
of any finite dimension greater than 3. The analogous statement for indefinite quadratic
spaces also is true by a theorem of Haantjes (1938).

3. The projective compactification. Let X be a finite-dimensional real vector
space. Then any norm on X induces the same topology. That is any subset of X open
with respect to any particular norm is also open with respect to any other norm.

Consider the map X→X × R; x 7→ (x, 1). This map is clearly injective but also
induces an injective map

X→G1(X × R); x 7→ [x, 1] = R{x, 1}

of X to the projective space of lines through the origin in X × R. The projective space
inherits the quotient topology from the topology of the linear space X×R and is compact.
The complement in the projective space of the image of the original space X is by
definition the hyperplane at infinity of X.

4. The conformal compactification. For a real non-degenerate quadratic space X
of signature (p, q) there is an alternative compactification that often offers advantages.
This is the conformal compactification defined as follows (cf. É. Cartan (1947), (1949),
Kuiper (1949), Hermann (1979)).

For simplicity let the scalar product on X be denoted by ·, and consider the injective
map

ι : X→X ′′ = X × R× R; x 7→ (x, 1, x · x) = (x, u, v).

This is not linear, but the image of X is a subset of the quadric cone Q in X ′′ with
equation

x · x− u v = 0.

The map then induces an injective map to the quadric in the projective space G1(X ′′)
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with this homogeneous equation. This quadric is compact, being a closed subset of a
compact space, and is defined to be the conformal compactification X̂ of the quadratic
space X.

The quadric X̂ is easily shown to be homeomorphic to Sp×Sq/S0, where S0 = {1, −1}
acts on Sp × Sq by (−1)(x, y) = (−x, −y). In particular, in the case that p = 0, q = n

the quadric is homeomorphic to Sn and in that case is a one-point compactification of
Rn.

Let X ′′ be assigned the quadratic form

(x, u, v) 7→ x · x− u v = x · x− ( 1
2 (u+ v))2 + 1

2 (u− v))2,

this being of signature (p + 1, q + 1). The central result is then the corollary of the
following:

Theorem 4.1. Let X, X ′′ and Q be as above. Then
1. the map ι : X→X ′′; x 7→ (x, x · x, 1), with image a subset of Q, is an isometry ;
2. the map π : Q>→X; (x, u, v) 7→ x/v, defined where x · x = u v and v 6= 0, is
conformal.

P r o o f. 1. The differential of ι at x is the linear map

dx 7→ (dx, 2x · dx, 0),

and dx · dx− (2x · dx)(0) = dx · dx.
2. The differential of π at (x, u, v) is the linear map

(dx, du, dv) 7→ v−2(v dx− x dv),

with x · x = uv and 2x · dx = u dv + v du, implying that

(v dx− x dv) · (v dx− x dv) = v2dx · dx− v dv(u dv + v du) + uv dv2

= v2(dx · dx− du dv),

so that v−2(v dx− x dv) · v−2(v dx− x dv) = v−2(dx · dx− du dv).

Corollary 4.2. Let t : X ′′→X ′′ be any orthogonal transformation of X ′′. Then the
map f = π t ι : X >→X is conformal.

From their form it is clear that such maps map conformal spheres (that is, quasi-
spheres or hyperplanes) to conformal spheres, a quasi-sphere in the quadratic space X
being a submanifold of X defined by an equation of the form a x ·x+ b ·x+ c = 0, where
a, c ∈ R and b ∈ X, a and b not both being zero, this being a genuine sphere in the
case that the quadratic form on X is positive definite and a 6= 0 and a plane in the case
that a = 0. It is a consequence of Liouville’s theorem that, for dimX ≥ 3, all conformal
maps X >→X are so induced. Clearly any such map f extends to a map f̂ : X̂→ X̂,
with domain the whole of X̂.

It is clear in Corollary 4.2 that both t and −t induce the same conformal transforma-
tion of X. The conformal group Conf(X) is accordingly defined to be the quotient group
O(X ′′)/S0. Since the signature (p+1, q+1) of X ′′ is indefinite, the group O(X ′′) has four
components. So Conf(X) has four or two, according to where the element −1X′′ lies. If it
lies in the connected component of the identity, which is the case when p and q are both
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odd, implying that p + 1 and q + 1 are both even, then Conf(X) has four components,
but if not, it has only two. The connected component of the identity is known as the
Möbius group of X, denoted by M(X).

We have already noted that x · x− uv = x · x+ ( 1
2 (u− v))2 − ( 1

2 (u+ v))2. With this
in mind the most usual chart to employ on the projective space G1(X ′′) is the map

[x, u, v] 7→
( 2x
u+ v

,
u− v
u+ v

)
.

Then the composite of the embedding of X in X ′′ with the projection

X ′′>→X × R; (x, u, v) 7→
( 2x
u+ v

,
u− v
u+ v

)
is conformal, the product space X × R being assigned the quadratic form (x, w) 7→
x · x+ w2, since its differential is

dx 7→
( 2 dx
x · x+ 1

− 4xx · dx
(x · x+ 1)2

,
2x · dx
x · x+ 1

− 2x · dx(x · x− 1)
(x · x+ 1)2

)
,

the quadratic norm of the image being
4

(x · x+ 1)4
(
((x · x+ 1)dx− 2xx · dx) · ((x · x+ 1)dx− 2xx · dx) + 4(x · dx)2

)
=

4
(x · x+ 1)2

dx · dx.

To clarify all this let us look at some simple examples.

Example 4.3. Let X = R2 with its standard positive-definite scalar product. That is
X = R0,2. Then the image of the map

R2→G1(R4); (x, y) 7→ [x, y, 1, x2 + y2],

lies in the quadric with equation x2 + y2 − u v = 0, this quadric being the conformal
compactification of X.

Suppose that we make a change of variables to express the equation of the quadric as a
sum of squares, an appropriate such choice being x = x, y = y, z = 1

2 (u−v), t = 1
2 (u+v).

Then the equation reduces to x2 + y2 + z2 − t2 and the image lies entirely in the affine
chart given by t = 1, the map to this chart being the map

R2 7→ R3; (x, y) 7→ (
2x

1 + x2 + y2
,

2y
1 + x2 + y2

,
1− x2 − y2

1 + x2 + y2
),

with image a subset of the unit sphere S2 in R3. Indeed the image is whole of this sphere
with the exception of one point, the South Pole, (0, 0, −1).

This compactification, being a one-point compactification, is quite distinct from the
projective compactification of the previous section. It is often presented in inverse form
as the stereographic projection of the sphere, minus its South Pole, to its equatorial plane.
Indeed the three points ( 2x

1 + x2 + y2
,

2y
1 + x2 + y2

,
1− x2 − y2

1 + x2 + y2

)
of the sphere, (x, y, 0) of the equatorial plane and (0, 0, −1), the South Pole, are collinear,
as is readily verified.
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The inverse map is the map

S2\(0, 0, −1)→R2; (x′, y′, z′) 7→
( x′

1 + z′
,

y′

1 + z′
)
.

Example 4.4. Let X = R1,1. Then the image of the map

R2→G1(R4); (x, y) 7→ [x, y, 1, −x2 + y2],

lies in the quadric with equation −x2 + y2 − u v = 0, this quadric being the conformal
compactification of X.

Suppose that we make the same change of variables as in Example 4.4 to express the
equation of the quadric as a sum of squares, that is x = x, y = y, z = 1

2 (u − v), t =
1
2 (u + v). Then the equation reduces to −x2 + y2 + z2 − t2. The image no longer lies
entirely in any affine chart, but the map to the chart with t = 1 is the map

R2 >→R3; (x, y) 7→
( 2x

1− x2 + y2
,

2y
1− x2 + y2

,
1 + x2 − y2

1− x2 + y2

)
,

with domain the complement of the hyperbola with equation x2 − y2 = 1 and image a
subset of the hyperboloid of one sheet with equation −X2 + Y 2 + Z2 = 1.

5. Clifford algebras. It may be shown that, for any finite-dimensional real quadratic
space X, there is a real associative algebra, A say, with unit element 1, containing isomor-
phic copies of R and X as linear subspaces in such a way that, for all x ∈ X, x2 = −x(2).

If the algebra A is generated as a ring by the copies of the scalars R and vectors X
or, equivalently, as a real algebra by {1} and X, then A is said to be a (real) Clifford
algebra for X (Clifford’s term (1876) was geometric algebra).

To simplify notations in the above definition, R and X have been identified with their
copies in A. More strictly, there are linear injections α : R→A and β : X→A such that,
for all x ∈ X,

(β(x))2 = −α(x(2)),

the unit element in A being α(1).
The algebra A is said to be a universal Clifford algebra for X if it is generated as a

real algebra by X but by no linear subspace of X.
For example the algebra of quaternions H is a Clifford algebra for the real quadratic

space R0,3 identified with the space of pure quaternions, but it is not a universal Clifford
algebra for R0,3, since the algebra is generated by the subspace spanned by {i, j}. It is
however a universal Clifford algebra for R0,2.

One of the characteristic properties of a Clifford algebra may be expressed in terms
of an orthonormal basis as follows.

Proposition 5.1. Let X be a finite-dimensional real quadratic space with an orthonor-
mal basis {ei : 0 ≤ i < n}, where n = dimX, and let A be a real associative algebra with
unit element 1 containing R and X as linear subspaces. Then x2 = −x(2), for all x ∈ X,
if and only if

e2i = −e(2)i , for all i,

and ei ej + ej ei = 0 for all distinct i and j.
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This prompts the following definition.
An orthonormal subset of a real associative algebra A with unit element 1 is a linearly

independent subset S of mutually anti-commuting elements of A, the square a2 of any
element a ∈ S being 0, 1 or −1.

Proposition 5.2. Let S be a subset of mutually anti-commuting elements of the
algebra A such that the square a2 of any element a ∈ S is 1 or −1. Then S is an
orthonormal subset in A.

P r o o f. All that has to be verified is the linear independence of S.
An orthonormal subset S none of whose elements has square zero, as in Proposition

5.2, is said to be non-degenerate. If p of the elements of S have square +1 and if the
remaining q have square −1, then S is said to be of type (p, q).

Any two universal Clifford algebras for the quadratic space Rp,q are naturally isomor-
phic, and any such will be denoted by Rp,q. For example R1,1

∼= R(2), the algebra of
2× 2 matrices with entries in R, a suitable orthonormal subset consisting of the matrices(

0 1
1 0

)
and

(
0 −1
1 0

)
.

In a universal Clifford algebra A for a real quadratic space X the space R⊕X, assigned
the quadratic form

(λ⊕ x)(2) = (λ+ x)(λ− x)

is called the space of paravectors of A. Later it will be denoted by Z, with z = λ+ x.
Any linear isomorphism t : X→X extends in a natural way both to an algebra

isomorphism and to an algebra anti-automorphism of a universal Clifford algebra for
X. In particular the identity on X extends to an anti-involution of A, A→A; g 7→ g̃ ,
known as reversion, while the map −1X : x 7→ −x, extends both to an involution of A,
A→A; g 7→ ĝ, known as the main or grade involution of A and to an anti-involution
A→A; g 7→ g known as conjugation.

The elements of A left invariant by the grade involution form a subalgebra A0 of A,
known as the even Clifford algebra for the quadratic space X. It can be proved that for
any (p, q) the algebra R0

p,q+1 is naturally isomorphic to Rp,q.
The first stage in the construction of Clifford algebras is to show how to construct

the universal Clifford algebra Rp+1,q+1 for Rp+1.q+1, given Rp,q, the universal algebra for
Rp,q. This is provided by the next proposition.

Proposition 5.3. Let A be the algebra of m×m matrices over the field K or double
field 2K where K = R, C or H, let A(2) be the algebra of 2 × 2 matrices with entries in
A and let S be an orthonormal subset of A of type (p, q), generating A as a real algebra.
Then the set of matrices

{
(
a 0
0 −a

)
: a ∈ S} ∪ {

(
0 1
1 0

)
,

(
0 −1
1 0

)
}

is an orthonormal subset of A(2) of type (p+ 1, q+ 1), generating A(2) as a real algebra.
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Universal Clifford algebras Rp,q for each p, q are given in the following table:
q →

p ± 1 R C H 2H H(2) C(4) R(8) 2R(8)
↓ R 2R R(2) C(2) H(2) 2H(2) H(4) C(8) R(16)

C R(2) 2R(2) R(4) C(4) H(4) 2H(4) H(8) C(16)
H C(2) R(4) 2R(4) R(8) C(8) H(8) 2H(8) H(16)
2H H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16)

H(2) 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32)
C(4) H(4) 2H(4) H(8) C(16) R(32) 2R(32) R(64) C(64)
R(8) C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)

The table of even algebras is obtained from this table by moving one space to the left
and incorporating the additional column on the left-hand side. For any (p, q) the even
Clifford algebras R0

p,q and R0
q,p are naturally isomorphic.

The next two propositions give useful information on reversion and conjugation on
the Clifford algebra A(2) given these anti-involutions on A.

Proposition 5.4. Let A be a universal Clifford algebra for a finite-dimensional real
quadratic space X, of type (p, q) and let A(2) be the universal Clifford algebra for X ×
R1,1 constructed as in Proposition 5.3. Then the paravectors in A(2) are of the form(
λ+ x v
u (λ+ x)

)
, where λ + x is a paravector in X with λ, u, v ∈ R and x ∈ X, and

(λ+ x) = λ− x.

Proposition 5.5. Let A be a universal Clifford algebra for a finite-dimensional real
quadratic space X, of type (p, q) and let A(2) be the universal Clifford algebra for X×R1,1

constructed as in Proposition 5.3. Then(
a c
b d

)
=
(
d˜ −c˜
−b˜ a˜

)
and

(
a c
b d

)̃
=
(
d c
b a

)
.

P r o o f. These are clearly true for vectors in A(2) and so true for the whole of A(2).

6. Rotations of Rp,q. Clifford algebras permit simple descriptions of rotations of
quadratic spaces. A rotation of a non-degenerate finite-dimensional real quadratic space
X is an isomorphism of X that respects the orientations of X. Any such is the composite
of an even number of linear hyperplane reflections of X, a linear hyperplane reflection of
X being a linear involution of X that leaves invariant the vectors of the hyperplane, but
cnanges the sign of vectors orthogonal to the hyperplane. Explicitly, let A be a universal
Clifford algebra for S and let a be any element of X with a·a = ±1. Then, for any x ∈ X,
axa ∈ X and the map X→X;x 7→ −axa is reflection in the hyperplane orthogonal to
a. The Clifford group Γ(X) consists of all g ∈ A such that, for all x ∈ X, gxĝ−1 ∈ X,
the map X→X; x 7→ gxĝ−1 then being an orthogonal automorphism of X, which is a
rotation of X if and only if g ∈ A0, and any orthogonal automorphism of X may be so
induced. Indeed any element of Γ may be shown to be expressible as the product of a
finite number of invertible elements of X, this number being even when g ∈ A0. The
subgroup of even elements of Γ is denoted by Γ0. The quadratic norm of any element
g of Γ is defined to be N(g) = g g, this being a non-zero real number. Moreover, for
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any g ∈ Γ with N(g) = 1 we have ĝ−1 = g .̃ The subgroup {g ∈ Γ;N(g) = ±1} of
Γ is defined to be SpinX, and the subgroup {g ∈ Γ;N(g) = 1} of Γ is defined to be
Spin+X. For a non-degenerate real quadratic space X of index (0, q) it turns out that
N(g) = 1 for all g ∈ Γ so that Spin+X = SpinX. There are short exact sequences of
group homomorphisms:

{1}→S0→SpinX→SO(X)→{1},

and
{1}→S0→Spin+X→SO+(X)→{1},

where S0 = {1,−1}, the group SO(X) being the group of rotations of X and the group
SO+(X) the subgroup that preserves the semi-orientations of X in the case that the
quadratic form on X is of type (p, q) with both p and q non-zero.

Let A be a universal Clifford algebra for a non-degenerate real quadratic space X, and
let g be an invertible element of A such that for any paravector λ⊕ x of A, g(λ⊕ x)ĝ−1

also is a paravector of A. Then the map

R⊕X→R⊕X; λ⊕ x 7→ g(λ⊕ x)ĝ−1

is a rotation of the quadratic space Z of paravectors R⊕X, and any rotation of Z may
be so induced. That is, the group of such elements is isomorphic to Γ0(R⊕X).

Proposition 6.1. Let A be a universal Clifford algebra for a positive-definite non-
degenerate real quadratic space X, with Clifford group Γ and let Γ(2) denote the Clifford
group of the Clifford algebra A(2). Then, for any(

a c
b d

)
∈ Γ(2),

1. either the elements of the main diagonal belong to Γ0 ∪ {0} and those of the other
diagonal to Γ1 ∪ {0}, or vice versa;

2. a d˜− c b˜is real and non-zero;
3. a b ∈ X and c d ∈ X, or equivalently a b ˜ ∈ X and c d ˜ ∈ X, since, for any
g ∈ Γ, g˜= ±g .

P r o o f. Part 1 is by induction on the number of factors in some representation of the
matrix as a product of vectors. Part 2 follows from the fact that a d˜− c b˜ is just the
quadratic norm of the matrix. Part 3 follows at once by letting the matrix act on each

of the vectors
(

0 1
0 0

)
and

(
0 0
1 0

)
.

That this is a characterisation of the elements of Γ(2) in the case that the quadratic
space X is positive-definite will be indicated later. In the case of an indefinite space X

the result is false, as is at once clear, since it is false for a vector
(
x v
u −x

)
for which

x 6= 0 but x · x = 0.
In fact it can even be the case that none of the entries in the 2×2 matrix representing

an element of Γ(2) is invertible, as an example of Maks (1989), (1992) shows. Consider
generators e1 and e2 of R1,1 with e21 = −1 and e22 = 1, and take the standard model of
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R2,2 in R1,1(2). Then the rotation of R2,2 that sends e1 to
(

0 −1
1 0

)
, and that vector to

−e1, and similarly sends e2 to
(

0 1
1 0

)
, and that vector to −e2, is induced by the matrix(

1 e1
e1 1

)(
1 −e2
e2 1

)
=
(

1 + e1e2 e1 − e2
e1 + e2 1− e1e2

)
of Γ(2). None of the entries in this matrix are invertible elements of R1,1.

The groups Spin(n) for n ≤ 6, and the groups Spin+(p, q) for p+ q ≤ 6, in the case
that both p and q are non-zero, are shown in Table 2.

q →
p ±1 O(1) U(1) Sp(1) 2Sp(1) Sp(2) SU(4)
↓ O(1) GL(1; R) Sp(2; R) Sp(2; C) Sp(1, 1) SL(2; H)

U(1) Sp(2; R) 2Sp(2; R) Sp(4; R) SU(2, 2)
Sp(1) Sp(2; C) Sp(4; R) SL(4; R)
2Sp(1) Sp(1, 1) SU(2, 2)
Sp(2) SL(2; H)
SU(4)

The notations are mostly standard. For example Sp(4; R) denotes the symplectic
group of 4× 4 real matrices that preserve the skew-symmetric product

R4 × R4→R4; ((x1, x2, x3, x4), (y1, y2, y3, y4))→x1y2 − x2y1 + x3y4 − x4y3,

while SL(2; H) denotes the special linear group of all 2 × 2 matrices with entries in H
and of determinant 1, the determinant being defined to be the determinant of the matrix
when represented as an element of C(4). Only those with p or q zero are compact.

For more details on Clifford algebras, and Table 2 in particular, the reader is referred
to Porteous (1981) and (1993).

7. Möbius transformations of R2. The appropriate Clifford algebra in which to
study rotations of the Euclidean plane R2 is the algebra R0

0,2 of complex numbers C.
The plane itself is represented by the plane of paravectors which in this case is the whole
of C. Now the conformal compactification sits naturally inside the Clifford algebra R0

1,3

which is representable by the matrix algebra C(2), the complex number z then being
represented by the matrix (

z zz
1 z

)
,

that is explicitly by the element

x

(
1 0
0 1

)
+ i y

(
1 0
0 −1

)
+

1
2

(1 + zz)
(

0 1
1 0

)
+

1
2

(1− zz)
(

0 −1
1 0

)
.

More generally any element of R1,3 sitting as a paravector in R0
1,3 is represented by

an element of C(2) of the form (
v

u z

)
,

where z ∈ C and u and v are real.
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Consider now an element of Spin+(1, 3) represented by an element of C(2) of the form(
a c
b d

)
.

This maps the above paravector to(
a c
b d

)(
z v
u z

)(
a c
b d

)̃
=
(
a c
b d

)(
z v
u z

)(
d c
b a

)
.

In particular it maps the paravector(
z zz
1 z

)
=
(
z
1

)
( 1 z )

representing the complex number z to(
a c
b d

)(
z zz
1 z

)(
d c
b a

)
=
(
λz′ λz′z′

λ λz′

)
= λ

(
z′ z′z′

1 z′

)
,

where z′ =
az + c

bz + d
and λ is the real number |bz + d|2.

Now the conformal compactification of C is a one-point compactification and it is nat-
ural to denote the additional point by∞. One easily verifies that this point is represented
in C(2) by the matrix (

0 1
0 0

)
and that the image of this matrix by the above element of Spin+(1, 3) is the matrix(

b aa
bb ba

)
that represents the complex number a/b, when b 6= 0 and ∞ otherwise.

A map

C ∪ {∞}→C ∪ {∞} : z 7→ az + c

bz + d
,

where a, b, c, d ∈ C and a d− b c = 1, is known as a Möbius map. It represents a special
conformal transformation of the conformal compactification of R0,2, namely one that
respects the orientations of R0,2 and its compactification.

For such a Möbius map the induced map of C2 defined by the matrix(
a c
b d

)
will restrict to a rotation of this sphere if and only if this matrix lies in the copy of
Spin+(0, 3) = Spin 3 naturally included in Spin+(1, 3). Such matrices are those that
represent unit quaternions, namely those of the form(

a −b
b a

)
.

Example 7.1. There is a unique Möbius map of C to C that sends 0 to 1, 1 to i and
i to 0. The induced rotation of the Riemann sphere is rotation of the sphere through an

angle
2π
3

about the line with equations x = y = z.



A TUTORIAL ON CONFORMAL GROUPS 147

P r o o f. Let the Möbius map be

z 7→ az + c

bz + d
.

Then
c

d
= 1, that is c = d,

a+ c

b+ d
= i, that is a + c = (b + d)i, and

ai + c

bi + d
= 0, that is

ai + c = 0. Try a = 1. Then c = d = −i and 1− i = bi + 1 so that b = −1. This gives the
map

z 7→ z − i
−z − i

.

However then a d − b c = 1(−i) − (−1)(−i) = −2i = (1 − i)2, and the inverse of 1 − i is
1
2 (1 + i). So finally the required map is

z 7→
1
2 (1 + i)z + 1

2 (1− i)
− 1

2 (1 + i)z + 1
2 (1− i)

.

The fixed points of this map are given by z − i = (−z − i)z, that is by the quadratic
equation z2 + (1 + i)z − i = 0, with roots z = 1

2 (−1− i ±
√

6i ).

8. Möbius transformations of Rp,q. The general case can be handled in exactly
the same way as the case of R2 has been treated in the previous section. The appropriate
Clifford algebra in which to study rotations of the quadratic space Rp,q is the algebra R0

p,q,
isomorphic to the Clifford algebra Rp,q−1. The quadratic space itself is then represented
by, and will be identified with, the space of paravectors Z in the algebra Rp,q−1, with
z ·z = z z , for any z∈Z. The conformal compactification sits naturally inside the algebra
R0

p+1, q+1 which is isomorphic to the algebra Rp+1, q
∼= Rp,q−1(2) of 2 × 2 matrices with

entries in Rp, q−1.
The paravector z is then represented by the matrix(

z z z
1 z

)
,

that is explicitly by the element(
z 0
0 z

)
+

1
2

(1 + z z )
(

0 1
1 0

)
+

1
2

(1− z z )
(

0 −1
1 0

)
.

More generally (cf. Proposition 5.4) any element of Rp+1, q+1 is represented by a
paravector in Rp+1,q

∼= Rp, q−1(2) of the form(
z v
u z

)
,

where z is a paravector in Rp, q−1 and u and v are real.
Consider now an element of Spin+(p+ 1, q) represented by an element of the algebra

Rp,q−1(2) of the form (
a c
b d

)
.
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This maps the above paravector to(
a c
b d

)(
z v
u z

)(
a c
b d

)̃
=
(
a c
b d

)(
z v
u z

)(
d c
b a

)
by Proposition 5.5. In particular it maps the paravector(

z z z
1 z

)
=
(
z
1

)
( 1 z )

representing the paravector z to(
a c
b d

)(
z z z
1 z

)(
c

b

)
=
(

(az + c)(bz + d) (az + c)(az + c)
(bz + d)(bz + d) (bz + d)(az + c)

)
= λ

(
z′ z′ z′

1 z′

)
,

where z′ = (az + c)(bz + d)−1 and λ is the real number (bz + d)(bz + d) .

The matrix
(
a c
b d

)
representing the induced special conformal transformation of

the conformal compactification of Rp,q is known as a Vahlen representation (cf. Vahlen,
(1902)), a special transformation being one that respects the orientation (and, in the case
that p and q are both odd, the semi-orientations) of the compactification, this represen-
tation being unique up to sign in the case that p q is even, but with a four-fold ambiguity
in its definition in the case that p q is odd.

For example the translation x 7→ x+ c is represented by the matrix
(

1 c
0 1

)
and the

inflation x 7→ ρx by the positive scalar ρ by the matrix
(√

ρ 0
0
√
ρ−1

)
, while inversion

in the unit quasi-sphere composed with the hyperplane reflection x 7→ −x is represented

by the matrix
(

0 −1
1 0

)
.

Any Möbius transformation is expressible as a product of a finite number of inversions
in spheres and hyperplane reflections.

An important special case in which p q is odd is that of R1,3 in which case the com-
ponent of the identity of the conformal group is covered four times rather than twice by
the group SU(2, 2), the identity transformation of the space being represented by each
of the matrices (

1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
I 0
0 I

)
and

(
I 0
0 −I

)
,

where I is the 2× 2 complex matrix
(

i 0
0 i

)
.

The complete set of Möbius groups, for p+ q ≤ 4, is given in the following theorem.

Theorem 8.1. Let Mp,q denote the Möbius group M(Rp,q). Then

M0,1
∼= M1,0

∼= Sp(2,R)/S0

M0,2
∼= M2,0

∼= Sp(2,C)/S0

M1,1
∼= 2(Sp(2; R)/S0) (p q odd)

M0,3
∼= M3,0

∼= Sp(1, 1)/S0
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M1,2
∼= M2,1

∼= Sp(4,R)/S0

M0,4
∼= M4,0

∼= SL(2,H)/S0

M1,3
∼= M3,1

∼= SU(2, 2))/C(4) (p q odd)
M2,2

∼= SL(4,R)/S0

P r o o f. These results follow directly from the remarks following Corollary 4.2 and
Table 2.

Finally we have the following converse to Proposition 6.

Proposition 8.2. Let A be a universal Clifford algebra for a positive-definite real
quadratic space X, with Clifford group Γ, and let Γ(2) denote the Clifford group of the
Clifford algebra A(2). Then conditions 1 to 3 of Proposition 6.1 characterise elements of
Γ(2).

Indication of Proof : What has to be proved is that for any matrix
(
a c
b d

)
∈ A(2)

satisfying these conditions and for any
(
x v
u x

)
, where x ∈ X and u, v ∈ R, the matrix(

a c
b d

) (
x v
u x

) (
d c
b a

)
=
(
x′ v′

u′ x′

)
where x′ ∈ X and u′ and v′ ∈ R. This is easily verified in the particular case that
x = 0, and the problem is then reducible to proving things in the case that u = 1 and
v = xx . This in its turn is reducible by Section 8 to proving that, for any x ∈ X,
(ax+ c)(bx+ d)−1 ∈ X. For the details see Ahlfors (1985).

Proposition 8.2 remains true even in the indefinite case, provided that conditions 1−3
are suitably amended. In particular the set Γ ∪ {0} has to be replaced by the monoid T
of all products of a finite number of vectors, whether invertible or not. Let T0 denote the
set of all products of an even number of vectors and T1 the set of all products of an odd
number of vectors. Then the amended conditons (in a form essentially due to Cnops) are
1. either the elements of the main diagonal belong to T0 and those of the other diagonal

to T1, or vice versa;
2. a d˜− c b˜is real and non-zero;
3. a b , c d , a c and b d ∈ X, or equivalently a b ,̃ c d ,̃ a˜c and b˜d ∈ X, since, for any
g ∈ T, g˜= ±g .

Since non-zero vectors need not be invertible the method of proof of Ahlfors does not
generalise. For the details see Maks (1989), Fillmore and Springer (1990) and Cnops
(1994).
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[16] K. Th. Vahlen, Über Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), 585-
593.


