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Abstract. The physical properties of particles and phasesare considered in connection with
their description by means of the deformation of space-time. The analogy between particle
trajectories and phase boundaries is discussed. The geometry and its curvature is related to the
Clifford algebraic structure whose construction in terms of the theory of deformation leads to the
expected solutions for correlation functions referring to spectroscopy and scattering problems.
The stochastic nature of space-time is reflected by fluctuations of distances and time intervals.

1. Introduction. In order to construct the mechanics we need to determine the
space-time when a particle and its movement is considered. The physical fields are also
embedded into the space-time and their nature is usually related to the deformation of
geometry. Moreover, the phases can be regarded as the fields whose parametrization
corresponds to the solutions minimizing the field energy, i.e., the field variation vanishes.
Thus, we can see an analogy between the particle trajectories and the phase boundaries
description, which allows us to expect the interdependence of inhomogeneous systems
and their geometric and algebraic structures.

First of all we consider physical aspects of the geometry confined to the four-dimen-
sional space-time and its curvature in the context of the algebraic structure of particle
trajectories. The considerations can be based on the model introduced in [6]. The space-
time is then assumed as a projection of the five-dimensional space-time with the fifth
dimension being of stochastic behaviour.

From the mathematical point of view the four-dimensional space-time is described by
Minkowski space M, which is the four-dimensional flat pseudoriemanian manifold with
signature 2. The physical phenomena appearing in My can be observed in the three-
dimensional space R? which is one of the projections of M, changing additionally in time.
The model extended for five-dimensional manifold My with signature 3 or 1, in analogy
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to the relations between M, and R3 allows us to understand the nature of phenomena
observed in M, while they appear in fact in Ms. We repeat here a very illustrative
example which is well known and usually reported in the theory of relativity. Namely, the
contraction of a segment length in R3 is in fact explained by the rotation of a segment
in M, when we observe its projection in R? corresponding to the contracted length. A
similar relation takes place between the time intervals measured by the observers situated
in two coordinate systems moving in relation to each other.

The theory proposed at the geometrical level allows us to formulate the generalised
wave equations whose algebra refer to the description of the eigenfunctions and energy
eigenvalues in the conditions of deformed manifolds and their curvatures. In particular,
the equation of a particle embedded in the five dimensional space-time can be formulated
in the Kaluza-Klein or Penrose-type models whose fundamentals of local geometry for
Hurwitz pairs of manifolds with bidimension (8,5) characterise the physical deformation
of fields.

In terms of classical mechanics the particle trajectories satisfy the variational equa-
tions which are equivalent to the equations of motion in which the deformation is taken
into account in the form of effective fields determined by the connections related to the
curved space-time metric.

The variational principle leads also to the Euler-Lagrange equations minimizing the
thermodynamic potentials when we discuss the problem of phases coexistence in their
equilibrium (cf. [3]). The thermodynamic functions are then treated as physical fields
associated to the order parameters whose parametrization corresponds to the particle
trajectory. On the other hand the formal analogy occurs in the case when we compare
the behaviour of a system described by thermodynamic functions or elastic fields lead-
ing to the appearance of effective forces in the form of Poisson’s brackets equivalent to
the connection term of the covariant derivative with respect to the coordinates in the
deformed, locally inhomogeneous medium.

2. Particle trajectories. The classical mechanics allows us to formulate the equa-
tions of motion by means of the Hamilton equations or the Euler Lagrange variational
equation, which describe the particle trajectories as solutions minimizing the properly de-
termined functional with respect to the most probable path of a particle. Two approaches
are based on the variation of one of two functionals: the Lagrange functional £ or the
Hamilton functional H which are related to each other as H = v(0L/0v) — L, where v is
the velocity in the space-time (x,t).

In the case of deformed geometry the variational principle is defined by means of the
space-time invariant ds = —g¢**dx;dx), considered in a metric ¢** applied to the description
of the interaction fields in terms of the space curvature. A typical and illustrative example
is then connected with the trajectories in the general theory of relativity where they are
given by the geodesic lines.

Within the conventional approach to the deformation the properties of the deformed
space-time can be reflected by means of covariant derivatives d/dt — d/dt + T where T’
stands for the connection of the space related to the Christoffel coefficients constructed
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on the basis of the metric elements. The Lagrange function is then given by
1 .
(1) L= 5m(R +TR)? - V(R)

with the potential V' (R) which has its usual meaning and m standing for the mass of the
considered particle. The motion of a free particle corresponds to the case V(R) = 0 when
the equation of motion reads

(2) R-T?2R=0
for I" assumed to be independent of R.
Taking into account that » = R the Hamiltonian function is of the form

P2
= — —-TRP
(3) H o R
with P = m(R + T'R) hence the Hamilton equations
. P .
4) R=—-TR; P=TIP
m

lead to Eq. (2), confirming it in a self-consistent way. The solution of Eq. (2) for I = jw
takes its form R = Ry coswt with Ry denoting the amplitude of oscillations.

The obtained result seems to be of great importance for the interpretation of fun-
damental properties of a free particle behaviour. We can see that the non-interacting
particle oscillates at the vicinity of its initial position; it moves in the conditions when it
should remain in rest. From the physical point of view the result can be interpreted as
the action of an additional force due to the influence of the curved space-time.

The presented result can be also discussed in frames of the physical models based on
the non-commutative geometry. One of them is based on the statement that probabilistic
interpretation of quantum mechanics causes an unitary time evolution of the physical
system due to the choice of the g-deformed algebra of observables with consequence on
the level of dynamics. In the case of deformation described by the commutation rules
RP — ¢ PR = ihq the Heisenberg equations are written as [10]

: 2
(5) R=%(1—q4)(%>R+q(l+q2)%; P=0
hence we can see that Eq. (5) takes the form (2) for R — R + R with the frequency
(6 o= t-gh(2)
h 2m

and the shift constant R = % which do not vanish for P being a constant with
respect to (5), and ¢ # 1 corresponding to the g-deformed algebra. The frequency (6)
vanishes for the standard quantum mechanics ¢ = 1. The constant P can be in fact of
an arbitrary value. Thus, we can expect a spectrum of oscillations whose appearance is
governed with respect to w and R. It allows us to suppose that the distribution with
respect to the P is of Gaussian type. Thus, the movement of a free particle embedded in
the deformed space-time is of stochastic character.

3. Five dimensional construction. The proposed picture is consistent with the
construction in the five dimensional space-time with a stochastic dimension [6]. The
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model leads then to the variational principle 65 = 0 for S = « [ ds, in analogy to the
geodetic trajectories, with the Lagrange functional £(v = R, R) in the form

2 02>1/2

(7) L:—mCQ(l—C—Q—nC—2

where o = o(R) represents a stochastic distribution of deformation. We assume

(8) o(R) = o cos(wn)R

for n = 1 with the normalization condition ¢(0) = 1 while the origin R = 0 is chosen
arbitrarily due to the symmetry of the space. In the case of the nonrelativistic limit the
variational principle reads

Ea I 1
(9) S = / {mR2 + maz(R)} dt
o L2 2
hence the equation of motion takes its form
. do(R) 1
10 = (o(R =)R=0
(10) 0B
hence
. sinwy, R
11 i ( Oy nRi")Rzo
(11) + ; OnOp Wy COSW 7
reduces to
(12) j (Zo—nwg)Rzo
n
for R sufficiently close to zero. The case n = —1 requires the distribution o(R) =
>, sin(wy R) instead of (8), which leads to the initial condition ¢(0) = 0, but > o, = 1.
As a consequence, we obtain Eq. (12) for n = —1 which is also valid for n = 1.

We can see that the solution of Eq. (2) is confirmed by means of the discussion
concerning Eq. (12) derived in the geometrical way. The origin of a free particle is not a
point but the space-time area where the chaotic movement is strongly localized.

4. Topology and fluctuations. Scattering and spectroscopy. The problem of
deformation can be discussed at variations levels of structure. The first step was connected
with the behaviour of a free particle occurring in the space-time when the deformation
is introduced at the level of the space itself. The next point concerns the behaviour
of a particle embedded into physical fields of interactions which can be related to the
deformations influencing the considered fields.

One of the most important and characteristic situations where the deformation plays
the essential role refers to the description of the surface topography. The interest in
the investigations of the surface roughening phenomenon is both academic and practical.
From the fundamental point of view its description allows us to relate the theoretical
predictions to experiments, while the models can reflect the fundamental structure also
including the subatomic deformations of the space-time. The considerations are based on
topological correlations whose Fourier transforms at the surface are the standing point
for calculations of the measured quantities in the experimental studies. The low energy
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electron diffraction and its different variants as diffuse or tensor low energy electron
diffraction is the main technique which is used to investigate the geometrical structure
of the surface [7, 12]. Almost direct mapping of the surface inhomogeneities is observed
by means of the scanning tunnelling microscope which turns out a very sensitive tool for
local investigations.

The backscattering electron intensities are the sum of the coherent and incoherent
parts which are connected with the perfect translational symmetry of the surface layer
and with the spontaneous deformation, respectively. The general expression for the in-
coherent intensity at the disordered surface is determined by the scattering cross section
for the potential characterised by the topological correlations which reflect the fluctu-
ations at the level of nanophase structures. In the model solid on solid the roughness
of the surface contributing to the deformation of the considered space at the nanoscale
level is represented by the deviations of the square average values of the (0.1) occupation
operators from their mean square values. Thus, we can see that the deformation even
in the nanoscale level is of statistical character. In this case the average values of the
considered operators are determined by the algebra of the pseudospin operators which
are connected with the occupation of the surface sites. The deformation is them given by
means of several, at least, two states of configuration for the considered particles.

The investigations of the surface topology show that the correlations play an impor-
tant role of the potential responsible for the incoherent processes which are connected
with the deformation of the perfect crystallographic symmetry.

First of all, the remark is confirmed by the research concerning the critical scattering
of neutrons by ferromagnets [4]. In order to stress that the property is of general char-
acter we discuss another example: the contribution of magnetic moments correlations to
the electric resistivity in magnetic materials with the fluctuating exchange interactions.
From the physical point of view the considered contribution appears in ferromagnets due
to the interaction between localized spins and delocalized conduction electrons. Taking
into account that the influence of magnetic bands on the conduction electrons behaviour
can be described by means of the short range s-d type exchange integrals the magnetic
contribution to the electrical resistivity is given by the Fourier transform of the spin
correlation functions. The deformation of the magnetic correlations is introduced by the
disorder of the sample which is represented by the fluctuations of the exchange param-
eter changing it by a random value with respect to the average value in different lattice
sites [11].

The temperature and angular characteristics of the conductivity are then discussed.
A comparison of the results obtained for various distributions of deformation allows us
to conclude that the Gaussian function used for the description of the exchange integral
fluctuations instead of a particular distribution produces similar results only for small
amplitudes of fluctuations while for large fluctuations the results become different than
those obtained previously. We can see that in the case of highly disordered materials
the proper choice (of the distribution function) is of primary importance and it is quite
possible that additional improvements of the distribution are necessary. The above con-
clusion is of a general character and confirms the considerations in paper [5] devoted
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to the Clifford analysis including Riemannian geometry used to the description of the
electromagnetic field and its interaction with particles.

Another example showing the importance of correlations connected with the defor-
mation of magnetic symmetry due to the randomness of spin orientations is the problem
of the line-width of elementary magnetic excitations. The basic quantity in calculations
of line profiles is the density of magnon states. Calculations based on the standard Green
function technique lead to the approximation of the infinite life-time of magnons. The
profiles of spin waves resulting from the magnon-magnon interactions, their collisions with
other quasi particles and time-dependent configurations can be obtained in the frame of
the coherent potential approximation. In this method the coherent potential which can
be treated as an effective internal field additive to a field along the magnetization di-
rection leads to the finite line-width of spin waves profiles via the proper choice of the
two-particles Green functions which allow us to calculate the physical characteristics of
the system.

One of them is related to the spectroscopy which is determined in fact by two factors:
(1) the energy eigenvalues and (2) the density of states. The collection of the first factor set
is usually given by the wave equation and its eigenvalues. The second factor determined
by the density of states whose best fit to the experimental results is a very fruitful tool of
the spectrum analysis needs the energy eigenvalues and their probabilities of appearance
described by the square of the eigenfunctions. Both of the required characteristics can
be achieved just by the considerations in the language of the thermodynamic Green’s
functions. The direct bridge between the proper Green’s function and the density of
states is known and important for the presented investigations.

The problem of the spectral analysis is reduced to the discussion at two levels. The
atomic and nanostructural level corresponds to the discussion of the density of states
introduced by the Green’s functions which should be considered as a linear combination
of the Gaussian-type spectral lines. The subatomic level corresponds to the confrontation
of the wave equation containing the terms of stochastic nature. In the simplest case we
can discuss the description of the hydrogen atom which allows us to understand the role
of the space deformation.

The description at the level of the Dirac-like equation shows that the stochastic de-
formation removes the singularity of the Coulomb potential at its origin. This fact has
its fundamental influence on the hydrogen spectrum. However, the examples of a more
complex spectrum [e.g. 2] are very instructive when we consider the Gaussian analysis
and we expect the stable solutions for which the linewidth reflects the deformation. In
this case the spectral pictures which are complicated from their origin are good exam-
ples for the applications of the methods which consist in the separation of individual
excitations.

In the context of the present considerations we would like to stress that the discussion
of the role of deformation at the level of particle systems is connected with the statis-
tic properties and their description reduces to the statistical distribution reflecting the
spatial and temporal correlations between interacting particles. However, the influence
of fluctuations can been how considered in the natural way in connection with the de-
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formation of stochastic character at the space-time deformation level whose appearance
implies local fluctuations deforming the behaviour of statistical fluctuations.

5. Phase characteristics. The role of deformation at the macroscopic level can
be exemplified by the considerations of the thermodynamic properties in the region close
to the phase transitions. The thermodynamic parameters and functions discussed in the
case of a sample confined by the surface can be of inhomogeneous distribution due to
the symmetry breaking at the surface. The description of the order parameters is then
analogous to the theory of the particle variational principle we return to the case when
the fluctuations of stochastic nature concern the space. Taking into account this analogy
we can write the fundamental F' with respect to the order parameter M which depends
now on the distance from the surface measured along the axis Z, namely [8, 9].

(13) FIME) = R0+ [ [f(M) n ;J(‘fj‘f)g] 0z

where f(M) denotes the potential of the bulk system described by the homogeneous order
parameter given by df(M) = 0. The function fs(M)s stands for the description of the
boundary condition at the surface where My = M(z = 0). The coeflicient J plays the
role of the stiffness constant responsible for the inertion of the system with respect to the
applied deformation in analogy to the mass in the case of the particle movement.

From the physical point of view the phase transition theories show that the formal
analogy has its deeper interpretation. The phase diagram is usually established by the
minimization procedure of the thermodynamical potential F'(T; M, H) with respect to the
order parameter M (T; H) which is conjugated with an external field H at temperature
T. The phase ¢ is then determined by the solution of the equation dF (M) = 0 which
can be found in the form M, = M,(T; H). In the case when the variational equation
has more than one solution and the solutions are different at some intersection interval
of temperature i.e. M, # M, for T € (T,,T,) we can consider the appearance of the
most probable phase and discuss the phase transition (o < ¢’) determined by the physical
condition: F(Mo. (TC)) = F(MU:(TC)) for the phase transition temperature T, € (T, Ty)
where T, and T, stand for the stability temperatures of the phase o and o', respectively.
The stability points satisfy the equations §2F (Tg : MU(T(,)) = 0, respectively. The phase
transition between two phases is considered as discontinuous when the phase coexistence
region exists T, < T, < T, while the transition is continuos when T, = T, = T,,. The
existence of the surface leads to the boundary conditions at the surface for the solution
corresponding to the most probable profile of the order parameter M when it becomes
inhomogeneous but it describes the same phase at the surface and in the volume of a
sample. The profile M = M (z) corresponds now to the particle trajectory x = x(t).

We can also expect another situation when the surface order represents a new phase
which can coexist with that inside a sample. In this case, the surface phase is described by
the energy corresponding to the surface order parameter whose appearance is preferable in
some interval of temperature. The analogy to the particle behaviour indicates a situation
when there are two possible trajectories determined by some characteristics of the field in
which the movement is considered. The particle chooses the favourable trajectory. The
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change of trajectories often manifested by the hoping between trajectories, means then
the phase transition at the one particle scale.

The deformation of thermodynamic functions can be introduced on two levels dis-
cussed in connection with the space-time, i.e., one particle level, or in connection with
the statistical averaging, i.e., particle ensemble level. The second case is usually accepted
and its description is related to the approach of correlation functions. The first situation
leads to a more original model which is closely formulated within the Clifford algebra.

The considerations of geometrical deformation of the space time allow us to replace
the euclidean structure of the space or the pseudo-euclidean structure of the space-time
by the curved pseudo-riemannian space whose metric generates the Christoffel symbol I"
according to the relation

dM  dM
14 — = —-TM
(14) dz  dz
The functional I'(M(z)) given by (22) can be rewritten in the form [1]

au

(15) F[M(2)] = f«(M,) +/OOO [f(M) + %JFQMQ + 1J( -

2 1
> ) ]dz+ SITOM2 = M)
where My = M(z =0) and M, = M(z = ).
The connection I' can be reduced to a constant being the structural Clifford algebraic
constant exactly as in the case of particle systems when investigating also surface effects

introduced by the surface stochasticity. The variational conditions read
d*M

of 2
1 7 T = -
(16) 3M+J M J(dz2)

ofs _dM
17) o M= ()
with the boundary conditions
dM

(18) (). =0

We can see that the constant I' characterises the geometry introduced by fluctuating,
the inhomogeneous nature of the space and it plays simultaneously an important role in
the problem of stability of the systems with restricted dimensions. One of the results is
of particular interest. It turns out that for f(M) which does not give the stable phase
M = 0 the deformation I' can assure the stability of the phase M = 0 while the phase
M = M, is shifted to M < M.. Moreover, the deformation creates a phase transition.
The problem which remains open concerns the evaluation of I'. The ways based on the
experimental fitting lead to different values. Therefore, it seems to us that the evaluation
of I should be done at the fundamental level connected with the energy and impulse fluc-
tuations. However, the influence of fluctuations can be considered now in the natural way
in connection with the deformation stochastic character at the space-time deformation
level whose appearance implies the local fluctuations deforming the statistical approach.

6. Conclusions. The investigations of deformations considered in physical objects in
various aspects show that the nature of deformation is connected with the structure of the
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space-time which should be extended to five dimensions where the fifth axis corresponds
to the stochasticity of four-dimensional space-time projections. The conclusion of the
present paper that a free particle is not localized at the geometrical point but it vibrates
stochastically around this point can be interpreted as a fluctuation of the space-time
which is perfectly explained in the light of the stochastic dimension projected to the
four-dimensional manifold of observation. Of course, by this fact justifies the appearance
of stochastic forces and inhomogeneities of dynamic character in various, real physical
systems.

The model of fluctuating space-time becomes a basis for the interpretation of local fluc-
tuations considered in thermodynamic theories where the occurrence of local fluctuations
is assumed a priori at the construction of hamiltonian for a given system, independently
of the other features of the hamiltonian. The local fluctuations are then distinguished
from other dynamic inhomogeneities which appear in the description of a system as a
result of dynamic lows governing a system assigned by the considered Hamiltonian. The
present interpretation of the space-time nature seems to be confirmed by the considered
here examples and formulas well as physical analogies between the described approaches
in context of the role of deformation.

The present contribution brings new approaches to the application of the Clifford
algebra and its geometrical consequences in physics as well as some predictions for the
research in future. The main idea is that the space-time can be of stochastic nature.
The applications concern then different physical phenomena whose nature seems more
clear when interpreted in terms of stochasticity independently of their variety, while the
examples taken from the surface science are more suitable for the sake of presentation.

The presented considerations have been based on numerous discussions which the
authors held on different occasions with their colleagues: J. Lawrynowicz, O. Suzuki,
C. Surry, J. Rembieliniski, H. Kibler, B. Gaveau, J. Gnatenko, F. L. Castillo Alvarado,
G. Contreras Puente, L. Papaloucas. We are convinced that this paper would not have
been possible without their fruitful and critical comments.

The authors are grateful to the organisers of the Conference for including the topic
of the present paper into the Conference schedule.
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