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Abstract. The systems of differential equations whose solutions exactly coincide with Bethe
ansatz solutions for generalized Gaudin models are constructed. These equations are called the
generalized spectral (1) Riccati equations, because the simplest equation of this class has a stan-
dard Riccatian form. The general form of these equations is Rni [z1(λ), . . . , zr(λ)] = cni(λ), i =
1, . . . , r, where Rni denote some homogeneous polynomials of degrees ni constructed from func-
tional variables zi(λ) and their derivatives. It is assumed that deg ∂kzi(λ) = k+1. The problem
is to find all functions zi(λ) and cni(λ) satisfying the above equations under 2r additional con-
straints P zi(λ) = Fi(λ) and (1 − P ) cni(λ) = 0, where P is a projector from the space of all
rational functions onto the space of rational functions having their singularities at a priori given
points. It turns out that this problem has solutions only for very special polynomials Rni . Sim-
plest polynomials of such sort are called Riccatians. One of most important results of the paper
is the observation that there exist one-to-one correspondence between the systems of Riccatians
and simple Lie algebras. In particular, the degrees of Riccatians associated with a given simple
Lie algebra Lr of rank r coincide with the orders of corresponding Casimir invariants. In the pa-
per we present an explicit form of Riccatians associated with algebras A1, A2, B2, G2, A3, B3, C3.
Another important result is that functions cni(λ) satisfying the system of generalized Riccati
equations constructed from Riccatians of the type Lr exactly coincide with eigenvalues of the
Gaudin spectral problem associated with algebra Lr. This result suggests that the generalized
Gaudin models admit a total separation of variables.

1. Introduction. The differential equations with large internal symmetries always
have a great theoretical significance and, as a rule, admit many interesting mathematical
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and physical applications.
One of such equations is the ordinary spectral Riccati equation which is very well

known to theoretical physicists interested in properties of completely integrable quantum
systems and their solutions. The main feature of this equation is that its solutions exactly
coincide with Bethe ansatz solutions of completely integrable quantum Gaudin models
associated with algebra sl(2).

The aim of the present paper is to demonstrate that the ordinary spectral Riccati
equation admits a very natural generalization to a multi-component case when instead of
a single first-order nonlinear differential equation one considers the systems of nonlinear
equations of higher orders. It turns out that solutions of these systems exactly coin-
cide with Bethe ansatz solutions of generalized Gaudin problems associated with various
simple Lie algebras.

The paper is organized as follows. Here, in introducion, we consider the simplest Ric-
cati spectral problem (subsection 1.1) and simplest Gaudin spectral problem associated
with algebra sl(2) (subsection 1.2). In subsection 1.3 we demonstrate the coincidence of
solutions of these problems and present a standard explanation of this fact.

The main body of the paper is devoted to construction of generalized Riccati spectral
equations and their solutions. In section 2 we introduce all necessary notions and notations
and formulate some general theorems. In particular, we introduce a new very important
notion of Riccatians which play the role of elementary building blocks by constructing
generalized Riccati equations. In section 3 we discuss the methods for calculating simplest
Riccatians. The results of these calculations are collected in next section 4. In section
5 we demonstrate remarkable parallels between systems of Riccatians and systems of
independent Casimir invariants for simple Lie algebras. In the same section we give the
final form of solution of the generalized Riccati spectral problem. In section 6 we consider
the generalized Gaudin models associated with arbitrary simple Lie algebras and present
their Bethe ansatz solutions. In last section 7 we demonstrate the coincidence of solutions
of Riccati and Gaudin spectral problems and discuss possible ways of its explanation.

1.1 Simplest Riccati spectral problem. Consider the followig formal relation

(1.1) z′(λ) + z2(λ) = c(λ),

in which z(λ) and c(λ) are assumed to be some analytic functions of a complex variable
λ.

First of all note that the relation (1.1) (if one considers it as an equation) admits at
least two interpretations:

1. Function z(λ) is given, and function c(λ) is being sought. This problem is trivial
and has a unique solution.

2. Function c(λ) is given, and function z(λ) is being sought. This problem is nothing
else than the ordinary Riccati equation. It has a one-parameter set of solutions. Except
some very special cases this problem cannot be solved in quadratures [Korn and Korn
1971].

It turns out however that along with these two polar interpretations, there exists an
interesting intermediate one which leads to a very rich set of solutions and has a great
theoretical importance. Roughly speaking, the idea of this interpretation is to fix appro-
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priately some parts of both functions z(λ) and c(λ) and state the problem of finding the
remaining parts of these functions. Before giving a rigorous formulation of this problem,
let us introduce some necessary notions and notations.

Let R be the class of all rational functions r(λ) of a single complex variable λ. This
class can obviously be viewed as an infinite-dimensional linear vector space with a basis
consisting of the so-called elementary rational functions. We denote these functions by
rna (λ) and define them as (λ− a)−n, for a 6=∞, and as λn−1 for a =∞. In both cases n
is a natural number.

We call a rational function singular (regular) at the point λ = a if its expansion in
elementary rational functions contains (does not contain) a term proportional to rna (λ)
with some n. For example, according to our definition, function r(λ) = λ−1 is singular
at the point λ = 0 and regular at all other points including infinity. As to the function
r(λ) = 1, it is singular at infinity but regular at all finite points.

Let A be the a finite set of nonequal fixed complex numbers (one of which may be
the infinity), and B be the set of all the remaining numbers. Denote by RA and RB the
classes of those rational functions from R whose singularities belong only to the sets A
and B, respectively. Considering the classes RA and RB as linear vector spaces we can
write RA ⊕ RB = R. Denote also by PA and PB the projectors from R onto RA and
RB for which we obviously have PA + PB = 1.

Now we are ready to give a strict formulation of the problem of our interest.

P r o b l e m 1.1. Find all functions z(λ), c(λ) ∈ R satisfying the relation (1.1) under
two additional constraints:

(1.2) PA z(λ) = F (λ), PB c(λ) = 0,

in which F (λ) ∈ RA is a given function.

The first constraint means that all the functions z(λ) should have the same fixed
projection F (λ) onto the space RA and, in principle, may have arbitrary singularities
outside the set A. The second constraint means however that not any singularities of
functions z(λ) lying outside the set A are admissible, but only those, at which the second
function c(λ) is regular.

Definition 1.1. The expression P [z(λ)] ≡ z′(λ) + z2(λ) standing in the left hand
side of formula (1.1) we shall call the Riccati polynomial of a functional variable z(λ).
Functions z(λ) and c(λ) satisfying the conditions of the problem 1.1 we shall call the
eigenfunctions and eigenvalues of the Riccati polynomial R[z(λ)]. The set {z(λ), c(λ)} of
all such eigenfunctions and eigenvalues we shall call the spectrum of the Riccati polyno-
mial, and the problem 1.1 itself — the Riccati spectral problem.

In order to find the general solution of this problem, it is reasonable to consider first the
following auxiliary subproblem. Assume that the rational function z(λ) has an isolated
singularity at the point ξ 6∈ A and try to find conditions under which the polynomial
R[z(λ)] is regular at the point λ = ξ.
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First of all note that the only possible singularity of the function z(λ) at the point
λ = ξ may be simple pole because, as it can be easily verified, the higher poles cannot be
cancelled in the expression for R[z(λ)] at all. This allows one to represent function z(λ)
in the form

(1.3) z(λ) = y(λ) +
v

λ− ξ
,

where v is some complex number and y(λ) is a function regular at λ = ξ. Substituting
(1.3) into Riccati polynomial R[z(λ)] we obtain

(1.4) R

[
y(λ) +

v

λ− ξ

]
=
R0[v, y(ξ)]
(λ− ξ)2

+
R1[v, y(ξ)]
λ− ξ

+ regular terms.

The coefficients R0[v, y(ξ)] = v2 − v and R1[v, y(ξ)] = 2vy(ξ) we call the residues of
the polynomial R[z(λ)]. Now note that there exists a special value of v, namely v = 1,
for which both the residues become proportional to the function y(ξ): R0[1, y(ξ)] = 0
and R0[1, y(ξ)] = 2y(ξ). This means that for v = 1 the condition of regularity of the
polynomial R[z(λ)] at the point λ = ξ can be written as

(1.5) y(ξ) = 0.

Formula (1.5) enables one to present the general solution of the problem 1.1. Indeed,
from the condition of the absence of higher order poles in z(λ) it follows that the most
general form of this function is

(1.6) z(λ) = F (λ) +
M∑
i=1

vi
λ− ξi

,

where M is an arbitrarily fixed non-negative integer and ξi are some unknown parameters.
Rewritting (1.6) in one of the following M forms

(1.7) z(λ) = yi(λ) +
vi

λ− ξi
, i = 1, . . . ,M

and using (1.5) we can conclude that the conditions of regularity of the function R[z(λ)]
at the points λ = ξi are

(1.8) yi(ξi) = 0, i = 1, . . . ,M,

provided that vi = 1, i = 1, . . . ,M . Using the explicit form of fuctions yi(λ),

(1.9) yi(λ) = F (λ) +
M∑

k=1,k 6=i

vk
λ− ξk

, i = 1, . . . ,M,

we can write down the final solution of the problem 1.1.

Theorem 1.1. The most general solution of the Problem 1.1 has the following form

z(λ) = F (λ) +
M∑
i=1

1
λ− ξi

,(1.10a)

c(λ) =

(
F (λ) +

M∑
i=1

1
λ− ξi

)′
+

(
F (λ) +

M∑
i=1

1
λ− ξi

)2

,(1.10b)
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where M is an arbitrary non-negative integer and the numbers ξi, i = 1, . . . ,M satisfy
the system of equations

(1.11)
M∑

k=1,k 6=i

1
ξi − ξk

+ F (ξi) = 0, i = 1, . . . ,M.

For any M = 0, 1, . . . the system (1.10 ) has a finite set of solutions. Therefore the spec-
trum of the Riccati polynomial (1.1 ) is infinite and discrete.

The most interesting feature of these solutions is that their exactly coincide with Bethe
ansatz solutions of the so-called sl(2) Gaudin spectral problem. But before demonstrating
this fact, it is reasonable to remind the reader what does the sl(2) Gaudin problem mean.

1.2. Simplest Gaudin spectral problem. The Gaudin spectral problems can be formu-
lated in terms of the so-called Gaudin algebras which are some special infinite-dimensional
extensions of simple Lie algebras. In this section we consider the simplest Gaudin algebra
G[sl(2)] associated with algebra sl(2). The discussion of the general case will be given in
section 6.

The three generators of the Gaudin algebra G[sl(2)], which we denote by S±(λ) and
S(λ), are parametrized by a complex parameter λ playing the role of an additional con-
tinuous index. The commutation relations for these generators have the form

(1.12) [S(λ), S±(µ)] = ±S
±(λ)− S±(µ)

µ− λ
, [S+(λ), S−(µ)] =

S(λ)− S(µ)
µ− λ

,

and can be viewed as generalizations of commutation relations for algebra sl(2) [Gaudin
1976, 1983].

The lowest weight representations of Gaudin algebra G[sl(2)] can be defined by the
formulas

(1.13) S−(λ)|0〉 = 0, S(λ)|0〉 = F (λ)|0〉.

As in the sl(2) case, |0〉 is the lowest weight vector, and F (λ) is the corresponding lowest
weight which, however, is here a function rather than a constant. The representation
space is given by the formula

(1.14) WF (λ) = linear span of vectors {S+(λ1) · · ·S+(λn)|0〉}, n = 0, 1, 2, . . . .

with arbitrary λ1, . . . , λn. Generally, this space is infinite-dimensional.
Consider the operator

(1.15) C(λ) = S2(λ) + S+(λ)S−(λ) + S−(λ)S+(λ),

which belongs to the universal enveloping algebra of algebra G[sl(2)] and has the form
similar to the form of the Casimir operator for algebra sl(2). For this reason we call (1.15)
the Casimir–Gaudin operator. It is not difficult to see, however, that this operator is not a
Casimir invariant for the algebra G[sl(2)] because it explicitly depends on the continuous
index λ which is not contracted. In fact, one can check that C(λ) does not commute with
the generators of Gaudin algebra. At the same time, it has another remarkable property
which is the commutativity of its “values” for different values of λ:

(1.16) [C(λ), C(µ)] = 0.
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This property suggests to interpret C(λ) as a generating function of commuting integrals
of motion (hamiltonians) for some quantum system. It can be shown that this system
is completely integrable in the sense that it admits enough number of independent (2)
commuting integrals of motion [Sklyanin 1991].

It turns out that this system is not only completely integrable, but also exactly solv-
able (3). Considering the representation space of Gaudin algebra G[sl(2)] as a space of
states, we can formulate the following analog of the Schrödinger problem.

P r o b l e m 1.2. Find all solutions of the spectral equation

(1.17) C(λ)φ = c(λ)φ, φ ∈WF (λ),

provided that the lowest weight F (λ) is given.

Definition 1.2. The equation (1.17) is called the sl(2) Gaudin spectral equation and
the models described by “hamiltonians” C(λ) we refer to as sl(2) Gaudin models.

Theorem 1.2. An explicit solution of the Problem 1.2 does exist and has an elegant
and purely algebraic form:

φ = S+(ξ1) · . . . · S+(ξM )|0〉,(1.18a)

c(λ) =

(
F (λ) +

M∑
i=1

1
λ− ξi

)′
+

(
F (λ) +

M∑
i=1

1
λ− ξi

)2

.(1.18b)

Here M is an arbitrary non-negative integer and the numbers ξ1, . . . , ξM satisfy the system
of equations

(1.19)
M∑

k=1,k 6=i

1
ξi − ξk

+ F (ξi) = 0, i = 1, . . . ,M.

For any rational function F (λ) and for any finite M the set of equation (1.19) is finite.
This means that the whole spectrum of the sl(2) Gaudin model is infinite and discrete.

The substitution (1.18a) solving the problem is called the Bethe ansatz, and the
equations (1.19) are known under generic name of Bethe ansatz equations. The action
of the operator C(λ) on the trial Bethe vector (1.18a) leads to two groups of terms, one
of which are proportional to (1.18a) and other are not. The latter are often called the
unvanted terms, and the equations (1.19) are exactly the conditions for their cancellation.
The complete proof of theorem 1.2 can be found in [Gaudin 1983].

1.3. On equivalence of Riccati and Gaudin problems in the simplest case. Comparing
formulas (1.10b) and (1.11) with (1.18b) and (1.19), the reader can easily make sure that
solutions of Riccati and Gaudin spectral problems exactly coincide! This suggest that
there should be some deep relationship between these problems. Actually, it turns out that

(2) The independence of quantum integrals of motion is understood here as functional inde-
pendence of their classical analogs obtained after dequantization.

(3) The notions of complete integrability and exact solvability in quantum mechanics do not
necessarily coincide [Doebner and Ushveridze 1994].
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the coincidence of solutions of problems 1.1 and 1.2 is not accidental and the reason for it is
the separability of variables in the Gaudin spectral equation [Sklyanin 1987]. Moreover,
there exists a procedure (which is known in the literature as the inverse procedure of
separation of variables which enables one to derive the Gaudin spectral problem from
the Riccati one [Ushveridze 1989, 1994]. The main idea of this derivation is based on
the fact that the Riccati equation is linearizable by the substitution z(λ) = ψ′(λ)/ψ(λ)
after which it takes the form of the so-called linear multi-parameter spectral equations, i.e.
linear spectral equations containing many spectral parameters. The number of spectral
parameters is finite if F (λ) is a rational function. Moreover, these parameters enter into
equation linearly. It is known that any linear multi-parameter spectral equation with
linear dependence on spectral parameters can be interpreted as an equation appearing
after separation of variables in some multi-dimensional completely integrable quantum
system. The explicit construction of this system shows that it is nothing else than the
sl(2) Gaudin model.

We do not intend to discuss in this paper the details of this derivation because it can
be found in references [Ushveridze 1989, 1994]. We aimed only to stress the fact that
equation (1.1) contains in a hidden form the complete information of the sl(2) Gaudin
model and its solutions.

In next sections of this paper we construct the generalizations of equation (1.1) which
will contain all information of general Gaudin models (associated with arbitrary simple
Lie algebras) and their solutions.

2. Generalized Riccati spectral problem

2.1. Preliminaries. In this section we shall consider various differential operators
acting on functions of a complex variable λ. The simplest operator of such sort is the
ordinary first-order differential operator ∂ ≡ ∂/∂λ. We shall consider it as a graded
object, having, by definition, the unit degree of homogeneity,

(2.1) deg ∂ = 1.

The functions on which the differential operators will act, will be vector-valued complex
analytic functions z(λ) = {z1(λ), . . . , zr(λ)}. These functions also will be considered as
graded objects, having, by definition, a vector grading n = {n1, . . . , nr}. We express this
fact by writing deg z1(λ) = n1, . . . ,deg zr(λ) = nr, or, in vector notations,

(2.2) deg z(λ) ≡ n.

Below we shall always assume that the components of vector n are natural numbers
ordered as n1 ≤ . . . ≤ nr. We can also establish some order relations between different
vectors by writing n1≤n2 if each component of n1 is equal or less than the corresponding
component of n2. In this sense, there exist a minamal vector consisting of unit components
only. We denote it by u={1, . . . , 1}. This vector will not be used only as a grading vector
but also as a tool for simplification of various notations. So, for example, the sum of all
components of vector n we shall often write in compact form as u·n.

Let Φ(n) denote a space of graded vector-valued complex analytic functions z(λ)
satisfying the condition (2.2). Taking into account formula (2.1), we can formulate several
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obvious statements:

1. Let z(λ) ∈ Φ(n). Then ∂z(λ) ∈ Φ(n + u).
2. Let z1(λ), z2(λ) ∈ Φ(n) and c1, c2 ∈ C. Then c1z1(λ) + c2z2(λ) ∈ Φ(n).
3. Let z1(λ) ∈ Φ(n1) and z2(λ) ∈ Φ(n2). Then z1(λ)⊗ z2(λ) ∈ Φ(n1 ⊗ n2).
4. Let z1(λ) ∈ Φ(n1) and z2(λ) ∈ Φ(n2). Then z1(λ)⊕ z2(λ) ∈ Φ(n1 ⊕ n2).
5. Let z(λ) ∈ Φ(n), where n = n1 ⊕ n2). Then z(λ) = z1(λ) ⊕ z2(λ), where z1(λ)∈

Φ(n1) and z2(λ) ∈ Φ(n2).

Using these simple rules and starting with the elements z1(λ) of the space Φ(n1), we
can construct the elements z2(λ) of another space Φ(n2). In this case the components of
vectors z2(λ) will have the form of polynomials in components of vectors z1(λ) and their
finite derivatives.

Definition 2.1. The non-linear differential operators P constructed according the
rules 1–5 and realizing the mapping Φ(n1)→ Φ(n2) with dim n1 = dim n2 = r, we shall
call the r-operators of the type |n2〉〈n1|.

Let P1 and P2 be two r-operators of the types |n1〉〈m1| and |n2〉〈m2|, respectively.
We call P1 compatible with P2 if n1 = m2. In this case, it is possible to construct a
composite r-operator P2 ◦ P1 of the type |n2〉〈m1|.

Let us now introduce an important notion of r-determinants. Consider a transfor-
mation of elements z1(λ) ∈ Φ(n1) into elements z2(λ) ∈ Φ(n2) realized by a certain
r-operator P :

(2.3) z2(λ) = P [z1(λ)].

Let ẑ1(λ) = {∂kz1(λ)}∞k=1 and ẑ2(λ) = {∂kz2(λ)}∞k=1 denote some infinite-dimensional
vector functions of λ. Acting on both hand sides of (2.3) by the operators ∂k with k =
0, 1, 2, . . . ,∞, one can construct a new infinite-dimensional and non-differential operator
P̂ realizing the transformation of vectors ẑ1(λ) into vectors ẑ2(λ):

(2.4) ẑ2(λ) = P̂ [ẑ1(λ)].

Definition 2.2. The Jacobian of the transformation (2.4) will be called the r-
determinant of the r-operator P and denoted by r-det P .

Lemma 2.1. The r-determinants have all properties of ordinary determinants. In par-
ticular ,

(2.5) r − det(P2 ◦ P1) = (r − detP2) · (r − detP1),

for any r-operators P1 and P2.

Definition 2.3. We call a r-operator P degenerate if r − detP = 0, and non-
degenerate if r − detP 6= 0.

Lemma 2.2. Let P be a r-operator of the type |n〉〈m|. If P is non-degenerate, then
n ≥m.

Definition 2.4. The non-degenerate r-operators of the type |n〉〈n| we shall call
pseudo-diagonal r-operators.
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2.2. Riccati operators and polynomials. Riccati operators are important particular
cases of general r-operators. Below we give their definition and discuss some important
properties.

Definition 2.5. The non-degenerate r-operator of the type |n〉〈u| we shall call the
Riccati operator of dimension r = dim u and age |n〉. Let R1 and R2 be two Riccati
operators of ages |n1〉 and |n2〉. We call the operator R1 older (not younger) than R2 or
youger (not older) than R2 if n1 > n2 (n1 ≥ n2) or n1 < n2 (n1 ≤ n2), respectively.

Any Riccati operator R0 of age |n0〉 is compatible with any r-operator P of age
|n〉〈n0|. If P is non-degenerate, then the composite operator R = P ◦R is again a Riccati
operator of age |m〉. According to lemma 2.2, the operator R is always not younger than
R0. Note also that pseudo-diagonal transformations conserve the age of Riccati operators.
The Riccati operators connected by some pseudo-diagonal transformation we shall call
age-equivalent.

Definition 2.6. Let R be a Riccati operator of dimension r and age |n〉 acting in
the space Φ(u). If z(λ) ∈ Φ(u), then R[z(λ)] ∈ Φ(n) is a r-component vector function.
Its components, which are the homogeneous polynomials in components of function z(λ)
and their finite derivatives, we shall denote by Rni [z(λ)], i = 1, . . . , r and call the Riccati
polynomials of degrees ni, i = 1, . . . , r.

As an example, below we present the most general form of Riccati polynomials of
degrees n = 0, 1, 2, 3 and 4.

R0[z(λ)] = A0,(2.6a)

R1[z(λ)] = A1 · z(λ),(2.6b)

R2[z(λ)] = A2 · ∂z(λ) +B2 · z(λ)⊗ z(λ),(2.6c)

R3[z(λ)] = A3 · ∂2z(λ) +B3 · ∂z(λ)⊗ z(λ) + C3 · z(λ)⊗ z(λ)⊗ z(λ),(2.6d)

R4[z(λ)] = A4 · ∂3z(λ) +B4 · ∂2z(λ)⊗ z(λ)(2.6e)

+C4 · ∂z(λ)⊗ ∂z(λ) +D4 · ∂z(λ)⊗ z(λ)⊗ z(λ)

+E4 · z(λ)⊗ z(λ)⊗ z(λ)⊗ z(λ).

Here “⊗” means the ordinary tensor product and “·” denotes contraction of tensors of
equal rank. An, Bn, Cn, Dn and En are constant tensors of rank n.

2.3. Riccati spectral problem. Now we can start the discussion of spectral properties of
Riccati operators. Let z(λ) ∈ Φ(u) and c(λ) ∈ Φ(n) be two analytic functions satisfying
the following relation:

(2.7) R[z(λ)] = c(λ),

where R is a certain Riccati operator of age |n〉. This relation can be interpreted as a
generalization of the relation (1.1).

As in the case of (1.1) the relation (2.3) (if one considers it as an equation) admits
two standard interpretations:

1. Functions z(λ) are given, and functions c(λ) are being sought. This problem is
trivial and has a unique solution.
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2. Functions c(λ) are given, and functions z(λ) are being sought. This problem can
be considered as a generalization of the ordinary Riccati equation. It has a u·(n − u)-
parameter set of solutions. Generally, this problem cannot be solved in quadratures.

In this section we discuss the third (intermediate) case which is realized when some
parts of both sets of functions z(λ) and c(λ) are simultaneously given and the remaining
parts of these functions are being sought. It is reasonable to change a little bit the meaning
of notations introduced in section 1. Hereafter we denote byR the class of all r-component
vector-valued rational functions of a single complex variable λ. We denote also by RA
and RB the classes of those rational functions from R whose singularities belong only to
the sets A and B defined in section 1. As before, PA and PB will be the projectors from
R onto RA and RB . Then the problem of our interest can be formulated as follows.

P r o b l e m 2.1. Find all functions z(λ), c(λ) ∈ R satisfying the relation (2.3) under
two additional constraints:

(2.8) PA z(λ) = F(λ), PB c(λ) = 0,

in which F(λ) ∈ RA is a given vector function.

Definition 2.7. Functions z(λ) and c(λ) satisfying the conditions of the problem
we shall call the eigenfunctions and eigenvalues of the Riccati operator R. The set
{z(λ), c(λ)} of all such eigenfunctions and eigenvalues we shall call the spectrum of the
Riccati operator R, and the problem 2.1 itself we call the (generalized) Riccati spectral
problem.

Below we will have many opportunities to demonstrate that not for any Riccati op-
erator the solvability of the problem 2.1 can be guaranteed.

Definition 2.8. We call a Riccati operator admissible if its spectrum is non-empty.

The following problem immediately arises:

P r o b l e m 2.2. Find all admissible Riccati operators.

2.4. Residues and regularizators. In order to solve the problem 2.2 in full generality, it
is reasonable to choose the same strategy as in section 1 and consider first the following
auxiliary subproblem.

Assume that the rational function z(λ) has an isolated singularity at the point ξ 6∈ A
and try to find conditions under which the function c(λ) = R[z(λ)] is regular at the point
λ = ξ.

It is easy to check that the only possible singularity of the function z(λ) at the point
λ = ξ may be a simple pole because the higher poles cannot be cancelled in the expression
for c(λ) at all. This allows one to represent function z(λ) in the form

(2.9) z(λ) = y(λ) +
v

λ− ξ
,

where v is some complex vector and y(λ) is a vector-valued function regular at λ = ξ.
Acting on (2.9) by a certain Riccati operator R, we obtain a vector-valued function whose
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components can be represented in the form:

(2.10) Rni

[
y(λ) +

v
λ− ξ

]
=
ni−1∑
k=0

Rik[v,y(ξ)]
(λ− ξ)ni−k

+ regular terms, i = 1, . . . , r.

Here Rik[v,y(ξ)] are some vector functions of v and ∂ly(ξ), l ≥ 0. It is not difficult to
show that these functions are some Riccati polynomials of degrees k = 0, 1, . . . , ni − 1.
Indeed, for the equality deg ∂lz(λ) = l + 1 to be compatible with (2.9) it is necessary to
take deg y(λ) = u and deg (λ − ξ) = −1, provided that deg v = 0. The fact that both
hand sides of (2.10) should have the same degrees ni implies that

(2.11) deg Rik[v,y(ξ)] = k.

Definition 2.9. The polynomials Rik[v,y(ξ)] of degrees k = 0, . . . , ni1 playing the
role of the coefficients for the singular terms in the expansion (2.6), we shall call the
residues of the the Riccati operator R.

From formula (2.10) it follows that the condition of regularity of function c(λ)] at the
point λ = ξ is the condition of a simultaneous vanishing of all the residues of R:

(2.12) Rik[v,y(ξ)] = 0, k = 0, 1, . . . , ni − 1, i = 1, . . . , r.

The total number of these conditions, equal to the number of all residues, is obviously
u·n, while the number of unknowns in (2.8), consisting of the components of vector v
and parameter ξ, is dim u + 1. In all the cases when i · n > dim u + 1 the system (2.12)
is over-determined and thus has no solutions at all.

Assume, however, that there exist some special values of v for which all u·n residues
of R become proportional to a single Riccati polynomial of degree l:

(2.13) Rik[v,y(ξ)] = Ql[y(ξ)]R′i,k−l[v,y(ξ)], k = 0, 1, . . . , ni − 1, i = 1, . . . , r.

In this case the system of conditions (2.12) can be reduced to a single equation

(2.14) Ql[y(ξ)] = 0

for a single unknown ξ. Obviously, in general case such systems are solvable.

Definition 2.10. The vector v for which the residues Rik[v,y(ξ)] of a Riccati op-
erator R become divisible (without remainder) by a certain Riccati polynomial Ql[y(ξ)]
of degree l, we call the l-regularizing vector, and the polynomial Ql[y(ξ)] itself we call
the l-regularizing polynomial. The set of pairs {v, Ql[y(ξ)]} consisting of all l-regularizing
vectors and corresponding l-regularizing polynomials, we call the l-regularizator of the
Riccati operator R and denote it by reg R. The Riccati operators with non-empty l-
regularizators we call l-regularizable.

Conjecture 2.1. For any Riccati operator of dimension r, the l-regularizator consists
of exactly r elements.

At the present time we have no satisfactory proof of this conjecture, however, the
experience accumulated by studying various concrete Riccati operators indicates that it
should be true. At least it is true for all Riccati operators which we intend to discuss in
the present paper.
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2.5. General theorem. Now we are ready to formulate the following theorem.

Theorem 2.1. Let R be a given Riccati operator of dimension r with a non-empty
reqularizator {va, Qal [y(ξ)]}, a = 1, . . . , r. Then solution of the corresponding Riccati
spectral problem 2.1 has the following form:

z(λ) = F(λ) +
∑
a

Ma∑
i=1

va

λ− ξai
,(2.15a)

c(λ) = R

[
F(λ) +

∑
a

Ma∑
i=1

va

λ− ξai

]
,(2.15b)

where Ma, a = 1, . . . , r are arbitrary non-negative integers, and the parameters ξai , i =
1, . . . ,Ma, a = 1, . . . , r satisfy the system of equations

(2.16) Qal

F(ξai ) +
∑
b

Mb∑
k=1

vb

ξai − ξbk

 = 0, i = 1, . . . ,Ma, a = 1, . . . , r.

For any set of non-negative integers Ma, a = 1, . . . , r the equations (2.16 ) have a non-
empty (finite) set of solutions, and thus, the Riccati operator under consideration is
admissible and has an infinite and discrete spectrum.

P r o o f. The proof of this theorem is essentially the same as the proof of the Theorem
1.1 of Section 1. Indeed, using the same reasonongs as in Section 1, we can conclude that
the most general form of function z(λ) satisfying the constraints (2.8) is (2.15a), where
Ma are some arbitrarily fixed non-negative integers, va are arbitrary vectors and ξai are
some complex parameters. Rewritting (2.17) in one of the following M1 + . . .+Mr forms

(2.17) z(λ) = yai (λ) +
vai

λ− ξai
, i = 1, . . . ,Ma, a = 1, . . . , r,

and using (2.14), we can conclude that the conditions of regularity of the function c(λ)]
at the points λ = ξai are

(2.18) Qal [yai (ξai )] = 0, i = 1, . . . ,Ma, a = 1, . . . , r,

provided that va are regularizing vectors. Using the explicit form of functions yai (λ),

(2.19) yai (λ) = F(λ) +
∑
b

Mb∑
k=1

vb

λ− ξbk
, i = 1, . . . ,Ma, a = 1, . . . , r,

we can write down the final solution (2.15), (2.16) of the Problem 2.1. This completes
the proof of the theorem.

This theorem enables one to reduce the problem 2.2 of finding all admissible Riccati
operators to a more simple and concrete one:

P r o b l e m 2.3. Find all l-regularizable Riccati operators and construct their l-
regularizators.

Before trying to solve this problem it is useful to introduce a very important notion
of Riccatians. This will be done in next subsection.
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2.6. Riccatians. We start with two simple lemmas which enable one to estimate the
measure of ambigouity in fixing Riccati operators by their l-regularizators.

Lemma 2.1. Let R0 be some l-regularizable Riccati operator of age |n0〉, compatible
with a certain r-polynomial P of type |n〉〈n0|. Then the composite Riccati operator R =
P ◦R0 of age |n〉 is also l-regularizable and reg R = reg R0.

P r o o f. Let v and Ql[y(λ)] be some l-regularizing vector and corresponding l-regular-
izing polynomial. Using formulas of the previous section, we can write

(2.20) R0[z(λ)] = R0

[
y(λ) +

v
λ− ξ

]
= Ql[y(ξ)] · s(λ) + r(λ),

where s(λ) and r(λ) denote some functions of λ, which, respectively, are singular and
regular at the point λ = ξ. Taking the derivative of the both hand sides of formula (2.20),
we obtain

(2.21) ∂R0[z(λ)] = ∂R0

[
y(λ) +

v
λ− ξ

]
= Ql[y(ξ)] · ∂s(λ) + ∂r(λ).

We see that the singular part of this expansion is also proportional to Ql[y(ξ)].
Let now R0

1 and R0
2 be two Riccati operators for which v and Ql[y(ξ)] are known to

be l-regularizing vector and l-regularizing polynomial. Then we can write

R0
1[z(λ)] = R0

1

[
y(λ) +

v
λ− ξ

]
= Ql[y(ξ)] · s1(λ) + r1(λ),(2.22a)

R0
2[z(λ)] = R0

2

[
y(λ) +

v
λ− ξ

]
= Ql[y(ξ)] · s2(λ) + r2(λ),(2.22b)

and, consequently,

R0
1[z(λ)]⊗R0

2[z(λ)] = R0
1

[
(λ) +

v
λ− ξ

]
⊗R0

2

[
(λ) +

v
λ− ξ

]
=(2.23)

Q2
l [y(ξ)] · s1(λ)⊗ s2(λ) +Ql[y(ξ)] · (s1(λ)⊗ r2(λ) + r1(λ)⊗ s2(λ)) + r1(λ)⊗ r2(λ).

We see that the singular part of this expression is, as before, proportional to Ql[y(ξ)].
Because the construction of the Riccati operator R implies the use of only two above
operations of differentiation and multiplication, we can conclude that the singular part of
the final expression for R[z(λ)] will again be proportional to Ql[y(λ)]. This means that
the system of composite Riccati polynomials should have at least the same l-regularizator
as the initial system. According to conjecture 2.1, these l-regularizators should coincide.

Lemma 3.1 demonstrates that l-regularizator does not fix a Riccati operator uniquely.
There is always possible to start with a given Riccati operator and construct another
Riccati operator with the same l-regularizator but having a greater age.

Definition 2.11. The Riccati operators, having the minimal age among all other
Riccati operators with the same l-regularizator, we shall call minimal Riccati operators.

It is not difficult to see that minimal Riccati operators also cannot be uniquely deter-
mined by their l-regularizators, because of the existence of age conserving pseudo-diagonal
transformations.
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Lemma 2.2. Let R1 and R2 be two l-regularizable Riccati operators. Let a new Riccati
operator R be defined by the formula

(2.24) R[z(λ)] = R[z1(λ)]⊕R2[z2(λ)]

in which z(λ) = z1(λ) ⊕ z2(λ). Then R is l-regularizable and we have reg {R[z(λ)]} ≈
reg {R1[z1(λ)]} ∪ reg {R2[z2(λ)]}.

P r o o f. Let v1 and v2 be l-regularizing vectors and Q1
l [y

1(λ)] and Q2
l [y

2(λ)] be the
corresponding l-regularizing polynomials for Riccati operators R1 and R2. Then we can
write

R1[z(λ)] = R1

[
y1(λ) +

v1

λ− ξ

]
= Q1

l [y
1(ξ)] · s1(λ) + r1(λ),(2.25a)

R2[z(λ)] = R2

[
y2(λ) +

v2

λ− ξ

]
= Q2

l [y
2(ξ)] · s2(λ) + r2(λ).(2.25b)

From these formulas it immediately follows that the Riccati operator R has two l-
regularizing vectors v1 ⊕ 0 and 0⊕ v2 and two corresponding l-regularizing polynomials
Q1
l [y(ξ)] = Q1

l [y
1(ξ)⊕ 0] and Q2

l [y(ξ)] = Q2
l [0⊕ y2(ξ)]. This completes the proof.

Definition 2.12. If a l-regularizable Riccati operator R can be constructed from
two or more l-regularizable Riccati operators by formula (2.24), we call this operator
reducible. Otherwise, we call it irreducible.

Now we are ready to introduce a very important notion of Riccatians.

Definition 2.13. The minimal and irreducible l-regularizable Riccati operator we
shall call l-simple. The particular Riccati polynomials associated with l-simple Riccati
operators we call Riccatians of genus l or, simply, Riccatians.

Now we see that in order to solve Problem 2.2 it is sufficient to solve the follewin
auxiliaty problem:

P r o b l e m 2.4. Find all systems of Riccatians.

In next section we start discussion of this problem restricting ourselves by looking
only for Riccatians of genus 1.

3. Construction of Riccatians. This section is devoted to explicit construction of
some simplest systems of Riccatians. We start with most general expressions of Riccati
operators of a priori given age and, using general prescriptions given in previous section,
try to find those forms of these operators for which they become simple. Here we analyze
from this point of view three general Riccati operators of ages |2〉, |2, 2〉 and |2, 3〉.

3.1. Riccati operators of age |2〉. The set of Riccati operators of age |2〉 is defined by
the formula

(3.1) R2[z(λ)] = A2∂z(λ) +B2z
2(λ).

in which A2 and B2 are arbitrary numerical parameters. In order to find for which values
of these parameters the polynomial R2[z(λ)] becomes Riccatian, we should analyse its
residues and construct corresponding regularizator.
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From general formulas of previous section it follows that the operator (3.1) has two
residues

R2,0[y(ξ)] = −A2v +B2v
2,(3.2a)

R2,1[y(ξ)] = 2B2vy(ξ),(3.2b)

and conditions for these residues to have a common divisor of first degree

(3.3) Q[y(ξ)] = Q · y(ξ)

are

−A2v +B2v
2 = 0,(3.4a)

B2v = e2Q.(3.4b)

Here e2 is some arbitrary constant. We see that for any choice of coefficients A2 and B2,
there exists such value of e2 for which system (3.4) has a single non-zero solution for v. So
that all operators (3.4) are regularizable. Because operators (3.1) are also irreducible and
non-minimizible, we can assert that they are simple and polynomials (3.1) are Riccatians
for any non-zero values of A2 and B2.

In order to find the canonical form of these Riccatians, we should take

(3.5) v = 1.

Substituting (3.5) into (3.4), we find that A2 = B2. Without loss of generality we can also
take A2 = B2 = 1 which corresponds to a special choice of normalization. This results in
the following final expressions:

(3.7) R2[z(λ)] = ∂z(λ) + z2(λ),

for the Riccatian and

(3.8) v = 1, Q[y(ξ)] = y(ξ),

for its regularizator.

3.2. Riccati operators of age |2, 2〉. Let us now consider Riccati operators of age |2, 2〉
the most general form of which is given by formulas

R2[z(λ)] = Ai2∂zi(λ) +Bik2 zi(λ)zk(λ),(3.8a)

R̄2[z(λ)] = Āi2∂zi(λ) + B̄ik2 zi(λ)zk(λ),(3.8b)

in which Ai2, B
ik
2 and Āi2, B̄

ik
2 , are some arbitrary parameters. The indices i and k in (3.8)

take the values 1 and 2 and the summation over repeated indices is assumed.
As before, in order to find the values of parameters for which the polynomials (3.8a)

and (3.8b) become Riccatians, we should first look at the residues of these polynomials

R2,0[y(ξ)] = −Ai2vi +Bik2 vivk,(3.9a)

R2,1[y(ξ)] = 2Bik2 viyk(ξ),(3.9b)

and

(3.10a) R̄2,0[y(ξ)] = −Āi2vi + B̄ik2 vivk,

(3.10b) R̄2,1[y(ξ)] = 2B̄ik2 viyk(ξ).
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The conditions for all these residues to have a common divisor of degree one,

(3.11) Q[y(ξ)] = Qlyl(ξ),

are, respectively,

−Ai2vi +Bik2 vivk = 0,(3.12a)

Bli2 vi = e2Q
l(3.12b)

and

−Āi2vi + B̄ik2 vivk = 0,(3.13a)

B̄li2 vi = ē2Q
l,(3.13b)

where e2 and ē2 are some non-zero numbers.
Comparing formulas (3.12b) and (3.13b), we can write

(3.14)
1
e2
Bli2 vi =

1
ē2
B̄li2 vi

or, in matrix notations,

B2B̄
−1
2 v = ε2v,(3.15a)

B̄2B
−1
2 v = ε̄2v,(3.15b)

where ε = e2ē
−1
2 and ε̄ = ē2e

−1
2 . Relations (3.15) mean that vectors v are the eigenvectors

of the matrices B2B̄
−1
2 and B̄2B

−1
2 , while the numbers ε2 and ε̄2 are their eigenvalues.

Because B2B̄
−1
2 and B̄2B

−1
2 are 2 × 2 matrices, the equations (3.15) should have at

least two linearly independent solutions which we denote by vn = {vni }. The linear
independence of these vectors enables one to choose such a basis in two-dimensional
vector space, in which they become orthonormal repers

(3.16) vni = δni .

Denoting the corresponding eigenvalues by εn2 and ε̄n2 and substituting (3.16) into (3.15),
we obtain

Bln2 = εnB̄ln2 ,(3.17a)

B̄ln2 = ε̄nBln2 .(3.17b)

Let us now remember that both matrices Bln2 and B̄ln2 are symmetric. Permuting the
indices l and m in (3.17) and subtracting obtained relations from each other we obtain

(εn − εl)B̄ln2 = 0,(3.18a)

(ε̄n − ε̄l)Bln2 = 0.(3.18b)

These relations can be satisfied in two cases: 1) if ε1 = ε2 = ε (or ε̄1 = ε̄2 = ε) and Bln2
(or B̄ln2 ) is arbitrary, and 2) if ε1 6= ε2 (or ε̄1 6= ε̄2) and B12

2 = 0 (or B̄12
2 = 0).

Consider the first case. According to (3.17), the matrices Bln2 and B̄ln2 are proportional
to each other. Substitution of (3.16) into (3.12a) and (3.13a) demonstrates the propor-
tionality of vectors Al2 and Āl2. This means that the polynomials R2[z(λ)] and R̄2[z(λ)],
should also be proportional to each other, and thus, cannot be interpreted as Riccatians.

Let us now consider the second case. In this case the matrices Bln2 and B̄ln2 are
diagonal. Denoting their diagonal elements by Bl2 and B̄l2 and substituting (3.16) into
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(3.12a) and (3.13a), we find that Al2 = Bl2 and Āl2 = B̄l2. This gives

R2[z(λ)] = A1
2{∂z1(λ) + 2z2

1(λ)}+A2
2{∂z2(λ) + 2z2

2(λ)}(3.19a)

R̄2[z(λ)] = Ā1
2{∂z1(λ) + 2z2

1(λ)}+ Ā2
2{∂z2(λ) + 2z2

2(λ)}(3.19b)

We see that the Riccati operator defined by relations (3.19) is reducible, and therefore,
the polynomials R2[z(λ)] and R̄2[z(λ)] cannot be considered as Riccatians.

Summarizing, we can assert that there are no simple Riccati operators of age |2, 2〉.
3.3. Riccati operators of age |2, 3〉. Consider a general Riccati operator of age |2, 3〉

determined by formulas

R2[z(λ)] = Ai2∂zi(λ) +Bik2 zi(λ)zk(λ),(3.20a)

R3[z(λ)] = Ai3∂
2zi(λ) +Bi,k3 ∂zi(λ)zk(λ) + Cikl3 zi(λ)zk(λ)zl(λ),(3.20b)

and try to find conditions for its coefficients under which the polynomials R2[z(λ)] and
R3[z(λ)] become Riccatians. As before, the indices i, k and l in (3.20) take the values 1
and 2, and the summation over repeated indices is assumed.

The residues of polynomials (3.20a) and (3.20b) have the form

R2,0[y(ξ)] = −Ai2vi +Bik2 vivk,(3.21a)

R2,1[y(ξ)] = 2Bik2 viyk(ξ),(3.21b)

and

R3,0[y(ξ)] = 2Ai3vi −B
i,k
3 vivk + Cikl3 vivkvl,(3.22a)

R3,1[y(ξ)] = (−Bi,l3 vi + 3Cikl3 vivk)yl(ξ),(3.22b)

R3,2[y(ξ)] = (Bl,ivi −Bi,l3 vi + 3Cikl3 vivk)ẏl(ξ) + 3Cikl3 viyk(ξ)yl(ξ).(3.22c)

The conditions for all these residues to have a common divisor of first degree

(3.23) Q[y(ξ)] = Qlyl(ξ)

are

−Ai2vi +Bik2 vivk = 0,(3.24a)

Bli2 vi = e2Q
l,(3.24b)

for the first polynomial, and

2Ai3vi −B
i,k
3 vivk + Cikl3 vivkvl = 0,(3.25a)

Bi,l3 vi − 3Cikl3 vivk = e3Q
l,(3.25b)

(Bl,i3 −B
i,l
3 )vi + 3Cikl3 vivk = 0,(3.25c)

3Cikl3 vi = fk3Q
l + f l3Q

k,(3.25d)

for the second polynomial. Here e2 and e3 are some unknown numbers and f i3 is some
unknown vector. Below we shall assume that all these quantities differ from zero.

We start with the second system. Multiplying (3.25c) by vl we obtain the condition

(3.26) (Bl,i3 −B
i,l
3 )vivl + 3Cikl3 vivkvl = 0,

the comparizon of which with (3.25a) gives

(3.27) −Ai3vi +Bik3 vivk = 0.
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This equation is similar to equation (3.24a) from the first system. Comparing (3.25b)
with (3.25c) we get another equation

(3.28) Bl,i3 vi = e3Q
l

which is obviously similar to equation (3.24b). From (3.24b) and (3.28) it follows that

(3.29)
1
e2
Bli2 vi =

1
e3
Bl,i3 vi

or, equivalently, in the matrix form,

(3.30) B3B
−1
2 v = εv.

The last condition means that the vectors v are the eigenvectors of the matrix B3B
−1
2 ,

while the fractions ε = e3e
−1
2 are its eigenvalues.

The next step is to find the vectors f i3. Multiplying (3.25d) by vkvl and using (3.26)
we obtain

(3.31) (fk3 vk)(Qlvl) = 0

which gives

(3.32) (fk3 vk) = 0

provided that the second factor in (3.31) differs from zero. Now multiplying (3.25d) by
vk and using (3.32) we get the condition

(3.33) 3Cikl3 vivk = f l3(Qkvk),

which together with another condition

(3.24) Bi,k3 vivk = e3(Qkvk),

obtained by multiplying (3.28) by vk, enables one to determine f l3:

(3.35) f l3 = e3
3Cikl3 vivk

Bi,k3 vivk
.

After using (3.25) we get

(3.36) f l3 = e3
(Bl,i3 −B

i,l
3 )vi

Bi,k3 vivk
.

Substitution of (3.36) into (3.25d) gives

(3.37) 3Cikl3 vi = (e3Qk)
(Bl,i3 −B

i,l
3 )vi

Bi,j3 vivj
+ (e3Ql)

(Bk,i3 −B
i,k
3 )vi

Bi,j3 vivj
,

or, after taking into account (3.28),

(3.38) 3Cikl3 vi =
(Bi,k3 Bl,j3 +Bi,l3 B

k,j
3 − 2Bk,i3 Bl,j3 )vivj

Bi,j3 vivj
.

This formula will play the central role in our further considerations.
We know that B3 and B2 are 2 × 2 matrices, and therefore the spectral problem

(3.30) should have two linearly independent eigenvectors. Denote these eigenvectors by
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vn = {vni } and note that the basis in the space to which they belong, can always be
chosen in such a way as to guarantee their coincidence with orthonormal repers

(3.39) vni = δni .

Substituting (3.39) into (3.38) we then obtain

(3.40) 3Cnkl3 =
Bn,k3 Bl,n3 +Bn,l3 Bk,n3 − 2Bk,n3 Bl,n3

Bn,n3

.

Let εn denote the eigenvalues of the matrix B3B
−1
2 corresponding to the orthonormalized

eigenvectors vn. Then from (3.39) and (3.29) it follows that

(3.41) Bl,n3 = εnBln2 .

Substituting (3.41) into (3.40) and taking into account the fact that the matrix B2 is
symmetric, we obtain

(3.42) 3Cnkl3 = (εn + εl − 2εk)
Bkn2 Bkl2

Bkk2

.

Remember now that the tensor 3Cnkl3 is totally symmetric. At the same time, the ex-
pression in the right hand side of (3.42) is automatically symmetric only with respect to
indices n and l. In order to guarantee the total symmetry of this expression it is sufficient
to require its symmetry with respect to indices l and k. This gives the condition

(3.43) (εn + εl − 2εk)
Bkn2

Bkk2

Bkl2 = (εn + εk − 2εl)
Bln2
Bll2

Bkl2 .

Taking k = n in (3.43) we obtain

(3.44) (εl − εn)Bln
(

1 + 2
Bln2
Bll2

)
= 0.

Now note that the relation (3.44) can be realized in three cases: 1) if ε1 = ε2 and Bln2
is arbitrary, 2) if ε1 6= ε2 and Bln2 is diagonal, and 3) if ε1 6= ε2 and (1 + 2Bln2 /B

ll
2 ) = 0.

Repeating the reasonings of the previous subsection it is not difficult to show that the
first possibility leads to a system of dependent Riccati polynomials which cannot be
interpreted as Riccatians, and the second possibility leads to a reducible system of Riccati
polynomials which also cannot be interpreted as Riccatians.

Consider the third case. In this case we have

(3.45) Bln2 = −1
2
Bll2 .

Because of the symmetry of matrix B2 we also have

(3.46) Bln2 = −1
2
Bnn2 ,

which means that

(3.47) B11
2 = B22

2 = B, B12
2 = B21

2 = −B
2
.

Substituting (3.39) into (3.24a) we find

(3.48) A1
2 = B, A2

2 = B.
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In order to compute the matrix Bi,k3 by means of formula (3.41) we need the eigenvalues
e1 and e2. However, it is easily seen that there are no formulas imposing some constraints
on e1 and e2. This means that these eigenvalues can be considered as free parameters. For
the sake of further convenience, we introduce instead of e1 and e2 two other parameters,
C and D, by formulas

(3.49) e1 = 2
C +D

B
e2 = 2

C −D
B

.

Then, using (3.49), (3.41) and (3.47) we get

(3.50) B1,1
3 = 2C + 2D, B2,2

3 = 2C − 2D, B1,2
3 = −C +D, B2,1

3 = −C −D.

Formula (3.27) after applying to it (3.39) gives

(3.51) A1
3 = C +D, A2

3 = C −D.

Finally, using (3.42) we obtain:

C111
3 = 0, C222

3 = 0,(3.52)

C112
3 = C121

3 = C211
3 = 2D,

C221
3 = C212

3 = C122
3 = −2D.

Collecting the obtained expressions for the coefficients of Riccati polynomials and
writing down final and most general expressions for Riccatians (3.20a) and (3.20b), we
can see that the polynomial proportional to C is nothing else than the derivative of
R2[z(λ)]. Thus, without loss of generality, we can take C = 0. Choosing the remaining
normalization coefficients as B = 1 and D = 1, we obtain final expression for the system
of two Riccatians of orders 2 and 3.

R2[z(λ)] = ∂z1(λ) + ∂z2(λ) + z1(λ)z2(λ) + z2(λ)z2(λ)− z1(λ)z2(λ),(3.53a)

R3[z(λ)] = ∂2z1(λ)− ∂2z2(λ) + 2∂z1(λ)z1(λ)− 2∂z2(λ)z2(λ)(3.53b)

+∂z1(λ)z2(λ)− ∂z2(λ)z1(λ) + +2z1(λ)z2(λ)z2(λ)− 2z2(λ)z2(λ)z1(λ).

The regularizator of the system (3.53) consists of two elements

(3.54) v1 = (1, 0), Q1[z(λ)] = z1(λ)− 1
2
z2(λ),

v2 = (0, 1), Q2[z(λ)] = z2(λ)− 1
2
z1(λ).

These expressions immediately follow from formulas (3.24a) and (3.28) after taking into
account explicit expressions for matrices B2, B3 and numbers e2, e3.

4. Some other examples of Riccatians. The calculations given in previous section
can be repeated for other Riccati operators. Being essentially the same they, however, be-
come technically more and more complicated with increasing the age of Riccati operators.
For this reason we were forced to use the programs of analytic calculations like REDUCE
and MATHEMATICA. We have analysed all Riccati operators of ages |n1, . . . , nr〉 with
r ≤ 3 and nr ≤ 6. We present here the results of such calculations ommiting details of
their derivations. Below we give only the list of simple Riccati operators generating the
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systems of Riccatians. For the sake of completeness this list will also contain the cases
already discussed in previous section.

4.1. Riccati operator of age |2〉.
Riccatian:

(4.1) R2[z] = ∂z1 + z2
1 .

Regularizator:

(4.2) v1 = 1, Q1[y] = y.

4.2. Riccati operator of age |2, 3〉. Riccatians (4):

R2[z] = ∂z1 + ∂z2 + z2
1 − z1z2 + z2

2 ,(4.3a)

R3[z] = ∂2z1 + 2∂z1z1 − ∂z2z1 + z2
1z2 − z1z2

2 .(4.3b)

Regularizator:

v1 = (1, 0), Q1[y] = y1 −
1
2
y2,(4.4)

v2 = (0, 1), Q2[y] = y2 −
1
2
y1.

4.3. Riccati operator of age |2, 4〉.
Riccatians:

R2[z] = 2∂z1 + ∂z2 + 2z2
1 − 2z1z2 + z2

2 ,(4.5a)

R4[z] = ∂3z1 + 2∂2z1z1 − ∂2z2z1 + (∂z1)2 − ∂z1∂z2(4.5b)

−2∂z1z2
1 + 4∂z1z1z2 − ∂z1z2

2 + ∂z2z
2
1 − 2∂z2z1z2 − z4

1 + 2z3
1z2 − z2

1z
2
2 .

Regularizator:

v1 = (1, 0), Q1[y] = 2y1 − y2,(4.6)

v2 = (0, 1), Q2[y] = y2 − y1.

4.4. Riccati operator of age |2, 6〉.
Riccatians:

R2[z] = 3∂z1 + ∂z2 + 3z2
1 − 3z1z2 + z2

2 ,(4.7a)

R6[z] = 5∂5z1 + ∂5z2 + 10∂4z1z1 − 3∂4z1z2 − 5∂4z2z1 + 2∂4z2z2(4.7b)

+17∂3z1∂z1 − 19∂3z1∂z2 − 21∂3z2∂z1 + 7∂3z2∂z2

+10(∂2z1)2 − 30∂2z1∂
2z2 + 5(∂2z2)2 − 23∂3z1z

2
1

+27∂3z1z1z2 − 7∂3z1z
2
2 − ∂3z2z

2
1 − ∂3z2z1z2

−∂3z2z
2
2 − 126∂2z1∂z1z1 + 63∂2z1∂z1z2 + 42∂2z1∂z2z1

−21∂2z1∂z2z2 + 23∂2z2∂z1z1 − 12∂2z2∂z1z2 − ∂2z2∂z2z1

−6∂2z2∂z2z2 − 42(∂z1)3 + 46(∂z1)2∂z2 − 0∂z1(∂z2)2

−2(∂z2)3 − 46∂2z1z
3
1 + 57∂2z1z

2
1z2 − 21∂2z1z1z

2
2

+3∂2z1z
3
2 + 23∂2z2z

3
1 − 29∂2z2z

2
1z2 + 11∂2z2z1z

2
2

(4) Here the role of Riccatian R3 plays the combination R3 + ∂R2 of Riccatians (3.53).
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−2∂2z2z
3
2 − 114(∂z1)2z2

1 + 90(∂z1)2z1z2 − 17(∂z1)2z2
2

+122∂z1∂z2z2
1 − 98∂z1∂z2z1z2 + 22∂z1∂z2z2

2 − 28(∂z2)2z2
1

+22(∂z2)2z1z2 − 6(∂z2)2z2
2 + 12∂z1z4

1 − 48∂z1z3
1z2

+50∂z1z2
1z

2
2 − 18∂z1z1z3

2 + 2∂z1z4
2 − 2∂z2z4

1

+16∂z2z3
1z2 − 16∂z2z2

1z
2
2 + 4∂z2z1z3

2 + 4z6
1

−12z5
1z2 + 13z4

1z
2
2 − 6z3

1z
3
2 + z2

1z
4
2 .

Regularizator:

v1 = (1, 0), Q1[y] = 3y1 −
3
2
y2,(4.8)

v2 = (0, 1), Q2[y] = y2 −
3
2
y1.

4.5. Riccati operators of age |2, 3, 4〉.
Riccatians:

R2[z] = ∂z1 + ∂z2 + ∂z3 + z2
1 − z1z2 + z2

2 − z2z3 + z2
3 ,(4.9a)

R3[z] = 2∂2z1 + ∂2z2(4.9b)

+4∂z1z1 − ∂z1z2 − 2∂z2z1 + 2∂z2z2 − ∂z3z2 + z2
1z2 − z1z2

2 + z2
2z3 − z2z2

3 ,

R4[z] = ∂3z1 + 2∂2z1z1 − ∂2z2z1 + 2(∂z1)2 − ∂z1∂z2(4.9c)

−∂z1∂z3 + 2∂z1z1z2 − ∂z1z2
2 + ∂z1z2z3 − ∂z1z2

3

+∂z2z2
1 − 2∂z2z1z2 − ∂z3z2

1 + ∂z3z1z2 + z2
1z2z3

−z2
1z

2
3 − z1z2

2z3 + z1z2z
2
3 .

Regularizator:

v1 = (1, 0, 0), Q1[y] = y1 −
1
2
y2,(4.10)

v2 = (0, 1, 0), Q2[y] = y2 −
1
2
y1 −

1
2
y3,

v3 = (0, 0, 1), Q3[y] = y3 −
1
2
y2.

4.6. Riccati operator of age |2, 4, 6〉. First case.
Riccatians:

R2[z] = 2∂z1 + 2∂z2 + ∂z3 + 2z2
1 − 2z1z2 + 2z2

2 − 2z2z3 + z2
3 ,(4.11a)

R4[z] = 6∂3z1 + 3∂3z2 + ∂3z3 + 12∂2z1z1 − 3∂2z1z2(4.11b)

−6∂2z2z1 + 6∂2z2z2 − 2∂2z2z3 − 3∂2z3z2 + 2∂2z3z3

+11(∂z1)2 − 11∂z1∂z2 − 2∂z1∂z3 + 5(∂z2)2 − 5∂z2∂z3
+2(∂z3)2 − 2∂z1z2

1 + 8∂z1z1z2 − 5∂z1z2
2 + 4∂z1z2z3

−2∂z1z2
3 + ∂z2z

2
1 − 4∂z2z1z2 − 2∂z2z2

2 + 4∂z2z2z3
−∂z2z2

3 − 2∂z3z2
1 + 2∂z3z1z2 + ∂z3z

2
2 − 2∂z3z2z3

−z4
1 + 2z3

1z2 − 3z2
1z

2
2 + 4z2

1z2z3 − 2z2
1z

2
3 + 2z1z3

2

−4z1z2
2z3 + 2z1z2z2

3 − z4
2 + 2z3

2z3 − z2
2z

2
3 ,
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R6[z] = ∂5z1 + 2∂4z1z1 − ∂4z2z1 + 7∂3z1∂z1 − 2∂3z1∂z2(4.11c)

−∂3z1∂z3 − 3∂3z2∂z1 − ∂3z3∂z1 + 6(∂2z1)2 − 4∂2z1∂
2z2

−2∂2z1∂
2z3 − ∂3z1z

2
1 + 3∂3z1z1z2 − 2∂3z1z

2
2 + 2∂3z1z2z3

−∂3z1z
2
3 + ∂3z2z

2
1 − 2∂3z2z1z2 − ∂3z3z

2
1 + ∂3z3z1z2

−2∂2z1∂z1z1 + 7∂2z1∂z1z2 + 4∂2z1∂z2z1 − 8∂2z1∂z2z2

+4∂2z1∂z2z3 − 2∂2z1∂z3z1 + 4∂2z1∂z3z2 − 4∂2z1∂z3z3

+5∂2z2∂z1z1 − 6∂2z2∂z1z2 + 2∂2z2∂z1z3 − 4∂2z2∂z2z1

+∂2z2∂z3z1 − 4∂2z3∂z1z1 + 3∂2z3∂z1z2 − 2∂2z3∂z1z3

+2∂2z3∂z2z1 − 2(∂z1)3 + 5(∂z1)2∂z2 − (∂z1)2∂z3
−5∂z1(∂z2)2 + 5∂z1∂z2∂z3 − 2∂z1(∂z3)2 − 2∂2z1z

3
1

+3∂2z1z
2
1z2 − 3∂2z1z1z

2
2 + 4∂2z1z1z2z3 − 2∂2z1z1z

2
3

+∂2z2z
3
1 − 2∂2z2z

2
1z2 + 2∂2z2z

2
1z3 + 2∂2z2z1z

2
2

−4∂2z2z1z2z3 + ∂2z2z1z
2
3 + ∂2z3z

2
1z2 − 2∂2z3z

2
1z3

−∂2z3z1z
2
2 + 2∂2z3z1z2z3 − 2(∂z1)2z2

1 + 2(∂z1)2z1z2
−(∂z1)2z2

2 + 2(∂z1)2z2z3 − (∂z1)2z2
3 − 6∂z1∂z2z1z2

+8∂z1∂z2z1z3 + 2∂z1∂z2z2
2 − 4∂z1∂z2z2z3 + ∂z1∂z2z

2
3

+2∂z1∂z3z2
1 + 4∂z1∂z3z1z2 − 8∂z1∂z3z1z3 − ∂z1∂z3z2

2

+2∂z1∂z3z2z3 − (∂z2)2z2
1 + 4(∂z2)2z1z2 − 4(∂z2)2z1z3

+3∂z2∂z3z2
1 − 6∂z2∂z3z1z2 + 4∂z2∂z3z1z3 − 2(∂z3)2z2

1

+2(∂z3)2z1z2 + 2∂z1z2
1z

2
2 − 4∂z1z2

1z2z3 + 2∂z1z2
1z

2
3

−4∂z1z1z3
2 + 8∂z1z1z2

2z3 − 4∂z1z1z2z2
3 + ∂z1z

4
2

−2∂z1z3
2z3 + ∂z1z

2
2z

2
3 − ∂z2z4

1 + 2∂z2z3
1z2

−4∂z2z2
1z

2
2 + 4∂z2z2

1z2z3 − ∂z2z2
1z

2
3 + 4∂z2z1z3

2

−6∂z2z1z2
2z3 + 2∂z2z1z2z2

3 + ∂z3z
4
1 − 2∂z3z3

1z2

+3∂z3z2
1z

2
2 − 2∂z3z2

1z2z3 − 2∂z3z1z3
2 + 2∂z3z1z2

2z3

+z4
1z

2
2 − 2z4

1z2z3 + z4
1z

2
3 − 2z3

1z
3
2

+4z3
1z

2
2z3 − 2z3

1z2z
2
3 + z2

1z
4
2 − 2z2

1z
3
2z3 + z2

1z
2
2z

2
3 .

Regularizator:

v1 = (1, 0, 0), Q1[y] = 2y1 − y2,(4.12)

v2 = (0, 1, 0), Q2[y] = 2y2 − y1 − 2y3,

v3 = (0, 0, 1), Q3[y] = y3 − y2.

4.7. Riccati operators of age |2, 4, 6〉. Second case.
Riccatians:

R2[z] = ∂z1 + ∂z2 + 2∂z3 + 2z2
1 − z1z2 + z2

2 − 2z2z3 + 2z2
3 ,(4.13a)
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R4[z] = 10∂3z1 + 6∂3z2 + 8∂3z3 + 20∂2z1z1 − 6∂2z1z2(4.13b)

−10∂2z2z1 + 12∂2z2z2 − 8∂2z2z3 − 12∂2z3z2 + 16∂2z3z3

+19(∂z1)2 − 18∂z1∂z2 − 8∂z1∂z3 + 11(∂z2)2 − 24∂z2∂z3
+16(∂z3)2 − 2∂z1z2

1 + 10∂z1z1z2 − 6∂z1z2
2 + 8∂z1z2z3

−8∂z1z2
3 + 2∂z2z2

1 − 6∂z2z1z2 − 2∂z2z2
2 + 12∂z2z2z3

−8∂z2z2
3 − 8∂z3z2

1 + 8∂z3z1z2 − 8∂z3z2z3 − z4
1

+2z3
1z2 − 3z2

1z
2
2 + 8z2

1z2z3 − 8z2
1z

2
3 + 2z1z3

2

−8z1z2
2z3 + 8z1z2z2

3 − z4
2 + 4z3

2z3 − 4z2
2z

2
3 ,

R6[z] = 5∂5z1 + ∂5z2 + 10∂4z1z1 − ∂4z1z2 − 5∂4z2z1(4.13c)

+2∂4z2z2 − 2∂4z3z2 + 37∂3z1∂z1 − 11∂3z1∂z2

−12∂3z1∂z3 − 17∂3z2∂z1 + 7∂3z2∂z2 − 4∂3z2∂z3

−8∂3z3∂z1 − 8∂3z3∂z2 + 30(∂2z1)2 − 20∂2z1∂
2z2

−20∂2z1∂
2z3 + 5(∂2z2)2 − 10∂2z2∂

2z3 − 3∂3z1z
2
1

+11∂3z1z1z2 − 7∂3z1z
2
2 + 12∂3z1z2z3 − 12∂3z1z

2
3

+3∂3z2z
2
1 − 7∂3z2z1z2 − ∂3z2z

2
2 + 6∂3z2z2z3

−4∂3z2z
2
3 − 8∂3z3z

2
1 + 8∂3z3z1z2 − 4∂3z3z2z3

−6∂2z1∂z1z1 + 27∂2z1∂z1z2 + 18∂2z1∂z2z1 − 27∂2z1∂z2z2

+20∂2z1∂z2z3 − 24∂2z1∂z3z1 + 24∂2z1∂z3z2 − 40∂2z1∂z3z3

+23∂2z2∂z1z1 − 24∂2z2∂z1z2 + 8∂2z2∂z1z3 − 19∂2z2∂z2z1

−6∂2z2∂z2z2 + 18∂2z2∂z2z3 + 12∂2z2∂z3z1 + 12∂2z2∂z3z2

−20∂2z2∂z3z3 − 40∂2z3∂z1z1 + 24∂2z3∂z1z2 − 16∂2z3∂z1z3

+20∂2z3∂z2z1 + 6∂2z3∂z2z2 − 16∂2z3∂z2z3 − 12∂2z3∂z3z2

−6(∂z1)3 + 22(∂z1)2∂z2 − 20(∂z1)2∂z3 − 22∂z1(∂z2)2

+40∂z1∂z2∂z3 − 16∂z1(∂z3)2 − 2(∂z2)3 + 12(∂z2)2∂z3
−16∂z2(∂z3)2 − 6∂2z1z

3
1 + 9∂2z1z

2
1z2 − 9∂2z1z1z

2
2

+24∂2z1z1z2z3 − 24∂2z1z1z
2
3 + ∂2z1z

3
2 − 4∂2z1z

2
2z3

+4∂2z1z2z
2
3 + 3∂2z2z

3
1 − 5∂2z2z

2
1z2 + 8∂2z2z

2
1z3

+5∂2z2z1z
2
2 − 20∂2z2z1z2z3 + 12∂2z2z1z

2
3 − 2∂2z2z

3
2

+6∂2z2z
2
2z3 − 4∂2z2z2z

2
3 + 4∂2z3z

2
1z2 − 16∂2z3z

2
1z3

−4∂2z3z1z
2
2 + 16∂2z3z1z2z3 + 2∂2z3z

3
2 − 4∂2z3z

2
2z3

−6(∂z1)2z2
1 + 6(∂z1)2z1z2 − 5(∂z1)2z2

2 + 20(∂z1)2z2z3
−20(∂z1)2z2

3 + 2∂z1∂z2z2
1 − 14∂z1∂z2z1z2 + 40∂z1∂z2z1z3

+10∂z1∂z2z2
2 − 40∂z1∂z2z2z3 + 24∂z1∂z2z2

3 + 8∂z1∂z3z2
1

+16∂z1∂z3z1z2 − 80∂z1∂z3z1z3 − 8∂z1∂z3z2
2 + 32∂z1∂z3z2z3

−4(∂z2)2z2
1 + 10(∂z2)2z1z2 − 20(∂z2)2z1z3 − 6(∂z2)2z2

2
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+12(∂z2)2z2z3 − 4(∂z2)2z2
3 + 16∂z2∂z3z2

1 − 28∂z2∂z3z1z2
+40∂z2∂z3z1z3 + 12∂z2∂z3z2

2 − 16∂z2∂z3z2z3 − 16(∂z3)2z2
1

+16(∂z3)2z1z2 − 4(∂z3)2z2
2 + 2∂z1z2

1z
2
2 − 8∂z1z2

1z2z3

+8∂z1z2
1z

2
3 − 6∂z1z1z3

2 + 24∂z1z1z2
2z3 − 24∂z1z1z2z2

3

+2∂z1z4
2 − 8∂z1z3

2z3 + 8∂z1z2
2z

2
3 − 2∂z2z4

1

+4∂z2z3
1z2 − 4∂z2z2

1z
2
2 + 4∂z2z2

1z2z3 + 4∂z2z1z3
2

−12∂z2z1z2
2z3 + 8∂z2z1z2z2

3 + 4∂z3z4
1 − 8∂z3z3

1z2

+8∂z3z2
1z

2
2 − 8∂z3z2

1z2z3 − 4∂z3z1z3
2 + 8∂z3z1z2

2z3

+z4
1z

2
2 − 4z4

1z2z3 + 4z4
1z

2
3 − 2z3

1z
3
2

+8z3
1z

2
2z3 − 8z3

1z2z
2
3 + z2

1z
4
2 − 4z2

1z
3
2z3 + 4z2

1z
2
2z

2
3 .

Regularizator:

v1 = (1, 0, 0), Q1[y] = y1 −
1
2
y2,(4.14)

v2 = (0, 1, 0), Q2[y] = y2 −
1
2
y1 − y3,

v3 = (0, 0, 1), Q3[y] = 2y3 − y2.

5. Riccatians and simple Lie algebras. Let us try to explane why the list of
Riccatians given in the previous section is so interesting to us. First reason is associated
with the fact that this list obtained as a solution of a typical analytic problem (in whose
formulation has not been used any notion of symmetry), has purely Lie algebraic inter-
pretation. This assertion (obtained after analyzing the results of previous section) we
can formulate in the form of the following theorem.

Theorem 5.1. There exists a correspondence between systems of simple Riccati oper-
ators of genus 1 and simple Lie algebras. Any simple Riccati operator of age |n1, . . . , nr〉
with r ≤ 3 and nr ≤ 6 is associated with some simple Lie algebra Lr of rank r. The
corresponding systems of Riccatians have the following properties:

1. The product of degrees of particular Riccatians forming the system is equal to the
dimension of the Weyl group for algebra Lr.

2. The degrees of particular Riccatians coincide with degrees of independent Casimir
invariants for algebra Lr. In particular , each system of Riccatians contains Riccatian of
second degree.

3. The regularizator of the system consists of r pairs {vn, Qn[y]}, n = 1, . . . , r in
which all vectors vn are linearly independent.

4. It is possible to choose such a basis in r-dimensional vector space (in which function
z takes its values), in which all the regularizing vectors vn become orthonormal. In this
basis (which we shall call canonical) the regularizing polynomials take the form

(5.1) Qn[y] =
r∑

m=1

(πn, πm)ym
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where πn, n = 1, . . . , r are simple roots of algebra Lr and ( , ) denotes their scalar
product.

5. In the canonical basis the second-order Riccatian has the form

(5.2) R2[z] =
r∑
i=1

(πi, πi)∂zi +
r∑

i,k=1

(πi, πk)zizk.

6. The leading term of any Riccatian (i.e. term not containing the derivatives) has the
form gi1,...,inzi1 · · · zin where n is the degree of the Riccatian and gi1,...,in is an invariant
tensor of the rank r generating the Cartan part of nth order Casimir invariant for algebra
Lr.

This theorem is very interesting from purely marthematical point of view, because
it reveals an intriguing relationship between the analytic proprties of Riccati operators
and their hidden symmetry properties. Beyond any doubt, the fact that the structure
of Casimir invariants of simple Lie algebras is encoded in the systems of Riccatians and
can be obtained in absolutely non-algebraic way, has a great theoretical significance and
deserves a careful study.

Conjecture 5.1. There exist one-to one correspondence between all systems of Ric-
catians of genus 1 and all simple Lie algebras. The restriction to Lie algebras of ranks
r ≤ 3 and to Riccati operators of ages |n1, . . . , nr〉 with r ≤ 3 and nr ≤ 6, used in theorem
5.1 , is not necessary.

In fact, we already have a proof of this conjecture for algebras Ar, Br, Cr of arbitrary
rank r and also for algebra D4. First three series have been analyzed by methods differing
from those used in the present paper, while the D4 case has been studied in the spirit of
section 3 (5).

Theorem 5.1 and its generalizations are not the only reason for which the non-
equivalent systems of Riccatians might be interesting to us. The second and, in our
opinion, the main reason follows from the following theorem.

Theorem 5.2. Let Rn1 [z1(λ), . . . , zr(λ)], . . . , Rnr
[z1(λ), . . . , zr(λ)] be a system of Ric-

catians associated with a simple Lie algebra Lr and represented in a canonical form. Then
the solution of Problem 2.1 has the following form:

za(λ) = Fa(λ) +
Ma∑
i=1

1
λ− ξai

,(5.3a)

cna(λ) = Rna

[
F1(λ) +

M1∑
i=1

1
λ− ξ1i

, . . . , Fr(λ) +
Mr∑
i=1

1
λ− ξri

]
,(5.3b)

where Ma, a = 1, . . . , r are arbitrary non-negative integers, and the parameters ξai , i =
1, . . . ,Ma, a = 1, . . . , r satisfy the system of equations

(5.4) F a(ξai ) +
∑
b

Mb∑
k=1

(πa, πb)
ξai − ξbk

= 0, i = 1, . . . ,Ma, a = 1, . . . , r.

(5) The paper with this proof is still in preparation.
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In particular , the eigenvalues c2(λ) are given by the formula

c2(λ) =
r∑

a,b=1

(πa, πb)

(
Fa(λ) +

Ma∑
i=1

1
λ− ξai

)(
Fb(λ) +

Mb∑
i=1

1
λ− ξai

)
(5.5)

+
r∑
a=1

(πa, πa)

(
Fa(λ) +

Ma∑
i=1

h̄

λ− ξai

)′
.

For any set of numbers M1, . . . ,Mr the equations (5.4 ) have a finite set of solutions and
therefore, the spectrum of the generalized Gaudin problem is infinite and discrete.

P r o o f. The proof of this theorem immediately follows from general theorem 2.1 and
concrete forms of regularizing polynomials and second-order Riccatians given by formulas
(5.1) and (5.2).

In next section we demonstrate that this solution exactly coincides with solution of
the generalized Gaudin spectral problem associated with algebra Lr.

6. Generalized Gaudin spectral problem. In this section we consider Gaudin
models associated with arbitrary simple Lie algebras. Let Lr be a simple Lie algebra of
rank r and dimension d. The corresponding Gaudin algebra, which we denote by G[Lr],
is an infinite-dimensional extension of algebra Lr. Its covariant generators we denote by
SA(λ), where λ is a complex parameter playing the role of a continuous index, and A is a
discrete index. The commutation relations for these operators can be written in the form

(6.1) [SA(λ), SB(µ)] = −h̄CABC
SC(λ)− SC(µ)

λ− µ
,

in which CABC are structure constants of algebra Lr.
The Cartan–Weyl decomposition of algebra Lr induces an analogous decomposition

of the Gaudin algebra G[r]. Correspondingly, the set of d generators SA(λ) can be divided
into three subsets consisting of raising and lowering operators, Sα(λ), α ∈ R±r, associ-
ated with positive and negative roots of algebra Lr and r neutral operators Sa(λ), a ∈ Nr.

The lowest weight representations of algebra G[Lr] are determined by the formulas

Sa(λ)|0〉 = F a(λ)|0〉, a ∈ Nr,(6.2)

Sα(λ)|0〉 = 0, α ∈ R−r,

where |0〉 is the lowest weight vector and F a(λ) are covariant components of the lowest
weight ~F (λ). The representation space is then defined as

(6.3) W~F (λ) = linear span of vectors {Sα1(λ1) · · ·Sαn(λn)|0〉}

with arbitrary α1, . . . , αn ∈ R+r and λ1, . . . , λn for each n = 0, 1, 2, . . ..
Consider the operator

(6.4) C2(λ) = gABS
A(λ)SB(λ)

which belongs to the universal enveloping algebra of algebra G[Lr] and has the form
similar to the form of the second-order Casimir operator for algebra Lr. As before, we
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call it the Casimir–Gaudin operator. Not being a Casimir invariant for algebra G[Lr], the
operator C2(λ) forms however a commutative family

(6.5) [C2(λ), C2(µ)] = 0.

This property suggests to interpret C2(λ) as a generating function of commuting integrals
of motion for some quantum system. It can be shown that, in contrast with the sl(2)
case, the functions C2(λ) do not contain enough number of commuting integrals of motion
sufficient for claiming that the corresponding quantum system is completely integrable.
The question of a complete integrability of these quantum problems is still open except
the problems associated with algebra sl(3) (see discussion in Section 7). Fortunately,
irrespective of a concrete answer to this question, one can demonstrate that the spectral
problem for them admits a simple and elegant solution. Taking the representation space
of Gaudin algebra G[Lr] as an analog of the space of states, we can formulate the following
analog of the Schródinger problem for operators C2(λ):

P r o b l e m 6.1. Find all solutions of the spectral equation

(6.6) C2(λ)φ = c2(λ)φ, φ ∈W~F (λ),

provided that the lowest weight F (λ) = F 1(λ), . . . , F r(λ) is given.

Definition 6.1. The equation (6.6) is called the Lr Gaudin spectral equation and the
models described by “hamiltonians” C2(λ) we refer to as Lr Gaudin models.

Theorem 6.1. The solution of problem 6.1 for algebras Ar, Br, Cr, Dr, E6 and E7 has
the following form

φ =
r∏
a=1

Ma∏
i=1

Sπ
a

(ξai )|0〉+ . . .(6.7a)

c2(λ) =
r∑

a,b=1

(πa, πb)

(
Fa(λ) +

Ma∑
i=1

1
λ− ξai

)(
Fb(λ) +

Mb∑
i=1

1
λ− ξai

)
(6.7b)

+
r∑
a=1

(πa, πa)

(
Fa(λ) +

Ma∑
i=1

1
λ− ξai

)′
.

where ξai are the numbers satisfying the system of equations

(6.8)
r∑
b=1

Mb∑
k=1,k 6=i

(πa, πb)
ξai − ξbk

= F a(ξai ),

where a = 1, . . . , r and i = 1, . . . ,Ma. For any set of numbers M1, . . . ,Mr the equations
(6.8 ) have a finite set of solutions and therefore, the spectrum of the generalized Gaudin
problem is infinite and discrete.

The proof of this theorem can be found in refs. [Ushveridze 1990, 1992, 1994]. For
the proof for only classical Lie algebras Ar, Br, Cr, Dr see also [Jurčo 1989]. As far as we
know, the solutions of the Gaudin spectral problems associated with three exceptional
Lie algebras G2, F4, E8 are not yet found.
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7. Conclusion. Comparing the results of sections 5 and 6 we can make sure that
the spectrum of the Riccatian R2[z(λ)] associated with algebra Lr exactly coincides with
the spectrum of the second-order Casimir – Gaudin operator C2(λ) constructed from
generators of Gaudin algebra G[Lr]. Moreover, the Riccatian R2[z(λ)] itself has the same
form as the Cartan part of th normally-ordered (6) operatorC2(λ). We can go further and
show that the higher Riccatians Rni

[z(λ)] also coincide with Cartan parts of normally-
ordered higher-order Casimir – Gaudin operators Cni

(λ) (i.e. operators constructed from
generators of Gaudin algebra G[Lr] and having the same structure as independent Casimir
invariants of algebra Lr.)

Evidently, all these coincidences cannot be accidental and should manifest of a deep
relationship between Riccati and Gaudin spectral problems.

Two things immediately come in ones head. First is that the generalized Gaudin mod-
els are integrable and the operators Cni

(λ), i = 1, . . . , r (or their slight deformations)
form a complete set of quantum integrals of motion (7) whose spectra coincide with spec-
tra of Riccatians. Second thing is that the Gaudin models admit separation of variables
and the resulting multi-parameter spectral equations appearing after the separation are
somehow related to generalized Riccati equations (8).

It turns out, however, that the verification of these assumptions is far from being a sim-
ple matter. The main difficulty lies in the fact that the operators Cn1(λ), . . . , Cnr (λ) do
not generally form commutative families (9), and thus, cannot be considered as generat-
ing functions for quantum integrals of motion (10). There are two possible explanations of
this situation: 1) the Gaudin models are non-integrable on the quantum level, and 2) they
are integrable but the form of additional integrals of motion is more complicated (11).

In our opinion, the second possibility seems more realistic, and in order to prove this,
we can start with the systems of Riccati equations and try to obtain the Gaudin models
by means of the inverse method of separation of variables (exactly in the same way as
for the A1 case). This program will be realized in next publication. Here we only anonce
some preliminary results which, in our opinion, are rather interesting.

• The systems of generalized Riccati equations can be separated, i.e. transformed into
systems of r different equations, each of which contains only one of functions z1(λ), . . .
. . . , zr(λ).
• The separated systems can be linearized by means of the substitution zi(λ) =

ψ′i(λ)/ψi(λ), after which one obtains a system of linear multi-parameter spectral equa-
tions.

(6) Normal ordering means that all lowering operators are transfered to the right.
(7) As in the classical case.
(8) As in the sl(2) case.
(9) Except the cases of algebras A1 and A2.
(10) For example, this can be easily demonstrated by direct calculation of commutators for

algebra A3.
(11) The method for constructing additional integrals of motion for quantum models asso-

ciated with sl(n) solutions of Yang – Baxter equation, given in [Kulish and Sklyanin 1982], is
wrong because it is based on the use of non-invertible R-matrices.
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• The main feature of obtained equations is that they depend on spectral parameters
non-linearly (except the cases of algebras A1 and A2).
• As a consequence of this non-linearity, the completely integrable models obtained

from these multi-parameter spectral equations after applying to them the inverse method
of separation of variables are non-linear in the sense that, along with ordinary (linear)
integrals of motion, they contain a set of nonlinear ones, represented by non-linear oper-
ators in Hilbert space! Evidently, such models cannot be considered as ordinary quantum
models.
• The integrals of motion for these models, which we denote by Ĉni

(λ), have the same
spectra as the Riccatians Rni [z(λ)].

Unfortunately, up to now it is not clear whether these “pseudo-quantal” completely
integrable models do actually have some relation to Gaudin models. In order to prove
this we should try to demonstrate that the linear operator Ĉ2(λ) constructed in such a
way is nothing else than the second-order Casimir – Gaudin operator C2(λ). If it will
be done then one can claim that the remaining integrals of motion of Gaudin models
are some non-linear deformations of high-order Casimir – Gaudin operators! We hope to
return to this interesting question in next publication.

In conclusion I would like to thank my colleagues from the Theoretical Department
for many valuable comments and remarks.
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