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Abstract. Using Clifford analysis in a multidimensional space some elliptic, hyperbolic and
parabolic systems of partial differential equations are constructed, which are related to the
well-known classical equations. To obtain parabolic systems Clifford algebra is modified and
some corresponding differential operator is constructed. For systems obtained the boundary and
initial value problems are solved.

Introduction. The Clifford analysis has suggested us an idea to construct in a mul-
tidimensional space some partial differential equations which are related with the well-
known classical equations. Using Clifford algebra the operator generalizing the classical
Cauchy-Riemann operator is considered in multidimensional space in [3], [7]. Applying
this operator to the element of usual Clifford algebra one can get elliptic systems, and
by applying to the element of some universal Clifford algebra, hyperbolic systems are
obtained. The natural question has arised how to obtain parabolic systems. For this,
we need to consider some modification of Clifford algebra. Thus, in a multidimensional
space below elliptic, hyperbolic and parabolic systems are obtained, which are related
with Laplace, wave and heat equations, respectively. An information about Clifford
algebra one can find, for example, in [3], [5], [6], [7].

1. Some basic notions and definitions. Let e1, e2, . . . , en be an orthonormal base
of the n-dimensional real vector space Rn with respect to the usual scalar product. The
universal Clifford algebra R(n,s) over Rn+1 has the basis

e0, e1, . . . , en, e1e2, . . . , en−1en, . . . , e1e2 . . . en,

by defining the basic multiplication rules as

(1) e20 = 1, e2j = −1, j = 1, 2, . . . , s,
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e2j = 1, j = s+ 1, . . . , n; ejek + ekej = 0, 1 ≤ j < k ≤ n

where e0 is its identity element. It is a real 2n-dimensional non-commutative (n ≥ 2)
vector space. R(n,n) ≡ R(n) is usual Clifford algebra. Thus, the basis consists of the
elements eA = eα1eα2 . . . eαk

, where A : {α1, α2, . . . , αk} ∈ {1, 2, . . . , n} and 1 ≤ α1 <

α2 < . . . < αk ≤ n. An arbitrary element u ∈ R(n,s) may be written as

(2) u =
∑
A

uAeA, uA ∈ R, 0 ≤ α1 < α2 < . . . < αk ≤ n.

For any u, v ∈ R(n,s) the product is defined as

(3) u · v =
∑
A,B

uAvBeAeB .

A convolution u −→ ū called conjugation is defined by requiring that

(4) ū =
∑
A

uAēA

with

(5) ē0 = e0, ēj = −ej , j = 1, 2, . . . , n, ēA = ēαk
. . . ēα1 .

Let a domain Ω ⊂ Rn+1 and a function u(x):

Ω −→ R(n,s);x(x0, x1, . . . , xn) ∈ Ω.

Consider the operators

(6) ∂̄ =
n∑
j=0

∂

∂xj
ej ∂ =

∂

∂x0
e0 −

n∑
j=1

∂

∂xj
ej .

Using (1), one can obtain the Coulomb operator

(7) ∂̄∂ = ∂∂̄ = [
s∑
j=0

∂2

∂x2
j

−
n∑

j=s+1

∂2

∂xj2
]e0.

A function u(x) ∈ C1(Ω) with values in R(n,s) is said to be regular in Ω if

(8) ∂̄u = 0, u(x) =
∑
A

uA(x)eA.

For the regular function u(x) with values in R(n) by virtue of (7) we have:

(9) ∆u = 0,

where the Laplace operator ∆ is taken with respect to all x0, x1, . . . , xn. For the regular
function u(x) with values in R(n,n−1) by virtue of (7) one can get the wave equation

(10) ∆u− ∂2u

∂x2
n

= 0,

where ∆ is now taken with respect to variables x0, x1, . . . , xn−1.

2. Modified Clifford algebra and heat equation. Now in place of ∂̄ we need
to consider an operator which is connected with the heat equation. For this we consider
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some modified Clifford algebra (like in Grassman algebra). Let the multiplication rules
be defined by

(11) e2o = 1, e2j = −1, j = 1, 2, . . . , n− 1; e2n = 0

ejek + ekej = 0, j 6= k = 1, 2, . . . , n.

instead of (1) and equalities (4), (5), (6) remained unchanged. This algebra is denoted
by R0

(n). Instead of (8) the following equation will be considered

(12) [∂̄ − P(n)]u(x) = 0

where a linear operator P(n)u is defined by the condition

(13) ∂P(n)u =
∂u

∂xn
.

Using (6), (11) we have:

(14) P(n)u = −
∑
A

(−1)kuAn(x)eA

A(α1,α2,...,αk) ∈ {0, 1, . . . , n− 1}.

Now, it is obvious that if u is the solution of (12), then it also is the solution of the heat
equation:

(15) ∆u =
∂u

∂xn
,

where ∆ is taken with respect to x0, x1, . . . , xn−1.

3. Some partial cases.
a) Let u(x) have a vectorial form:

(16) u(x) = u0(x)e0 −
n∑
j=1

uj(x)ej

As is well known, if u(x) ∈ R(n), then (8) is equivalent to the Riesz system

(17)
n∑
j=0

∂uj
∂xj

= 0,

∂uj
∂xk
− ∂uk
∂xj

= 0, j, k = 0, 1, . . . , n,

which is for n > 1 an overdetermined elliptic system.
Now, let u(x) ∈ R(n,n−1), then (8) is equivalent to the hyperbolic system

(18)
n−1∑
j=0

∂uj
∂xj
− ∂un
∂xn

= 0,

∂uj
∂xk
− ∂uk
∂xj

= 0, j, k = 0, 1, . . . , n.

But if u(x) ∈ R0
(n) the solution of (12), where

P(n)u(x) = un(x)eo,
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then (12) is equivalent to the parabolic system

(19)
n−1∑
j=0

∂uj
∂xj
− un = 0,

∂uj
∂xk
− ∂uk
∂xj

= 0, j, k = 0, 1, . . . , n.

Thus, (18) and (19) can be considered as hyperbolic and parabolic analogues of Riesz
system, respectively. If the scalar function v(x) is any solution of (9), (10), (15), then

uj =
∂v

∂xj
, j = 0, 1, . . . , n

is the solution of (17), (18), (19), respectively.

b) Let n = 2 (the quaternionic case), and

(20) u(x) = u0(x)e0 − u1(x)e1 − u2(x)e2 − u12(x)e1e2.

Let u(x) ∈ R(2), then, as is known, (8) is equivalent to the Moisil-Theodorescu system
[9], which we have written in a vectorial form [10a]:

(21) divU = 0,

gradϕ+ rotU = 0

where U(u0, u1, u2) – three-component vector, ϕ ≡ u12 – scalar function, operations div,
grad, rot are taken with respect to x0, x1, x2. Let u(x) ∈ R(2,1). Note that in the cases
R(2,1) and R(2,0) equation (8) gives us the hyperbolic system of the same form. That is
why it is sufficient to consider only one of them. Thus, (8) is equivalent to the system:

(22)

∂u0

∂x0
+
∂u1

∂x1
− ∂u2

∂x2
= 0,

∂u12

∂x0
+
∂u2

∂x1
− ∂u1

∂x2
= 0,

∂u0

∂x1
− ∂u1

∂x0
+
∂u12

∂x2
= 0,

∂u12

∂x1
− ∂u2

∂x0
+
∂u0

∂x2
= 0.

Considering the complex functions

ϕ(x) = u0 + u12 − i(u1 + u2),
(23)

ψ(x) = u0 − u12 − i(u1 − u2),

(22) can be written as

(24)
2
∂ϕ

∂z̄
+ i

∂ϕ̄

∂x2
= 0, 2

∂ψ

∂z̄
− i ∂ψ̄

∂x2
= 0, z = x0 + ix1

2
∂

∂z̄
=

∂

∂x0
+ i

∂

∂x1
.

These equations are the partial case of the metaparabolic equations whose general form
was considered in [1]. Some initial value problems of such equations were considered in
[10].
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Let now u(x) ∈ R0
(2), then since P(2)u = u2e0 − u12e1, (12) is equivalent to the

parabolic system

(25)

∂u0

∂x0
+
∂u1

∂x1
− u2 = 0

∂u12

∂x0
+
∂u2

∂x1
− ∂u1

∂x2
= 0,

∂u0

∂x1
− ∂u1

∂x0
+ u12 = 0

∂u12

∂x1
− ∂u2

∂x0
+
∂u0

∂x2
= 0.

Considering complex functions

w1 = u0 − iu1, w2 = u12 − iu2,

(25) can be written in the complex form

(26) 2
∂w1

∂z̄
+ iw̄2 = 0, 2

∂w2

∂z̄
+ i

∂w̄1

∂x2
= 0.

c) Let now n = 3 and

(27) u(x) = u0e0 −
3∑
j=1

ujej −
3∑

1=j<k

ujkejek − u123e1e2e3.

If u(x) ∈ R(3,1), the equation (8) is equivalent to the hyperbolic system:

(28)
divU − ∂ϕ

∂x3
= 0, div V +

∂ψ

∂x3
= 0,

gradψ + rotU +
∂V

∂x3
= 0, gradϕ+ rotV − ∂U

∂x3
= 0,

where U ≡ (u0, u1, u2), V ≡ (u123, u23,−u13) are three-component vectors, u12 ≡ ψ,
u3 ≡ ϕ – scalars, the operators grad, div, rot are taken with respect to x0, x1, x2. Note,
that if ϕ = ψ ≡ 0 and x3 ≡ t is a time variable, then (28) are Maxwell’s equations (in a
vacuum). But, if the unknown quantities in (28) do not depend on x3, this system forms
two seperated Moisil-Theodorescu systems (21).

Let u(x) ∈ R
(0)
(3), then by using (27), equation (12) is equivalent to the parabolic

system having that
P(3)u = ϕe0 − u13e1 − u23e2 + u123e1e2,

(29)
divU − ϕ = 0, div V +

∂ψ

∂x3
= 0,

gradψ + rotU + V = 0, gradϕ+ rotV − ∂U

∂x3
= 0.

Let the scalar functions f1, f2 be solutions of (10) or (15) for n = 3. Then

U = grad f1, V = grad f2, ϕ =
∂f1
∂x3

, ψ = − ∂f2
∂x3

are the solutions of (28), (29) respectively.

4.Boundary and initial value problems. Let S(n) be the half hyperspace xn ≥
0(n ≥ 1). The following problems are correctly posed:
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a) Find a bounded solution of (17) or (19) in S(n), when only one condition is given on
the boundary:

uj = f(x0, . . . , xn−1), for xn = 0,

where j is fixed and takes one of the values 0, 1, . . . , n.
b) Find a bounded solution of (18) in S(n), when only two conditions are given on the

boundary: for xn = 0 uj , un are given, where j is a fixed number from {0, 1, . . . , n−1};
or uj ,

∂uj

∂xn
are given where j ∈ {0, 1, . . . , n} is fixed. Note that the number of given

conditions on xn = 0 does not depend on n.
Let Φ(U,ψ) and Ψ(V, ϕ) be four-component vectors, constructed by the solutions of
(28) or (29).

c) Find a bounded solution of (28) in S(3), when both vectors: Φ and Ψ for x3 = 0 are
given.

d) Find a bounded solution of (29) in S(2), when any four quantities from eight unknowns
for x3 = 0 are given.
Analogous problems can be considered in S(12) for equations (21), (22), (25). The

unique solutions of all these problems in certain classes can be ropresented in quadratures
using, for example, Fourier integral transform.

Now I want to note the following: The generalized Moisil-Theodorescu system

(30) divU + (A · U) = 0

gradϕ+ rotU + [B × U ] + Cϕ = 0,

where A,B,C are given three component vectors; div, grad and rot are taken with respect
to x0, x1, x2, was first considered in [10a] in 1975 (Russian), then it was also considered
in [10b] (English). To define the solution of (30) in S(2) it is sufficient to give on x2 = 0
two boundary conditions, but in the bounded domain it is not sufficient [2]. Let S be a
domain bounded by the closed smooth surface Γ and L be a closed smooth line on Γ, such
that its orthogonal projection L0 on the plane x2 = 0 bounds the domain of variables
x0, x1 for S. The following problem was posed and solved in [10a]:

Find a regular solution of (30) in S by the conditions:

(31) u0(x) = f0(x), ϕ(x) = f(x), x ∈ Γ,

αu1(x) + βu2(x) = g(x), x ∈ L,

where f0, f and α, β, g are given functions on Γ and L respectively.
Recently I have seen the article [8], where the system (30) is considered and some of our

old results are obtained again. Unfortunately, the author, Huang Liede, perhaps, does not
know our papers [10a], [10b]. Moreover, for nonhomogeneous Moisil-Theodorescu system
the boundary conditions of type (31) are considered in [4], and there is no reference to
my papers.
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