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Abstract. After an overview of Hurwitz pairs we are showing how to actually construct
them and discussing whether, for a given representation, all Hurwitz pairs of the same type
are equivalent. Finally modules over a Clifford algebra are considered with compatible inner
products; the results being then aplied to Hurwitz pairs.

Introduction. Hurwitz pairs appear under different disguises in mathematical
physics and are often introduced in a rather ad hoc way. It has been proved by several
authors however that a Hurwitz pair is nothing else than an irreducible representation
of a Clifford algebra with an inner product compatible with the main antiautomorphism
(see e.g. [10] and [9]), and this links the notion of Hurwitz pair to the study of sesquilin-
ear forms on spinor spaces. In the first section of this paper an overview is given of this
relation.

This result however does not show how to actually construct Hurwitz pairs, nor does it
tell whether, for a given representation, all Hurwitz pairs of the same type are equivalent.
The answer to this question is yes, and both problems are dealt with in the second section.

In the final section modules over a Clifford algebra are considered with a compatible
inner product (whithout the demand of irreducibility). It is proved that such inner prod-
ucts can be considered as the trace of Clifford valued inner products, a result which is
then applied to Hurwitz pairs.

Definitions and notations

Clifford algebras. Let Rpq be the real n-dimensional space, where n = p + q, en-
dowed with the nondegenerate inner product B(·, ·) of signature (p, q). We assume that
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an orthonormal basis e1, . . ., en is given, that is a basis such that
B(ei, ei) = −1, i = 1, . . . , p
B(ei, ei) = 1, i = p+ 1, . . . , n
B(ei, ej) = 0, i 6= j

It should be noticed that the notation is taken such that Euclidean space with positive
definite inner product is written as R0,n.

The Clifford algebra over Rpq is denoted by Rpq. It is the free algebra generated by
the ei modulo the relations

eiej + ejei = −2B(ei, ej).

Elements of Rpq are called Clifford numbers or Clifford scalars. The Clifford algebra has a
basis (as vector space over R) of elements eA where A is a subset of {1, . . . , n}, and where
e{i1,...,ik} is identified with ei1 . . . eik , at least if i1< . . . <ik. If A has k elements, then eA
is called a k-vector. Likewise any linear combination of k-vectors is called a k-vector. The
elements of Rpq are the 1-vectors, or vectors, of the Clifford algebra and will be denoted
by ~x, ~y etc.

The main antiautomorphism is defined by

~̄x = −~x (ab) = b̄ā.

Each Clifford algebra Rpq is isomorphic, either to a full matrix algebra F(t) or to a
double matrix algebra F(t) ⊕ F(t), where F is either C, R or H, and t is some power of
2. F will sometimes be called the field of the Clifford algebra Rpq. Explicit tables of the
field F, the dimension t and whether one needs a full or a double algebra for given Rpq
can be found in various places, e.g. in [7].

Matrices and operators. The notation M t is used for the transpose of a matrix, and
M−t indicates the inverse of the transpose.

Furthermore generalised inverses will be needed, at least for linear operators on finite
dimensional spaces. Let V be such a space, endowed with a euclidean metric, and K be
a linear operator. then K is invertible as an operator from ker⊥ K to im K. The inverse
of this, extended with 0 on im⊥ K is the generalised inverse, K†. Clearly K†K is the
orthogonal projection on ker⊥ K, and so KK†K = K and K†KK† = K†. The identical
transformation on a vector space V will be denoted as IV ; the notation In will be used
for the unit n× n matrix.

Hurwitz pairs. Consider two vector spaces, S of dimension n+ 1 and V of dimension
t, both endowed with a bilinear inner product, (·, ·)S and (·, ·)K . (The reason we do
not use the notation (·, ·)V is that in certain cases it will turn out that different metrics
on the same representation will turn out to give different Hurwitz pairs.) Here (·, ·)S is
symmetric, with signature (s, r + 1) ((~x, ~y)S = (~y, ~x)S) and (·, ·)K is either symmetric
or antisymmetric ((v, w)K = σ(w, v)K , where σ = ±1), and both are non-degenerate.
Notice again that signature (s, r+ 1) is to be read as ‘s minus signs and r+ 1 plus signs’.

A bilinear mapping ◦ : S × V → V is called a Hurwitz multiplication if it satisfies the
following conditions (see [4]):
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H.1
(x, x)S(v, w)K = (x ◦ v, x ◦ w)K

for all x, v and w (this is called the generalised Hurwitz condition).
H.2 There exists e in S such that e◦ is the identity on V .
H.3 There is no subspace of V invariant under ◦.
The complete structure is called a Hurwitz pair. If the condition of irreducibility, H.3,

is not met, the structure is called a pre-Hurwitz pair. Notice that it automatically follows
that (e, e)S = 1.

1. Classification of Hurwitz pairs. Take S′ to be the orthogonal complement of
e. S′ has signature (s, r). We shall consider the Clifford algebra Rsr over S′ = Rsr, so the
elements of S′ can be considered as the vectors of the Clifford algebra, and the notation ~x,
~y and so on for elements of S′ can be used; the elements of S are then called paravectors.
The following theorem summarises the results of Randriamihamison:

Theorem 1. Suppose S, V and ◦ form a Hurwitz pair. Then
(i) for each ~x in S′, the adjoint of ~x◦ viewed as an operator on V is −~x◦.
(ii) The algebra of linear operators generated by the action of elements of S on V is

isomorphic to Rsr.

P r o o f. Take ~x in S′. Applying the definition of a Hurwitz pair to the paravector
e+ ~x gives

((e+ ~x) ◦ v, (e+ ~x) ◦ w)K = (e+ ~x, e+ ~x)S(v, w)K = (1 + (~x, ~x)S)(v, w)K

where the fact that ~x is orthogonal to e is used. On the other hand, by linearity

((e+ ~x) ◦ v, (e+ ~x) ◦ w)K = (e ◦ v, e ◦ w)K + (~x ◦ v, e ◦ w)K+

(e ◦ v, ~x ◦ w)K + (~x ◦ v, ~x ◦ w)K
= (v, w)K + (~x ◦ v, w)K+

(v, ~x ◦ w)K + (~x, ~x)S(v, w)K .

Comparison of the two expressions gives (~x ◦ v, w)K + (v, ~x ◦ w)K = 0, which proves (i).
It then follows that (~x ◦ ~x ◦ v, w)K = −B(~x, ~x)(v, w) for any w and so that ~x ◦ ~x ◦ v = v

since the inner product is not degenerate. Taking an orthonormal basis e1, . . . , es+r of
S′ one then sees that

ei ◦ ej ◦+ej ◦ ei◦ = −2B(ei, ej)

taking first ~x = ei and then ~x = ei + ej . This proves the isomorphism.

Hence we can consider V to be a module over this Clifford algebra, where the action
of an element a of Rsr on an element v is denoted as av in such a way that ~xv = ~x ◦ v.

A Hurwitz pair can thus be redefined as follows:

Definition. (Rsr, V,m, κ) is called a Hurwitz pair if and only if m is an irreducible
representation of Rsr on V and κ defines an inner product on V such that

H.1’(m(a)v, w)κ = (v,m(ā)w)κ.

Corollary 2. All Hurwitz pairs are given by the following table:
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r\s 0 1 2 3 4 5 6 7

0 S - A A AS - AS S

1 AS A A A AS AS AS AS

2 AS A A - S S AS -
3 AS AS AS S S S AS AS

4 AS - AS S S - A A

5 AS AS AS AS AS A A A

6 S S AS - AS A A -
7 S S AS AS AS AS AS S

P r o o f. The table gives all possibilities for sesquilinear forms on irreducible represen-
tations as given in [8].

The table has to be read as follows:
First of all s and r are given modulo 8. An S in the appropriate box means there is

a symmetric inner product, an A that there is an antisymmetric one. The cases where
there are two inequivalent representations are underlined. As an example take Minkowski
space with signature (−+ ++). Then S′ has signature (−+ +), and so s = 1 and r = 2.
There exists a Hurwitz pair, and it has an antisymmetric inner product.

It should be noticed that in the cases where no Hurwitz pair exists it is still possible
to find a V which is the direct sum of two spinor spaces such that H.1–H.2 hold, but
irreducibility is of course lost.

If V is given coordinates, then of course m can be thought of as a matrix represen-
tation, while κ can be thought of as a matrix defining the inner product in the classical
way.

2. Construction of Hurwitz pairs

Matrix representations. In order to construct the Hurwitz pairs matrix representations
will be needed. In the sequel we assume that V is a irreducible module over Rsr. If we
introduce coordinates on V we have the matrix representation m associating with a ∈ Rsr
the matrix m(a). It should be emphasised that we always regard V as a vector space over
R and so the matrices considered will be real matrices. The metric K can be represented
by a matrix κ, with κt = σκ where σ = ±1, and the notation (·, ·)κ will be used for the
inner product. Since we shall often be needing either different representations of Rsr on
V or different inner products the notation (Rsr, V,m, κ) wil be used.

Definition. Let (Rsr, V,m, κ) and (Rsr,W, u, κ′) be two Hurwitz pairs over the same
Clifford algebra. Then they are called equivalent if and only if there exists an invertible
linear mapping c with matrix representation C such that

1. m(a) = C−1u(a)C for all a ∈ Rsr.
2. (u, v)κ = ±(c(u), c(v))κ′ for all u and v in V .

Of course one can always identify V with W in a canonical way since both have
coordinates.
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A new matrix representation t over V can be found putting

t(a) = mt(a)

where mt(a) is the transpose of m(a). As t is the composition of two antiautomorphisms
and one morphism, it is itself indeed a morphism. Clearly for the inner product defined
by κ the adjoint for a matrix M is given by κ−1M tκ, and so criterion H.1’ (which states
that ā is the adjoint of a as an operator on V ) can be translated into m(ā) = κ−1mt(a)κ.
It is necessary and sufficient that this be true for all vectors ~x since both m(a) → m(ā)
and m(a)→ κ−1mt(a)κ are antiautomorphisms of the algebra m(Rsr), and this algebra
is generated by the m(~x). The criterion then becomes

(1) −m(~x) = κ−1mt(~x)κ.

Before we continue with matrix representations we prove that it doesn’t matter which
equivalent representation we take to obtain our results. Moreover it is useful to write
down the transition formulae for the matrices involved.

Lemma 3. Let (Rsr, V,m, κ) be a Hurwitz pair , and let (Rsr, V, u) be an equivalent
irreducible representation. Then there exists a matrix κ′ such that (Rsr, V, u, κ′) is an
equivalent Hurwitz pair.

P r o o f. Since the representations are equivalent there exists a matrix C such that
m(a) = C−1u(a)C for all a in the Clifford algebra.

For the vectors ~x ∈ Rsr we have that

m(~x) = −κ−1m(~x)tκ.

If we define
κ′ = C−tκC−1

then obviously

u(~x) = Cm(~x)C−1 = −Cκ−1m(~x)tκC−1

= −(Cκ−1Ct)(C−tm(~x)tCt)(C−tκC−1) = −κ′−1u(~x)tκ′.

At this point it is convenient to introduce an orthonormal basis for the vector space
S′, e1, . . . , ep such that (ei, ei)S = −1 for i ≤ s, (ei, ei)S = 1 for s < i ≤ s+ r = p. This
basis coincides with the basis for the Clifford algebra Rsr, but notice that e2i = −(ei, ei)S .
We have proved (corollary 1.3.1) that there exists an irreducible matrix representation
m of the Clifford algebra such that

(2) mt(ei) = e2im(ei).

Moreover, for any irreducible representation of a Clifford algebra, one can always find
coordinates on V such that this condition is satisfied. We shall call a matrix representa-
tion with this property a standard representation. It is easy to formulate an equivalent
definition for a Hurwitz pair, now in terms of matrices:

Theorem 4. Let Rn be endowed with an inner product given by a matrix κ, where
κt = ±κ, and let m : Rsr → Rn×n be a standard matrix representation of Rsr. Then
(Rsr,Rn,m, κ) is a Hurwitz pair if and only if
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M.1 −e2iκ−1m(ei)κ = m(ei).
M.3 m is irreducible.

P r o o f. that M.3 is equivalent to H.3’ is obvious, and M.1 follows directly from H.1’.
We prove that H.1’ follows from M.1.

M.1 can be rewritten as −κ−1mt(ei)κ = m(ei), because we have a standard represen-
tation, and then as κ−1mt(ei)κ = m(ei), since ei = −ei, which shows that criterion (1)
holds.

Theorem 5. Let (Rsr, V,m) be an arbitrary irreducible representation of Rsr, with
associated matrix representations m and t as defined before. Then there exists a Hurwitz
pair (Rsr, V,m, κ) if and only if m and t are equivalent.

To prove this we need a lemma.

Lemma 6. Let κ be a matrix such that κt = σκ with σ = ±1 and κm(~x) = −m(~x)tκ
for all ~x ∈ S′. Then κ is either zero or invertible.

P r o o f. The basic idea is to prove that the kernel of κ is invariant under m, which is
a variant of Schur’s lemma. Notice that Schur’s lemma itself cannot be generalised, since
inner products of hyperbolic type exist, and for that case κ has two different eigenvalues.
Since m is irreducible then either kerκ = {0}, and κ is invertible, or kerκ = V , and κ = 0.

Multiplying the equation κm(~x) = −mt(~x)κ with K† gives

K†κm(~x) = −K†mt(~x)κ = −K†mt(~x)κK†κ.

Taking the transpose gives

mt(~x)κK† = −κK†κm(~x)K†.

Replacing mt(~x)κK† in the first equation by this gives K†κm(~x) = K†κm(~x)K†κ. Ap-
plying the right hand side to a vector v in ker κ gives zero, so m(~x)v ∈ ker κ for all ~x.
This means that ker κ is invariant under m.

We can now prove the theorem.

P r o o f. We know that the representations are equivalent if and only if there exists
invertible C with m(~x) = −C−1mt(~x)C. If a Hurwitz pair exists, then C = κ satisfies
this condition (this is simply eq. (1)). If on the other hand such C exists, it follows that
Cm(~x) = −mt(~x)C for any ~x, and transposing this, Ctm(~x) = −mt(~x)Ct. We split C
into its symmetric and its antisymmetric part, and prove that at least one of them gives
a suitable metric. Putting C± = C ± Ct, adding or subtracting the two equations gives
C±m(~x) = −mt(~x)C±. According to the lemma both C± are either invertible or zero,
and their sum, C, is not zero, so at least one of them is invertible. That one satisfies all
conditions for a κ matrix.

The following lemma will be important, not only in the construction of different
Hurwitz pairs for a given Clifford algebra, but also in the proof of the equivalence of
Hurwitz pairs.

Lemma 7. Let (Rsr, V,m, κ1) and (Rsr, V,m, κ2) be two Hurwitz pairs. Then κ−1
j κi

commutes with the representation m(Rsr), where i, j ∈ {1, 2}.



CLIFFORD VALUED INNER PRODUCTS 201

P r o o f. taking equation (1) for κi gives m(~x) = −κ−1
i mt(~x)κi and the transpose of

(1) for κj gives mt(~x) = −κtjm(~x)κ−tj . Inserting the last expression for mt(~x) into the first
equation gives m(~x) = κ−1

i κtjm(~x)κ−tj κi. Hence κ−tj κi commutes with all the m(~x),and
so it commutes with the complete m(Rsr). But κ−tj is (possibly up to sign) κ−1

j .

R e m a r k. An alternative proof can be based on a standard representation m: for
such representation κj commutes (anticommutes) with m(ek) whenever κi does, and so
does κ−1

j . Hence κ−1
j κi commutes with all m(ek), and so with m(Rsr).

It is of course quite well possible that the two matrices κi, even if they are different,
define equivalent Hurwitz pairs. As a matter of fact it will be proved later that this is
the case whenever κ1 and κ2 are of the same type, i.e. if both are symmetric, or both
antisymmetric.

It is now already possible to construct Hurwitz pairs in certain specific cases for
which we return to condition M.1. Put in other words it says that κ anticommutes with
all m(ei) such that e2i = 1 and commutes with all m(ei) such that e2i = −1. Hence
κm(~x) = m(T~x)κ for all ~x, where T is an orthogonal transformation on Rsr, and it is
logical to look for κ of the form m(a), where a is a product of basic vectors ei. Indeed,
for a product ei1 . . . eit , it is easily checked that

- it commutes with ei, i ∈ {i1, . . . , it} if and only if q is odd, and anticommutes
otherwise,

- it commutes with ei, i 6∈ {i1, . . . , it} if and only if q is even, and anticommutes
otherwise.

Good candidates are of course the elements defined by

p± =
∏

e2
i
=±1

ei,

p± =
∏
ei with

∏
extended over all e2i = ±1. Both of them satisfy p2 ∈ R and pp ∈ R,

and so mt(p) = ±m(p) = ±m(p). Hence following cases are easily solved:
- If s is even, put κ = m(p+).
- If r is odd, put κ = m(p−).
It is also possible to determine wether the inner products defined are symmetric or

antisymmetric. Indeed we have that

mt(p+) = mt(e1 . . . es) = mt((−1)s(s−1)/2es . . . e1)

= (−1)s(s−1)/2mt(e1) . . .mt(es) = (−1)s(s−1)/2m(e1) . . .m(es),

so the inner product will be symmetric for s = 0 mod 4, while it will be antisymmetric
for s = 2 mod 4, s being even. In a similar way

mt(p−) = mt(es+1 . . . en) = mt((−1)r(r−1)/2en . . . es+1)

= (−1)r(r−1)/2+rmt(es+1) . . .mt(en) = (−1)r(r+1)/2m(es+1) . . .m(en),

and the inner product defined is symmetric for r = 3 mod 4 and antisymmetric for r = 1
mod 4.
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It is possible that m(p+) = ±m(p−), so in the case s even and r odd we have not
necessarily found two different metrics. This can only happen if both matrices are sym-
metric, or both antisymmetric, and this is the case if and only if s+ r = 3 mod 4 (and of
course s even and r odd). Moreover m(p+) = ±m(p−) implies that m(p+p−) = ±I which
means that m(Rsr) is a non-universal Clifford algebra over Rsr. But this is only possible
if r − s = 3 mod 4 (s not necessarily even). So m(p+) = ±m(p−) implies s = 0 mod 4
and r = 3 mod 4.

Matrices of a form similar to m(p±) were used in [4] and [5] to study Hurwitz pairs. It
should be remarked however that the link between the inner product and the elements p±

only exists in the case of a standard representation, and condition (2) must be fulfilled.
This gives us one (or possibly two) Hurwitz pairs in the case s even or r odd. However

from the table we can see that also for s odd, r even and s − r = 3 mod 4 Hurwitz
pairs exist. Moreover we have not found all possibilities, and we know nothing yet about
equivalence of Hurwitz pairs.

The case s − r = 3 mod 4 is easily solved. Here Rsr is isomorphic to C(`) for some
`, either Rs+1,r or Rs,r+1 is isomorphic to R(2`). A metric derived from this extension
can be used. Thet is, we extend the Clifford algebra with an element en+1, where e2n+1 =
±1, depending on whether Rs+1,r or Rs,r+1 is isomorphic to R(2`) (and hence gives a
representation over the same space as Rsr. This bigger Clifford algebra has a Hurwitz
pair, and the same inner product gives a Hurwitz pair for Rsr.

R e m a r k. The fact that for certain spaces S no Hurwitz pairs exist is remarkable
in view of the fact that there always exist (possibly reducible) representations such that
inner product is kept. Indeed, if the the Clifford algebra Rsr over S′ does not allow a
Hurwitz pair, then Rs+1,r does allow a Hurwitz pair, and the restriction to Rsr of the
representation satisfies H.1 and H.2. However the representation is not irreducible: it falls
apart in two irreducible representations. Each of these must be isotropic spaces, since Rsr
does not allow a Hurwitz pair. If, instead of dropping the newly added vector ep+1, one
drops e, we obtain a pair where conditions H.1 and H.3 are met. If one then applies the
construction of section 1 to generate a new unit, one does not obtain a Hurwitz pair.
Since H.1 and H.2 are satisfied, this means that H.3 must be violated, that is V is split
into two irreducible modules.

We now deal with the question of the type of the inner products for the Hurwitz pairs
the existence of which was shown in the previous section. There are three possible types:

- the elliptic type, which is symmetric, σ = 1, and which is of definite sign, that is
(v, v)K ≥ 0 for all v ∈ V , or (v, v)K ≤ 0 for all v ∈ V ,

- the hyperbolic type, which is also symmetric, but not of definite sign, and
- the symplectic type, which is antisymmetric.
There is an easy criterion to see whether a symmetric inner product will be elliptic

or hyperbolic:

Theorem 8. A symmetric inner product for a Hurwitz pair is elliptic if and only if
s = 0.
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P r o o f. Let s 6= 0. Then take ~x with (~x, ~x)S < 0 and v with (v, v)K 6= 0. Then
(~xv, ~xv)K = (~x, ~x)S(v, v)K has the opposite sign of (v, v)K itself and K cannot be elliptic.
Conversely, let s = 0, take a standard representation m and the κ matrix for the inner
product K. According to equation (1), κ commutes with m, and so all eigenspaces of κ
are invariant under m. Since m is irreducible, V is an eigenspace of κ, and K is elliptic.

In the sequel the difference between elliptic and hyperbolic metrics can thus be
ignored, and the terms symmetric and antisymmetric will b used. Moreover we shall always
assume a standard representation m. A metric whose matrix coincides (up to a scalar
factor) with m(p+) or m(p−) will be called internal. The final theorem gives a complete
classification of the possible Hurwitz pairs in the cases where at least one exists.

Theorem 9 (Classification theorem). Let (Rsr, V,m) be an irreducible representation,
such that m and t are equivalent. then we have the following possibilities:

- m(Rsr) is a complete matrix algebra, R(`). Then the Hurwitz pair is up to equiva-
lence unique.

- m(Rsr) is isomorphic to C(`) for some `, and there exists an internal Hurwitz pair.
Then there are two Hurwitz pairs of different type.

- m(Rsr) is isomorphic to C(`) for some `, and there is no internal Hurwitz pair.
Then there is (up to equivalence) a unique Hurwitz pair.

- m(Rsr) is isomorphic to H(`) for some `. Then there are two Hurwitz pairs, and
they are of different type.

P r o o f. We have already proved that at least one Hurwitz pair exists. According to
to Lemma 7 we must find all matrices which commute with m(Rsr), and we must check
whether there are equivalent pairs for the different κ matrices we obtain.

- If m(Rsr) is isomorphic to R(`), then the only possibility for κ−1
j κi is, up to a

constant the identity. Hence the Hurwitz pair is unique.
- If m(Rsr) is isomorphic to C(`), the matrices in R(2`) commuting with m(Rsr) form

a two dimensional vector space. This can be made explicit as follows: take the morphism
C(`)→ R(2`) given by

C →
(
<C =C
−=C <C

)
,

then it easily seen that the space of matrices commuting with the image of C(`) is spanned
by the two matrices

I =
(
I` 0
0 I`

)
and J =

(
0 I`
−I` 0

)
(which are of course the algebra images of 1 and i). It has been proved in chapter I that
J = ±m(eN ), and so for a standard representation J t = −J . Thus, starting from a given
κ we obtain a two dimensional vector space of possible matrices M satisfying Mm(~x) =
−mt(~x)M . Assume now that κ1 is internal. It then follows that J commutes with κ1, and
we put κ2 = Jκ1. If κt1 = σ1κ1, one obtains that κt2 = κt1J

t = −σ1κ1J = −σ1κ2, since J
is antisymmetric and commutes with κ1. Thus κ1 and κ2 are of different type and cannot
lead to equivalent Hurwitz pairs.
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If on the other hand no internal Hurwitz pair exists, we still have obtained a κ1. This
anticommutes with J . Now all matrices C which commute with the representations of
the Clifford algebra are of the form C = λI + µJ for real λ and µ, and since J2 = −I
this gives a representation of C where complex conjugation coincides with taking the
transpose. It follows that C is invertible if and only if λ2 + µ2 6= 0 and that

C−tκ1C
−1

= (λ2 + µ2)−2(λI + µJ)κ1(λI − µJ)

= (λ2 + µ2)−2(λI + µJ)2κ1.

The set of κ matrices for which the Hurwitz pair is equivalent to the first one is hence
two dimensional, and all Hurwitz pairs are equivalent.

- If F = H a similar proof applies. The set of matrices commuting with the repre-
sentation is four dimensional, and gives a representation of H, where again conjugation
coincides with transposition. There is a basis of the form {I, J,K, JK}, with the obvious
link to the quaternions. Let κ1 stand for the internal Hurwitz pair. In a way similar to the
one for the complex case it is proved that any matrix (µJ + νK + ρJK)κ1 is of different
type than κ1 itself. We now prove that all such matrices lead to equivalent Hurwitz pairs.
We prove that all are equivalent to Jκ1. We obtain for C = λI + µJ + νK + ρJK

(λ2 + µ2 + ν2 + ρ2)2C−tJκ1C
−1

= (λI + µJ + νK + ρJK)Jκ1(λI − µJ − νK − ρJK)

= (λI + µJ + νK + ρJK)(λI − µJ + νK + ρJK)Jκ1

= [(λ2 + µ2 − ν2 − ρ2)−2J

= −(2λν − 2µρ)JK + (2λρ+ 2µν)K]κ1,

so the set of matrices equivalent to Jκ1 is three dimensional.

Corollary 10. Two Hurwitz pairs over the same representation of a Clifford algebra
which are of the same type are equivalent.

Summarising, the construction goes as follows. First the internal Hurwitz pairs are
considered:

- If s = 0 mod 4, there is a symmetric Hurwitz pair.
- If s = 2 mod 4, there is an antisymmetric Hurwitz pair.
- If r = 1 mod 4, there is an antisymmetric Hurwitz pair.
- If r = 3 mod 4, there is a symmetric Hurwitz pair.

This completes the internal Hurwitz pairs. The external ones are given by:

- If the representation is isomorphic to C(`) or H(`) and there is an internal Hurwitz
pair of one type, there is also a representation (which can be external or internal) of the
other type.

- If r − s = 1 mod 4, s is odd and r even, then one looks up in the Clifford table
whether Rs,r+1 or Rs+1,r is isomorphic to R(2`). The Hurwitz pair is inherited from this
algebra.
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3. Clifford valued inner products

Inner product modules. An inner product module H over Rpq is a (left) module over
Rpq with a real valued inner product (·, ·)R satisfying (for all x and y in H and λ in Rpq)

(x, λy)R = (λx, y)R.

This is the compatibility condition stating that the operation of taking the adjoint gives
the main antiautomorphism when restricted to the Clifford algebra. The product is called
non-degenerate if the inner product is non-degenerate. Inner products will be assumed to
be non-degenerate unless explicitly stated otherwise. The inner product can be symmetric
or antisymmetric, or none of the two.

A Clifford inner product module H over Rpq is a (left) module over Rpq with an Rpq
valued inner product (·, ·) satisfying (for all x, y and z in H and λ in Rpq)

(i) (x+ λy, z) = (x, z) + λ(y, z)
(ii) H with the real valued inner product (·, ·)R defined by (x, y)R = <(x, y) is an

inner product module.
The inner product is called symmetric if (x, y) = (y, x), antisymmetric if (x, y) =

−(y, x).

Theorem 11. Each inner product module over Rpq can be considered as a Clifford
inner product module. The Clifford inner product is symmetric (antisymmetric) if and
only if the real inner product is.

Before we prove this the following remark should be made: if T ∈ L(Rpq,R) then
there exists a unique element φ(T ) of the Clifford algebra such that

T (λ) = <(λφ(T ))

for all λ ∈ Rpq. The mapping φ is one-to-one.

P r o o f. We have to prove that the inner product (·, ·)R can be extended to a Clifford
valued inner product (·, ·). This can be done as follows: take x and y in H arbitrary. Then
the mapping T : Rpq → R defined by

Tx,y(λ) = (λx, y)

is a real linear map, i.e. Tx,y ∈ L(Rpq,R). We define (x, y) by

(x, y) = φ(Tx,y).

We get
(ia) (x, y) + (x, z) = (x, y + z) (trivial).
(ib) (λx, y) = λ(x, y). Indeed, from the definition we have that for µ arbitrary

(µλx, y)R = µφ(Tλx,y) = µλφ(Tx,y)

so φ(Tλx,y) = λφ(Tx,y), or (λx, y) = λ(x, y).
(ii) That (x, y)R = <(x, y) is obvious.
We now prove that if the real inner product is symmetric, so is the Clifford valued inner

product (the proof for the antisymmetric case is similar). Assume ( , )R is symmetric.
then we have for λ, x and y arbitrary that

(λx, y)R = <(λ(x, y))
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while on the other hand

(λx, y)R = (x, λy)R = (λy, x)R = <(λ(y, x)).

Since the equation <(λ(x, y)) = <(λ(y, x)) holds for any λ it follows that (y, x) = (xy).

It is possible to give an explicit formulation of the Clifford valued inner product in
terms of the real valued inner product as follows:

(x, y) =
∑
A

e−1
A (eAx, y)R.

Hurwitz pairs. Since a Hurwitz pair can be considered as an irreducible representation
of a Clifford algebra, hence as a minimal left ideal of the algebra, it is closely linked with
primitive idempotents, since each minimal ideal is generated by a primitive idempotent.

Let J be such a primitive idempotent of Rpq and IJ the minimal ideal

IJ = {aJ : a ∈ Rpq}.

If Rpq allows a Hurwitz pair then IJ can be given a non-degenerate inner product such
that the compatibility condition is satisfied, and so can be turned into a Clifford inner
product module. This inner product is completely defined by the value of (J, J), since
(aJ, bJ) = a(J, J)b for any a, b ∈ Rpq. On the other hand, if λ is an arbitrary element of
Rpq, then one can define an inner product on IJ putting (aJ, bJ)λ = aJλJb, which can
be degenerate, and even be zero.

Theorem 12. Following statements are equivalent :
- There exists a Hurwitz pair for Rpq
- given an arbitrary primitive idempotent J there exists a λ in Rpq such that JλJ is

different from zero.

P r o o f. If there is a Hurwitz pair, the existence of a λ satisfying the condition is
obvious.

Suppose now such λ exists. We have to prove that the inner product <(·, ·)λ is not
degenerate on IJ , in other words that for any a such that aJ 6= 0 there exists a b such
that <(bJ, aJ)λ 6= 0. We first prove that aJλJ 6= 0 for any a with aJ 6= 0. The set

Z = {a : aJλJ = 0}

is a left ideal of Rpq, which is proper, since evidently 1 6∈ Z. Moreover it contains the
ideal ZJ = {a : aJ = 0}. But the latter is a maximal ideal, so Z = ZJ and aJλJ = 0
implies aJ = 0. Take now arbitrary a such that aJ 6= 0. Then aJλJ 6= 0, and also
JλJa 6= 0. Since the mapping φ−1 : Rpq → L(Rpq,R) is one-to-one, φ−1(JλJa) is not the
zero functional, and so there exists b such that φ−1(JλJa)(b)= <(bJλJa) 6= 0, in other
words <(bJ, aJ)λ 6= 0. This proves that the inner product (·, ·)λ is non-degenerate, and
that a Hurwitz pair exists.

It is easy to see whether the inner product defined by λ is symmetric or antisymmetric
since

(aJ, bJ)λ = aJλJ b,

(bJ, aJ)λ = aJλJ b.
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So the inner product is symmetric or antisymmetric if and only if JλJ = ±JλJ . Of
course in these cases we can take λ such that λ = ±λ.

This construction gives an alternative way to classify Hurwitz pairs, and one in which
matrix representations are no longer needed. Indeed it is sufficient to take for a given
Clifford algebra an arbitrary primitive idempotent, and to see whether JRpqJ = {0}.

As an example we take the Clifford algebra Rn,n. A primitive idempotent here is given
by

J =
n∏
j=1

1
2

(1 + ejen+j).

If λ commutes with any factor (1 + ejen+j) then (1 + ejen+j)λ(1 − ejen+j) = 0, which
implies that JλJ = 0. So

JRpqJ =

J
 n∏
j=1

(ajej + bjen+j)

 J

 .

For λ =
∏n
j=1(ajej + bjen+j) we have that λ = λ if n mod 4 = 0 or 3, so we have

a symmetric inner product there, and λ = −λ if n mod 4 = 1 or 2, which gives an
antisymmetric inner product.

To provide the link between the λ defined inner product and the one determined by
κ it is useful to introduce a fairly uncommon expression for the second inner product.
Let x and y be coordinate column vectors associated with the representation m, and let
u be the coordinate vector of the primitive idempotent J . The inner product defined by
κ can be expressed as

(x, y)κ = xtκy =
∑
i,j

xiκijyj =
∑
i,j

(xiyj)κtji = tr((xyt)κt).

Moreover the inner product is completely determined from the expression (xyt)κt for
any fixed non zero x and y, since for any a and b in the Clifford algebra the equality
(m(a)x,m(b)y)κ = (m(b̄)m(a)x, y)κ = tr(m(b̄)m(a)(xyt)κt) holds. The most straightfor-
ward choice is x = y = u, leading to

(m(a)u,m(b)u)κ = tr(m(b̄)m(a)(uut)κt) = tr(m(b̄aJ)(uut)κt)

In order to find a λ such that <(aJ, bJ)λ = (m(a)u,m(b)u)κ the equation

tr(m(b̄aJ)(uut)κt) =
1
t
tr(m(b̄aJ)m(λ)

should hold where t=dimV . (Notice that the equality <a= 1
t tr(m(a)) of course does not

hold for all a of the Clifford algebra. As an example we have in the case p− q = 1 mod 4
the pseudo scalar, for which m(eN ) = ±I. It does hold however for a in the left ideal
RsrJ̄). Let now 〈A,B〉 = 1

t trAB
t be the inner product of the matrix algebra considered

(this is a real matrix algebra, so no conjugation is needed). If we can prove that mt(λ) is
of the form Am(J) for some matrix A, then we have that mt(λ) must be the orthogonal
projection of κ(uut) on the ideal m(RsrJ) of the matrix algebra. But mt(λ) = mt(Jλ) =
mt(λ)mt(J), so it is sufficient to prove that m(J) = mt(J). To do this we start from the
equality mt(ei) = e2im(ei). it follows that mt(ei)mt(ej) = e2i e

2
jm(ei)m(ej) and hence that
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mt(ej)mt(ei) = mt(eij) = (eij)2m(eij). By induction then mt(eA) = e2Am(eA). Since
J is composed of commuting factors the form 1

2 (1 + eA) where e2A = 1, the proposed
equality follows.
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[2] A. Hurwitz, Über die Komposition der quadratischen Formen von beliebig vielen Vari-

ablen, Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen
Math. phys. Kl. (1898), 308–316, reprinted in: A. Hurwitz, Mathematische Werke II ,
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