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Abstract. In the present paper, we deal with functions f(z) :=
∑∞
n=0 anz

n whose coeffi-
cients satisfy a special smoothness condition. Theorems concerning the asymptotic behaviour
as n → ∞, m - fixed, of the normalized in an appropriate way Padé approximants πn,m are
provided. As a consequence, results concerning the limiting distribution of the zeros are deduced.

Let

(1) f(z) :=
∞∑
j=0

ajz
j

be a function with aj 6= 0 for all nonnegative integers j (j ∈ N) large enough. We set

ηj := aj+1 · aj−1/a
2
j , j = j0, j1, . . . .

The basic assumption throughout the present work is that

(2) ηj → 1, as j →∞.

This kind of asymptotic behaviour of the Maclaurin coefficients has been introduced
and studied by D. Lubinsky in [4]. More precisely, he considers a large class of functions
for which the number 1 in (2) is replaced by a number η, η 6=∞. In [1] theorems resulting
from this smoothness condition with respect to Toeplitz determinants and the uniform
convergence of the row in the table of classical Padé approximants are proved. Therefore,
in what follows condition (2) will be called ”Lubinsky’s smoothness condition for η = 1”.

Further, we assume that the numbers ηj tend to 1 in a prescribed ”smooth way”,
namely there exist complex numbers {ci}∞i=1 with c1 6= 0 such that for each positive
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integer N,N > 1, the representation

(3) ηn = 1 + c1/n+
N∑
i=2

ci/n
i + o(n−N ).

holds. Important functions which satisfy Lubinsky’s smoothness condition for η = 1 and
to which the presented considerations in this paper may be applied are the exponential
function (see [6])

f(z) = exp z =
∞∑
j=0

zj/j!

and the Mittag-Leffler function of order λ, λ > 0, (see [4])

f(z) =
∞∑
j=0

zj/Γ(1 + j/λ), λ > 0.

Let now m be a fixed positive integer. In our further considerations, we shall assume
that f is holomorphic at the zero (in a neighbourhood) and is not a rational function
having less or equal than m finite poles (multiplicities included) in C (we write f 6∈ Rm).

For each n, n ∈ N, let πn,m(= πn,m(f)) be the Padé approximant to the function f of
order (n,m). Recall that πn,m = p/q,deg p ≤ n, deg q ≤ m, q 6≡ 0, where the polynomials
p and q are determined by the condition (f · q−p)(z) = O(zn+m+1). For each pair (n,m)
the function πn,m always exists and is uniquely determined (see, for example, [5]). We
set

πn,m = Pn,m/Qn,m,

where Qn,m(0) = 1 and both polynomials Pn,m and Qn,m do not have a common divisor.
Let D(n,m) = det{an−j+k}mj,k=1 be the Toeplitz determinant formed from the Mac-

laurin coefficients of the function f . From the nonrationality of f , it follows that the
sequence Λ of those positive integers n for which D(n,m) · D(n,m + 1) 6= 0, is infinite
(see, [5], [1]) and the equality πn,m ≡ πk(n),m, where k(n) := max{k, k ≤ n, k ∈ Λ} is
valid. Without losing the generality we shall assume that Λ ≡ N. In this case there holds
(see [1])

Qn,m(z) = 1 + . . .+ zm · (−1)mD(n+ 1,m)/D(n,m)

and

Pn,m(z) = zm ·D(n,m+ 1)/D(n,m) + . . .+ dn,m.

Denote by Rn,m(u) the numerator of the rational Padé function associated with f and
normalized as follows:

Rn,m(u) :=
Qn,m(uan/an+1)

(uan/an+1)n ·D(n,m+ 1)/D(n,m)
.

In [3], theorems concerning the asymptotic behaviour as n → ∞ of the sequence
Rn,m(u) in the case when the numbers ηn satisfy Lubinsky’s smoothness condition for
an arbitrary number η, η 6=∞ are proved.
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In the present paper, we confine ourselves at the case when (3) holds. Of basic im-
portance for the forthcoming considerations is that (see [4])

Qn,m(uan/an+1)→ (1− u)m as n→∞

In [3], the following theorem is established:

Theorem 1. Let m ∈ N be fixed and f 6∈ Rm. Assume that aj 6= 0 for j large enough;
assume, further that ηn admits the expansion (3) with η = 1, c1 6= O and |ηn| ≤ 1 for all
n ∈ N sufficiently large.

Then
Rn,m(u)→ um

(u− 1)m+1
as n→∞

uniformly inside {u, |u| > 1}.

As usual, ”uniformly inside” means an uniform convergence on compact subsets in
the metric of Chebyshev.

From Theorem 1, we have

Corollary 1 (see [3]). With the assumptions of Theorem 1, for each fixed m ∈ N
and any positive ε, the Padé approximant πn,m(z) has no zeros in |z| > |an/an+1| · (1+ε)
for n sufficiently large.

The next result provides more precise information concerning the behaviour of the
zeros of the sequence of the normalized Padé approximant Rn,m(u) as n → ∞ for the
special case when the first coefficient c1 in (3) is a real negative number.

Theorem 2 (see [3]). If c1 < 0, then u = 1 is a limit point of zeros of {Rn,m(u)}∞n=1.

Set An(ε) := {z, (1− ε)|an/an+1| ≤ |z| ≤ (1 + ε)|an/an+1|}.
Combining Theorem 2 and Theorem 1, we come to

Corollary 2 (see [3]). In the conditions of Theorem 2, for each fixed m ∈ N,any
ε, 0 < ε < 1 and n large enough the Padé approximant πn,m(z) has at least one zero in
the annulus An(ε).

For n ∈ N, we denote by Pn the set of the zeros of Rn,m. Set Pn := {ξn,k}nk=1 with
the normalization |1− ξn,k| ≤ |1− ξn,k+1|, k = 1, . . . , n− 1. From Theorem 2, we have

dist(Pn, 1)→ 0, as n→∞.

For any positive ε, denote by ιn(ε) the number of the zeros of ξn,k which lie in the disk
of radius ε and centered at u = 1. In the present paper we prove

Theorem 3. In the conditions of Theorem 2, for any ε small enough, we have

(4) lim inf
n→∞

ιn(ε)
n

> 0.

From here, we have

Corollary 3. In the conditions of Theorem 2, for each fixed m ∈ N,any ε, 0 < ε < 1
and n large enough the Padé approximant πn,m has at least ιn zeros in the annulus An(ε),
where the numbers ιn fulfill , as n→∞, condition (4).
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The structure of the paper is as follows. First, for the sake of perfection, we state the
general idea of the proof of Theorem 2; then we provide the proof of Theorem 3.

The basis of all the forthcoming considerations is

Lemma 1 (see [2]). In the conditions of Theorem 2, for any n, it is valid :

(5) Rn,m(u) = 1 +
n∑
j=1

bn,jAn,m,ju
−j

with

(6) bn,j :=
j∏
l=1

ηln−j+l

The asymptotic behaviour of An,j,m is as follows: for j < n/3m

An,m,j =
m∏
l=1

(j + l)
m!

+Nm(j, n), as n→∞,

and
|n · Nm(j, n)| < C1(m) · jm+1 as n→∞;

for j ≥ n/3m
|An,m,j | ≤ c1(m)jm+1

with C1(m) a positive constant not depending on n.

In what follows, we shall denote by C(...) positive constants that do not depend on
n.

2. Proofs of the results

P r o o f o f T h e o r e m 2. Recall that m is fixed and n→∞.
Arguing in the same way as in [2], we shall establish that for every δ small enough

there exists a positive integer nδ such that for any n > nδ the inequality

(7) ReRn,m(e−2δ) ≥ C(0) · en·α(δ)

is valid, where
α(δ) := δ2/2d1

and C(0) is a positive constant.
For convenience, we shall use the notation c1 := −2d1. In the conditions of Theorem

2, d1 > 0. In [2], for each n large enough (n > n0) the inequalities

(8) |ηn| ≤ 1− d1/n,

and

(9). |ηn| ≤ |ηn+1|

were established. Both latter inequalities lead to

(10) |bn,j | ≤ (|ηn|)j(j+1)/2 ≤ (1− d1/n)j(j+1)/2
.

Let ε be a fixed positive number, ε < 1.
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In our further considerations, we assume that for n > n0 the following inequalities
are fulfilled:

(11) (n/d1) |log(1− d1/n)| ≥ 1− ε,

and

(12) | Im ηn| ≤ C (1) · Re ηn/n2

for a suitable positive constant C (1). Without loss of generality, we may assume that
C (1) > 1.

In accordance to the lemma, we may also write

(13) |N1,m(j, n)| ≤ C (1) · jm+1/n

for j < n/3m and

(14) |An,j,m| ≤ C (1) jm+1.

otherwise. Select a positive number δ0 such that

(15) 0 < 6C(1)m!δ0/d1(1− ε) < 1/3.

and set
d(ε) := d1(1− ε).

In what follows, we shall assume that each n > n0 satisfies the inequality

(16) Re ηn ≥ 1− (2d1 + δ0) /n > 0.

Let δ be a positive number such that δ < δ0. Set D(ε, δ) := 1− 6δ/d(ε). Obviously, there
is an integer nδ, nδ > n0, such that for any n ≥ nδ the inequalities

(17) Re ηn ≥ 1− (2d1 + δ) /n

and

(18) n · D(ε, δ)| log
(

1− d1

nD(ε, δ)

)
| ≤ 2

are fulfilled. Set j1(δ) := 6δ/d(ε). In accordance to (10) and (11) we may write for
j > j1(δ) · n that

|bn,j | ≤ e−3jδ,

which, in view of (14),(15) and of the choice of δ implies the inequality

(19) ‖
n∑

j=j1(δ)n

bn,jAn,j,mu
−j‖|u|=e2δ ≤ C (δ0) e−δj1(δ)n

Consider the product
∏j
l=1 (Re ηn−j+l)

l
. Applying (17), for j + 1 ≤ j1(δ) · n we obtain

(20)
j∏
l=1

(Re ηn−j+l)
l ≥

(
1− d1

nD(ε, δ)

)j(j+1)/2

For the same number j we get, by (8), (9), (12) and the choice of δ the inequalities

(21) | bn,j∏j
l=1 (Re ηn−j+l)

l
− 1| ≤ C (2) · δ2
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where C (2) ≤ 18C(1)
d(ε)2

. The choice of δ ensures that C(2) · δ2
0 < 1/2.

Further, from inequality (21) we obtain(
1− C(2)δ2

) j∏
l=1

(Re ηn−j+l)
l ≤ Re bn,j ≤

(
1 + C(2)δ2

) j∏
l=1

(Re ηn−j+l)
l

and

| Im bn,j | ≤ C(2)δ2

j∏
l=1

(Re ηn−j+l)
l

Using (13), (16), (17) and the last inequalities, we get

ReAn,j,m · Re bn,j − ImAn,j,m · Im bn,j ≥ Qδ0(j) ·
j∏
l=1

(Re ηn−j+l)
l
.

with

Qδ0(j) := (1− C(2)δ2
0) ·

(
m∏
l=1

(j + l)/m!− C(1)jm · nδ0
d(ε)

)
− C(2)δ2

0C(1)jm · 6δ0
d(ε)

As we see, Qδ0 is a polynomial of degree exactly m and all its coefficients are positive.
Further, in view of (18), (20) and of of δ0 we may write

(22) ReAn,j,m · Re bn,j − ImAn,j,m · Im bn,j > 0.

Recall that the last inequality is valid for n>nδ and for any j with j + 1 < j1(δ) · n. Set
now j2(δ) := δ · D(ε, δ) and consider Rn,m,δ

(
e2δ
)

:=
∑j2(δ)(n+1)−1
j=0 bn,jAn,j,m

(
e2δj

)
. In

view of (20), for j < j2(δ)(n+ 1)− 1 and for n large enough we may write
j∏
l=1

(Re ηn−j+l)
l
> e−δj .

Now, combining (19), (21), (22) and the last result, we obtain

ReRn,m
(
e−2δ

)
>

j2(δ)(n+1)−1∑
j=0

Qδ0(j)eδj − C(δ0)e−6(δ)2n/d(ε,δ)

Inequality (7) results from here.
Now, it easily follows that the point u = 1 attracts, as n→∞, at least one zero of the

sequence Rn,m. Before presenting the proof,we set w = 1
u and Rn,m(1/w) := Rn,m(w).

In accordance to (4), it is valid that

(5′) Rn,m(w) = 1 +
n∑
j=1

bn,jAn,m,jw
j

Also, in view to (7), we have

(7′) ReRn,m(w)w=(e2δ) ≥ C(0) · en·α(δ)

We introduce the notation Ua(r); that is a disk of radius r, centered at the point a;
further, we set Γa(r) := ∂Ua(r).

We prove Theorem 2 on arguing the contrary. Suppose that w = 1 is not a limit
point of zeros of the sequence {Rn,m(w)}, as n → ∞; then there is a disk U1(e−ρ) such



ZEROS OF PADÉ APPROXIMANTS 249

that Rn,m(w) 6= 0 for some subsequence M ⊂ N there. Set τ := log(1 + e−ρ) and
V := U0(1)

⋃
U1(e−ρ) Let Xn(w), n ∈M be the regular branch of (Rn,m)1/n determined

by the condition Xn(0) = 1. Select now a positive number r with r < 1− e−ρ. Obviously,
the sequence {Xn(w)} is uniformly bounded on U0(r), and hence, by the well known
result of Bernstein-Walsh, inside V , as well. On the other hand, Theorem 1 ensures that
Xn(w) → 1, as n ∈ M uniformly inside U0(1). Thus, by the Theorem of uniqueness for
holomorphic functions, Xn(w) → 1 uniformly inside V. Combining this result and (7’)
we come to a contradiction.

This contradiction proves Theorem 2.

P r o o f o f T h e o r e m 3. Preserving the notations of Theorem 2, denote now by
ξn,k, k = 1, . . . , ιn the zeros of Rn,m(w) in U1(e−ρ). By Theorem 2, ιn ≥ 1. We shall show
that

(4′) lim inf
n→∞

ιn/n > 0.

Select a positive number θ such that r < 1 − e−ρ · eθ. Set τ(θ) := log(1 + e−ρ+θ).
Without loss of generality we may assume that the number τ(θ)/2 satiesfies inequality
(15).

Suppose to the contrary that there is an infinite sequence Λ ⊂ N such that

(23) lim
n→∞,n∈Λ

ιn/n = 0.

Set

qn(w) :=
ιn∏
k=1

(
1− w

ξn,k

)
and

χn(w) :=
{
Rn,m
qn(w)

}1/n

with χn(0) = 1.
Consider the sequence {χn}n∈Λ.

For qn(w) we have

min
w∈Γ0(eτ(θ))

|qn(w)| ≥
{
e−ρ(eθ − 1)
(1 + e−ρ)

}ιn
On the other hand, applying the well known Bernstein-Walsh lemma to Rn,m(w), we get

‖Rn,m(w)‖Γ0(τ(θ) ≤ ‖Rn,m(w)‖U0(r) ·
(1 + e−ρ+θ)n

rn

Combining both last inequalities and (23), and applying Theorem 1, we easily get that the
sequence {χn}n∈Λ is uniformly bounded inside V (recall that accordingly to the geometric
construction and to the choice of θ, we have V ⊂ U0(τ(θ)). Further, for w ∈ U0(r), there
holds {

(1 + e−ρ + r)
(1− eρ)

}ιn
≥ |qn(w)| ≥

{
(1− e−ρ − r)

(1 + eρ)

}ιn
Therefore, in view to Theorem 1 and to (23), we may write

χn → 1 as n→∞, n ∈ Λ



250 R. KOVACHEVA

on the disk U0(r). Then

(24) χn → 1, as n→∞, n ∈ Λ

uniformly inside the domain V .
Select a positive number ε0 such that

ε0 <
e−ρ

4

Set Ω(ε0) :=
⋃
n∈Λ

⋃ιn
k=1

{
w, |w − ξn,k| < ε0

ιn·n2

}
. Obviously,

(25) mes1(Ω(ε0)) < ε0 <
e−ρ

4
.

Further, for w ∈ U1(e−ρ)− Ω(ε0) we have

(26)
{

2e−ρ

(1− e−ρ)

}ιn
≥ |qn(w)|.

The choice of ε0 and (25) imply the existence of a positive number δ, δ < τ such that
eδ ∈ U1(e−ρ)−Ω(ε0). Applying (7) to those numbers δ, using (26) and (23), we conclude
that χ(eδ) > eδ

2/8d1 . This inequality contradicts (24).
Consequently, (4’) holds and Theorem 3 is valid.
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