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Abstract. For a given Hurwitz pair [S(QS), V (QV ), ◦] the existence of a bilinear mapping
? : C(QS) × C(QV ) → C(QV ) (where C(QS) and C(QV ) denote the Clifford algebras of the
quadratic forms QS and QV , respectively) generated by the Hurwitz multiplication “◦” is proved
and the counterpart of the Hurwitz condition on the Clifford algebra level is found. Moreover,
a necessary and sufficient condition for “?” to be generated by the Hurwitz multiplication is
shown.

1. Introduction. The general Hurwitz problem was studied e.g. by  Lawrynowicz
and Rembieliński [2-4]. They introduced the notions of “Hurwitz pairs” and “pseudo-
Hurwitz pairs” and gave their systematic classification according to the relationship with
real Clifford algebras. In the present work we show the existence of a bilinear mapping
?: C(QS)× C(QV )→ C(QV ), where (S, V , ◦) is a given Hurwitz pair which makes the
following diagram:

(1)

S × V V V

C(QS)× C(QV ) C(QV )

◦ (Hurwitz multiplication) //

iS×iV
��

iV
��

? //

commutative.
Moreover, we prove that if such a mapping exists and satisfies the following “algebraic

Hurwitz condition”: N(xS ? yV ) = N(xS)N(yV ) for any xS ∈ ΓS and yV ∈ ΓV , where Γ
denotes the Clifford group of the Clifford algebra C(Q) and N is a spinor norm, then ?

is generated by the Hurwitz multiplication, i.e. ?|S×V = ◦. An example of a mapping ?
which does not satisfy the N -norm condition is given. Since in the meantime the detailed
proofs have appeared in [1], they are only sketched here.
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2. Product of Clifford algebras generated by the Hurwitz multiplication.
Let (S, V , ◦) be a Hurwitz pair. Suppose that the vector spaces S and V are equipped
with non-degenerate quadratic forms QS and QV , respectively. We will only consider the
elliptic and hyperbolic cases (see, e.g. [2-4]). In S and V we choose some bases (εα) and
(ej) with α = 1, . . . , p = dimS; j = 1, . . . , n = dimV . Assume that p ≤ n.

Let C(QS) (resp. C(QV )) denote the Clifford algebra of (S,QS) (resp. (V,QV )).
There are canonical injections iS : S → C(QS) and iV : V → C(QV ). Then we get the
diagram (2). It would be interesting to complete the diagram (2) by the suitable mapping
C(QS)×C(QV )→ C(QV ). Define the following mapping ? : C(QS)×C(QV )→ C(QV )
by:

(2)



1S ? yV := yV ,

(εi1 . . . εir ) ? (ej1 . . . ejk) :=


ejk . . . ejr+1(εir ◦ ejr ) . . . (εi1 ◦ ej1), r < k,
(εir ◦ ejr ) . . . (εi1 ◦ ej1), r = k,
εir ◦ [εir−1 ◦ [. . . ◦ [εik+1

◦[(εik ◦ ejk) . . . (εi1 ◦ ej1)] . . .], r > k,
(εi1 . . . εir ) ? 1V := ‖εi1‖ . . . ‖εir‖1V

for 1 ≤ r ≤ p, 1 ≤ i1 < . . . < ir ≤ p; 1 ≤ k ≤ n, 1 ≤ j1 < . . . < jk ≤ n. Then,
the required mapping ? : C(QS)× C(QV )→ C(QV ) is defined by the bilinear extension
of (2).

R e m a r k. If (S,QS) is a Euclidean vector space then all ‖εi‖2 > 0. In this case
the Clifford algebras C(QS) and C(QV ) are considered to be real. But, if (S,QS) is
a pseudo-Euclidean vector space then there are some εi1 , . . . , εir , 1 ≤ r ≤ p, such that
‖εis‖2 < 0, 1 ≤ s ≤ r. This time the Clifford algebras have to be treated as complex
ones.

Proposition. ? is a well defined bilinear mapping. Moreover , ?|S×V = ◦, the Hurwitz
multiplication, i.e. the diagram (1) is commutative.

Lemma. Let xS ∈ ΓS and yV ∈ ΓV , where ΓS (resp. ΓV ) denotes the Clifford group
in C(QS) (resp. C(QV )) and let NS , NV be the spinor norms in C(QS) and C(QV ),
respectively. Then

(3) NV (xS ? yV ) = NS(xS)NV (yV ).

Theorem. Let S and V be real vector spaces equipped with non-degenerate quadratic
forms QS and QV , respectively. Denote by CC(QS) (resp. CC(QV )) the complex Clifford
algebras of (S,QS) (resp. (V ,QV )). Suppose that there is a bilinear mapping ? : CC(QS)×
CC(QV ) → CC(QV ) satisfying the condition (3). Then ? is generated by the Hurwitz
multiplication, i.e. ?|S×V = ◦, where ◦ : S × V → V is a bilinear mapping such that
‖s ◦ v‖V = ‖s‖S‖v‖V for all s ∈ S and v ∈ V .

P r o o f. Let s ∈ S ⊂ ΓS and v ∈ V ⊂ ΓV . By definition of N we have

(4) NV (s ? v) = NS(s)NV (v) = ‖s‖2S‖v‖
2
V ∈ R.

Let (e1, . . . , en) be an orthogonal base in V . Suppose

s ? v = a0 +
n∑
i=1

aiei +
n∑
l=2

∑
i1<...<il

al
i1...ilei1 . . . eil .
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Then

N(s ? v) = a2
0 +

n∑
i=1

(ai)
2
QV (ei) +

n∑
l=2

∑
i1<..<il

(ai1..ill )
2
QV (ei1) . . . QV (eil) +R(e1, . . . , en),

where

R(e1, . . . , en) =
∑

biei +
∑
i<j

bijeiej + . . .+
∑

i1<...<im

bi1...imei1 . . . eim + be1 . . . en.

Since N(s ? v) is a scalar then R(e1, . . . , en) must vanish. The multiplication ? is bilinear
so the coefficients a0, a

i and ai1...ill are bilinear functions in s and v. Thus N(s?v) should
be separated into two parts, first depending only on s and second only on v. Then we
can write

a2
0 +

n∑
i=1

(ai)
2
QV (ei) +

n∑
l=2

∑
i1<...<il

(ai1...ill )
2
QV (ei1) . . . QV (eil)

= ‖s‖2S‖v‖
2
V

= ‖s‖2S [c20 +
n∑
i=1

(ci)
2
QV (ei) +

n∑
l=2

∑
i1<...<il

(ci1...ill

2
QV (ei1) . . . QV (eil)]

Thus, the following equality has to be satisfied:

c20 +
n∑
i=1

(ci)
2
QV (ei) +

n∑
l=2

∑
i1<...<il

(ci1...ill )
2
QV (ei1) . . . QV (eil) =

n∑
i=1

(vi)
2
QV (ei).

The coefficients c0, ci, ci1...ill are linear in v so, by continuity, we can write

c0(v) = c0jv
j , ci(v) = cijv

j , ci1...ill (v) = ci1...illj vj .

Thus, for any 1 ≤ j, k ≤ n we get the identity

c0jc0k +
n∑
i=1

(cijc
i
k − δijδik)QV (ei) +

n∑
l=2

∑
i1<...<il

ci1...illj ci1...illk QV (ei1) . . . QV (eil) ≡ 0.

Take an orthogonal transformation R ∈ O(QV ). In a new base e′ = Re we have

c0jc0k +
n∑
i=1

(c̃ij c̃
i
k − δijδik)QV (Rei) +

n∑
l=2

∑
i1<...<il

c̃i1...illj c̃i1...illk QV (Rei1) . . . QV (Reil) ≡ 0.

ButQV (Rei) = QV (ei). Then the new coefficients c̃j and c̃i1...illj , obtained by the changing
of the base, satisfy the same identity as the previous ones. This is possible if and only if

c0j ≡ 0 for j = 1, . . . , n,

cijc
i
k − δijδik ≡ 0 for 1 ≤ i, j, k ≤ n,

ci1...illj ≡ 0 for l = 2, . . . , n; 1 ≤ i1 < . . . < il ≤ n; j = 1, . . . , n.

Thus, we get s ? v = ‖s‖S
∑n
i=1,j=1 c

i
jv
jei ∈ V and ‖s‖2S‖v‖

2
V = NV (s ? v) = ‖s ? v‖2V , so

?|S×V satisfies the Hurwitz condition, as required.

Example. We now construct a bilinear map � : CC(QS) × CC(QV ) → CC(QV )
which does not satisfy the condition (4). Choose some bases (εα) and (ej) in S and V ,
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respectively. Define

(5)



1S � 1V := e1 . . . en,

1S � (ei1 . . . eik) := ̂ei1 . . . eik ,

1S � (e1 . . . en) := 1V ,

(εj1 . . . εjr ) � (ei1 . . . eik) := ‖εj1‖ . . . ‖εjr‖ ̂ei1 . . . eik ,

(εj1 . . . εjr ) � 1V := ‖εj1‖ . . . ‖εjr‖e1 . . . en,
(εj1 . . . εjr � (e1 . . . en) := ‖εj1‖ . . . ‖εjr‖1V ,

where “̂.” is defined bŷei1 . . . eir := ej1 . . . ejs with j1 < . . . < js and (i1, . . . , ir, j1, . . . , js) = (1, . . . , n).

The map � : CC(QS) × CC(QV ) → CC(QV ) is defined by the bilinear extension of (5).
It is easy to see that � does not satisfy the condition (4). Indeed, take s ∈ S and v ∈ V .
We have

s� v = sαviεα � ei = sαvi‖εα‖Se1 . . . êi . . . en 6∈ V.
and

NV (s� v) = sαsβ‖εα‖S‖εβ‖S(vi)
2
QV (e1) . . . ̂QV (ei) . . . OV (en).

Suppose that NV (s� v) = NS(s)NV (v). Then we get∑
α,β

sαsβ‖εα‖S‖εβ‖S =
∑
α

(sα)2‖εα‖2S ,∑
i

(vi)
2
QV (e1) . . . ̂QV (ei) . . . QV (en) =

∑
i

(vi)
2
QV (ei).

The above condition is equivalent to

‖εα‖S = 0 and ‖e1‖2V . . . ‖êi‖
2
V . . . ‖en‖

2
V = ‖ei‖2V ,

but this is impossible.
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[1] W. Kró l ikowski, On Fueter-Hurwitz regular mappings, Dissertationes Math. 353 (1996).
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