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1. Introduction. The elasticity problem can be formulated as follows: given F = (F;)

of class C?(€2), i € 1,...,n, find a symmetric tensor o = {0;;}, (i,7) € {1,...,n}*> and a
displacement u = (u;) so that
(1) 0455+ F;, =0,
1
(2) €ij = 5 (Uig +uj0),
(3) €ij = SijkiOkl,
(4) u=0 on I,
(5) 03515 = 0 on Fa-

) is a bounded domain in the space R™ with boundary I' such that
r,ur, =T, r.Nr, =0.
Sijri denotes the inverse elasticity tensor having the following symmetry properties:
Sijkt = Skiij = Sjikil-

The solution of equations (1)—(5) is a saddle point of the Reissner functional

1
ﬁ(TaV):i/ﬂsijleikaldQ_/QTijeij(V)dQ‘i‘/QFiUidQ-

We have
L(o,u) = E_IIEISIJIEZ%L}[(,C(T, V)
with
S ={rj : mij = 7,71 € L*(Q)},
U={v:v=(v), v€ H(Q), v =0o0nT,}.

Define the bilinear forms and norms:

(6) a*(a, T) = / SijkldikaldQ,
Q

(7) b(T, V) = —/ Tij€ij (V)dQ,
Q

(®) Il = a*(r,7), (VI = / vi s 509,

and the linear form
) L(v) = /Q Fovgd.
The solution of equations (1)—(5) satisfies the following weak formulation:
Al(o,u) €e ¥ x T,
(10) a*(o,7)+b(r,u) =0, VrekX
(11) b(o,v) = L(v), ¥veU.

Existence and uniqueness is got by using the Brezzi-Babuska theorem [5]. The bilinear
forms given by (6) and (7) are continuous on ¥ x 3 and ¥ x U; here a*(7, 7) is Z-elliptic
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in the following sense: for any o € Z we have:
Z={reX:V¥vel brv)=0}
and there is a positive number ¢ with the property
a*(r.7) = Il > elirl2.
so Z is the space of self-equilibrated stresses; L(v) is continuous and linear on U. The
system of equations (10) and (11) has a unique solution if there is a number 8 such that
(12) Su\lzo}ﬂb(7'7")|/||7'||2} > Bllvllu-

TE

In order to verify (12) we have to take 7 so that S;jnTii = €;;(v) and use the Korn
inequality [16].

2. Approximation methods. We choose finite dimension spaces ¥, and Uj so
that ¥ C ¥ and U, C U. In order to get the uniqueness of the discretized problem it is
sufficient to verify (12). We give examples of approximation spaces where this is fulfilled.
In the case of linear elasticity, following [15], we consider a family of meshes ¥, of Q
indexed by a parameter h > 0, representing the maximum diameter p(K) of the element
K € T},. We consider the case where K is a triangle with vertex a;, [a;a;] being the edge
of K. In the three following cases, we have (12) satisfied for 7, € X, vj, € Up,.

Case 1. We have
) ={m |, €eENQ)NP(K), VKEeT,},
Ul ={vh:v, eUNELQNPI(K), VKET,).

Case 2. In each triangle K three lines joining the middle point of each edge are drawn;
K is divided into four subtriangles K, I € (1,...,4) and we get %},

Y7 ={m: Thi; €2 N(Q)NPI(K;), VKre%,), UF=Ug.

Case 3. Each triangle K is divided into three subtriangles having the following vertices:
the gravity center G of K and the three vertices of K, and we get

h=UK;:3S} ={m:m, €SNQ)NP(K,;), VK;eT}, Up=U,.

The case of the same order of interpolation for vj, and 73,; (linear interpolation on each
K) has been used in the plane elasticity. A good numerical experiment has been done
by Labé [7], but we do not know whether the discretized Brezzi-Babuska condition is
fulfilled in that case.

Other continuous conformal interpolations for the stresses and displacements in linear
or axisymmetric elastic problems are numerically tested and give good results [1] with
the same restriction about the Brezzi-Babuska condition, using quadrangle elements. In
those works the meshes are quite uniform and regular. The cases can be then extended
to three-dimensional elastic problems using tetrahedron or cube elements.

In order to solve the theoretical question of the uniqueness of the discretized prob-
lem (especially when we do not know whether the condition (12) is fulfilled), stabilized
Galerkin finite element methods are used where continuous conformal interpolation of
the same order on each element of Gj, for stresses and components of the displacements
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are needed [14]. This kind of method is more close to extremal approximations of the
spaces X and U by using bilinear forms connected to the mesh, taking in account, in the
sense of least squares, some linear equations on each element (e.g., equilibrium equations
connected with the behaviour law).

3. Extension to Poisson manifolds. The approximation methods described in Sect.
2, because of their reference to triangulation, can naturally be extended to the Poisson
manifolds [12, 17, 18], that is, smooth manifolds M with a Poisson structure defined by
a Poisson bracket given locally by the equality

(13) {f.9} = Z (0/040)(0/0pa)g — (8/0pa) f(9/D4a)g),

where f and g are smooth real-valued functions in a co-ordinate neighbourhood of M,
while

i
(14) w= dea ANdGey D1y Pry Q1yev3qry 21,---,2¢) €ER", n = dimg M,
a=1

is a nonsingular closed 2-form. It is clear that these notions are born out by the standard
examples from classical mechanics and that {f, g} is itself a smooth real-valued function
in a co-ordinate neighbourhood in question.

Suppose now that M = R?" with local co-ordinates u = (u1,...,u2,) and g is a
smooth real-valued function on M. The associated Hamiltonian vector field is of the
form

(15) U, = Za] )(8/0u?),

where the coefficient functions a’(u) which depend on g have to be determined. Let f be
the other smooth real-valued function on M appearing in (13). Then, by (14) and (15),
the Poisson bracket appears to be the function

2r 2r
(16) {F.9) =303 (0w, u}(0/0u) (9 /0u®)g.

j=la=1

The brackets appearing in
J =g = [{u®, v}, a,j=1,....2r,

form the so-called structure matriz of M. Relation (16) for the Poisson bracket takes the
form

{f,g} =Vf-JVg.

One of the most important examples of a Poisson structure is that associated with an
r-dimensional Lie algebra g with C4 for Jya, A =1,...,r, being structural constants (cf.
[10], p. 251) relative to a basis (Jcl, ..., Zy). Suppose that S is an r-dimensional vector
space, with co-ordinates u=(uq,. .. ,ur) determined by a basis w = (w1, ...,w;,). If f and
h are smooth real-valued functions defined on S, the corresponding Lie—Poisson brackets
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are given by

(17) {f h} = Z CA24(0/0ua) f(0/0u;)h.

jo, A
Formula (17) has recently been found in the works of Sophus Lie. In our time it was first
set forth by F.A. Berezin. Its invariant (co-ordinate free) form is

(18) {f,93(h) = ¢([dfn, dgn]),

where ¢ is a point in g* and dfj, is the differential of f at ¢ considered a vector of
g = (g*)*. It is clear that (17) takes now the form (16) with the linear structure functions

Z U4, o, 7=1...,7

In the cases when r = 1,2, and 4 we arrive at the complex, quaternionic, and octonionic
structures, respectively, and the structural constants C’ﬁl correspond to those described
n [11, 12].

The Poisson bracket on K(g*), the algebra of polynomials on the space dual to g,
is obtained by gluing together the Poisson brackets on the orbits [6] of the coadjoint
representation. According to the Darboux theorem [18], the Poisson bracket on each
orbit can locally be brought to its canonical form. In a neighbourhood of a point of
general position in g* this can be done in a consistent fashion on different orbits, namely,
it is possible to choose local co-ordinates on ¢g* and the bracket (17) acquires the standard
form (13). Identifying the vector space S with the dual g* of g, i.e. taking (w1, ...,w;,)
to be the dual basis of (x1,...,x,), we know that, since ¢ is finite-dimensional, the
gradient V f of every smooth function f : ¢* — R is an element of (¢*)* = g. Then the
Kirillov-Poisson bracket has the invariant form

{f,9}(w) = (u,[Vf(u), VA(u)]),

where u=g¢* and [, ] is the ordinary Lie bracket on g. Given h : g—R, the corresponding
Hamilton equations take the form

(19) (d/dt)u Z CAua(0/Ouj)h, a=1,...,r

7,A=1

Since

{ug,h} = Z CA oA (0/0uq)ug(0/0uj)h, where (0/0uq)ug = {O for 7 a,

1 for 8=«
eyt B=a,
where 8 =1,...,r, ie.,

{ta, h} = Z CAuA (0/0u;)h, a=1,...,r,

7,A=1

then (19) is in fact the equation of motion

(d/dt)ug = {ta,h}, a=1,...,r
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Summing up, from the Kirillov-Poisson bracket we obtain the invariant form of the
equations of motion
o = (u,[Vue, VA]), a=1,...,r

The procedure can be extended in a natural way to the associated foliations [13]
and connected with the problem of stability of diffusions on their leaves [3, 4, 8, 9];
diffusions being considered continuous Markov processes [2]. Finally, we can interpret
u = (u1,...,us.) as a counterpart of displacement, formulate an analogue of the elasticity
problem of Sect. 1 and apply the approximation methods of Sect. 2 since it is still possible
to follow the triangulation procedure. Namely, the results known for Poisson manifolds
(the associate problem for elliptic equations, in particular the Laplace equation) can
be extended to elastic problems. This approach cases the classical vibrations of elastic
systems (membranes or elastic solids which are Hamiltonian systems).
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