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Abstract. Here we give several examples of projective degenerations of subvarieties of P?.
The more important case considered here is the d-ple Veronese embedding of P"; we will show how
to degenerate it to the union of d" n-dimensional linear subspaces of P*; ¢ := (n+d)/(n!d!)—1 and
the union of scrolls. Other cases considered in this paper are essentially projective bundles over
important varieties. The key tool for the degenerations is a general method due to Moishezon.
We will give elsewhere several applications to postulation problems and to embedding problems.

We work over the complex number field. The aim of this paper is to give some key
examples of projective degenerations of important subvarieties of P*. The more important
case considered here is the d-ple Veronese embedding of P"; we will show how to degen-
erate it to the union of d" n-dimensional linear subspaces of of P*; ¢ := (n+d)/(n!d!) — 1
and to the union of scrolls (see Theorem 0.1 and the discussion in Remark 2.1 for a more
precise statement). Other cases considered in this paper either explicitly (see parts (i)
and (ii) of Theorem 0.1 and Theorem 3.1) or implicitly (see Remark 3.2) are essentially
projective bundles over important varieties. We will give elsewhere several applications
will be a partial extension of the results on non complete embedding proved in [BE] (in
which it was considered the two-dimensional case). For another application, see Remark
2.2. As in [BE], section 1, the key tool for the degeneration is a general method due to
Moishezon (see [M]).

Here is the main result of this paper.

THEOREM 0.1. Let u : P* — P! t+1 = (n+d)/(n!d!) , be the d-ple Veronese embedding
of P™. Then for each of the cases (i), (it), (iii) listed below there is an integral family
{gt}ter of automorphisms of Pt with as flat limit of g;(u(P')) in the Hilbert scheme
Hilb(P!) of P* the following connected union 11 of varieties:
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(i) I as connected union of d scrolls Y(n,i),1 < i < d with the deg(Y (n,1)) = 1,
deg(Y(n,i)) =i"—(i—1)", fori > 1, Y(n,i) isomorphic as abstract variety to P" ifi =1
and to the pojective bundle P(Q © O(—1)) over P! ifi > 1. Furthermore, for everyi >
1,Y (n,i)NY (n,i+1) is the i-ple Veronese embedding of P"~! and Y (n,i)NY (n,i+2) = oo.

(it) II is the connected union of d!/(i!/(d—i)!) copies of subvarieties X (n,d,i),1 <i <
min(n,d) such that deg(X(n,d,i)) = nl/(n —i+ 1)!, and as abstract varieties X (n,d, 1)
is isomorphic to P" 71Tt x PL x ... x PY(i — 1 P1’s as factor). Furthermore, the union of
all the varieties X (n, j,1),1 <i < min(j,n), is a projective degeneration of Y (n,1).

(#44) 11 is a connected union of d* n-dimensional linear subspaces of P. Furthermore,
for all n,d, i, the union of deg(X(n,d,i)) of these linear spaces is a degeneration of one
of the varieties X(n,d,i) (and every linear space arises in this way as a degeneration of
exactly one of the varieties considered in (ii)).

Theorem 0.1 will be proved in section 2. In section 1 we will describe a general method
of Moishezon ([M]) to obtain projective degeneration. In section 3 we will consider more
general cases, but being able to give much less informations on the reduced schemes
arising after the degeneration. Except very easy cases, we can say only that this reduced
scheme is equidimensional and its irreducible components are linear subspaces of the
ambient projective space.

The author was partially supported by MURST and GNSAGA of CNR (Italy). This
paper is in final form and no part of it will be published elsewhere.

1. In this section we will describe a method due to Moishezon (see [M], section 2) to
obtain projective degenerations.
The following definition was given in [M], Def.1 of section 2.

DEerFINITION 1.1. Let X,Y be two complex projective reduced algebraic varieties
and g : X — PL, h: Y — PM be two embeddings. We say that (X, g) is a projective
degeneration of (Y, h) if there is a family {Y (¢),* € C'} with embeddings h; : Y (t) — PV,
N > max(M.L) (depending algebraically on t), an integral family of automorphisms
{gt}t0, projections my, : PN — PE 7, : PN — PM such that Y (0) & X, 7y, is defined
on ho(Y(0)), mrho(Y (0)) inducing an isomorphism onto g(X), and for every ¢t # 0 7,
defined on Y (t), Y(¢t) 2 Y and 7’ prhy = gih.

Of course, changing the embedding h; we may assume in Definition 1.1 that g; is
the Identity for every t # 0. However, the form of 1.1 just written make clear why such
projective degenerations imply statements like Theorem 0.1.

Although we will not need it, we would like to point out the following variation of
definition 1.1 in which, instead of C! we take an integral smooth affine curve, A, and 0 € A
and in general make the same change in all the definitions and discussions considered in
this section. Everything works in the setting, too.

We will make the following assumption and fix the corresponding notations.

Assumption (A1): Let Z be a reduced variety, Z = AU B, A, B subvarieties of Z
(with Z = A allowable even if B # 00) and let g : Z — PV ! be a projective embedding.
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Following [M], section 2, we say that (Z, A, B, g) satisfies Assumption (4;) if the following
is true:

(i) B is defined by a sheaf of principal ideals;

(ii) the ideal of C = AN B on A is equal to the restriction to A of the ideal of B on Z;

(iii) C does not have common irreducible components with A. Clearly C is a Cartier
divisor on A. Set W := ZxCl, Zy := Zx {0}, Ag := Ax{0},Co := Cx{0}. Let p: W —
Cl,q : W — Z be the projections , B’ := ¢~ 1(B). Let ¢ : W” — W be the monoidal
transformation of W with the center By, B” and Z” the strict transform of B’ and ¢~1(2)
in W”. Let G € Pic(Z) be very ample. Set G’ := (¢*¢*(G) — [¢71(By)]) € Pic(W”).
Let a;,1 < j < M, be a basis for HY(A4,04((G|A) — C)). Let o”’; € H*(Z7,G|Z”) be
induced by ;. Fix ¢ € H*(Z,G"). Let ¢;,1 < j < N, be a basis for H°(Z,G) and let
#”;,1 < j < N, be the corresponding elements of H°(Z”,G*|Z”). We make the following
assumption (As):

Assumption (As). O4((G]A) — C) is spanned by its global sections. Let f : Z”7 —
PN+M=1 he the map sending P to (®”1(P) : ... : @' n(P) : a”1(P) : ... : ap(P)). Let
an : PNTM=1  PN=1 (yegp. 7, : PNFM—1 _ PM—1) he the rational projection on
the first N (resp. last M) homogeneous ccordinates. Using assumption (As) it is easy to
check that f is a regular morphism with the following properties:

(i) for every t € C'\{0}mn f|lp~1p~1(t) is induced by the given embedding of Z x {t}
into P! corresponding to G

(ii) 7n f| B} is induced by the given embedding of By into PV~ induced by G|B:;

(iii) f|(B”o\(B”0N Ap)) is an embedding;

(iv) 7w, f|Ao is the restriction of the morphism A — which is induced by
HY(A, (G|A\C). Set Z' := fo~1(Zy), A" := f(A}), B' := f(B"g), and ¢’ : Z' —PN+M-1
the corresponding embedding. As in [M] we will say that (Z’, A’, B, ¢’) is obtained from
(Z,A, B,g) by construction (D). It is clear that the pair (Z’,¢’) obtained from (Z, g)
with construction (D) is a projective degeneration of (Z, g).

IF)Mfl

2. In this section we will prove Theorem 0.1. In Remark 2.1 we will discuss briefly
the structure of the intersections of the irreducible component of II for each of the cases
(i), (ii) and (iii) arising in the statement of 0.1. In Remark 2.2 we will show how to
obtain from Theorem 0.1 projective degenerations of other varieties and how to use the
degeneration obtained to study the original varieties; in the last few years these varieties
were the subject of several papers from several mathematicians.

Proof (of Theorem 0.1) We will apply several times the construction (D) described
in section 1. At each step of its application we will need to check (or leave the easy check
to the reader) that we may do the construction even if in previous steps we applied it
or equivalently that we may do do simultaneously all the degenerations described in the
uses of construction (D). First, we will make the degenerations needed to prove part (i)
of 0.1. Then we will show how to degenerate (again using the construction (D)) each of
the irreducible components of the reduced scheme II arising in part (i) of 0.1 to the union
of irreducible components of the reduced scheme (called again IT) described in part (ii).
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Then we will show how to degenerate each of the components of the scheme II of part (ii)
to union of linear spaces to obtain part (iii). To check at each step what are the varieties
arising in the degeneration by construction (D) we will use double induction on n and d.
Hence we will use an essential way the statements for the case n = 2 proved briefly in [M],
section 3. These statements and proofs are explained in detail for n = 2,d = 3 in [MT].
However for n = 2 the case d > 3 are very similar to the case d=3 and even it would be
possible to prove the case n = 2,d > 3 just formally from the case n = 2,d = 3. Hence
the results in [M], section 3., have a full proof in print. In particular, unless otherwise
stated we assume n > 3. We divide the proof into 3 main parts (i), (ii), (iii) corresponding
respectively to cases (i), (ii) and (iii) of the statement of 0.1. Part (i) (resp. (ii)) will be
divided into 3 steps (resp. 2 steps).

Proof (of part (i)):

Step (i1). As in [M] we start with V;, 4 := u(P™) C P* and apply the construction (D)
taking Z = A =1V,, 4, B = u(H), H hyperplane of P". We find a projective degeneration
of Vi, 4 to Vi, g1 UTq for some Ty. Then we repeat d—1 times the construction, each time
for a lower integer d, and find a projective degeneration of V;, 4 to a union 77 UT>U...UTy
with T} n- dimensional linear space.

Step (12). Here we will check that for every k < d we have T, = Y'(n, k). First, by
the case n = 2 proved in [M] we know that each T} is a fiber space with fiber P! over
some variety. We identify this variety as P"~' and its embedding in P! using the case
n — 1 assumed by induction. Since the base variety P*~! has trivial Brauer group, this
fibration is the projectivization P(E) of a rank 2 vector bundle E on P"~!. By the case
n = 2 considered in [M], the splitting tipe of the restriction of E to every line is the same:
up to a twist it is 0, —1. By a theorem on uniform vector bundles ([VdV]) if n —1 > 2
E is the direct sum of two line bundles (which are, up to the same twist, of degree 0 and
—1), while if n — 1 = 2 either E splits in the same way or E = TP?(—2) (up to the same
twist). But we may assume to have proven inductively for every n the existence and
uniformity of E. Since the bundle E arising for V,,_ , is the restriction to a hyperplane
of the bundle arising for V,, 411, by the case n = 4 we see that even if n = 3 the bundle
E splits.

Step (i3). By construction Y (n,i) NY (n,i+ 1) is what claimed in 0.1. Since the two
sections of Y (n,i+4 1) — P"~! at which Y (n,i) and Y (n,i+ 2) are glued (i.e. the section
with normal bundle of degree —1 and the section with normal bundle of degree 1) are
disjoint, we have Y (n,i) NY (n + 2) =V for every i.

Proof (of part (ii)):

Step (ii1). We will apply a few degeneration to each Y (n,i),i > 1, leaving to the
reader easy checking that we may apply the degenerations of Y'(n, ) for all i simultane-
ously. Hence we fix Y (n, i) with i > 1. First by a blowing up of a fiber P, of the projection
Y (n,i) — P"~! we reduce to the following situation. We have a reduced scheme T and
projection m : T'— P! (with P"~! embedded by the i-ple Veronese embedding). T has
two irreducible components, W and W’ with m(W’) a point, W’ = P* W’ embedded as
a linear space. W = P! x PL m|W is the first projection and the fibres of m|W are
embedded as lines.
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Step (ii2). By step (iil) it is sufficient to analyze the easy case of the degeneration of
P~ x P! with the first factor embedded by the i-ple Veronese embedding and the second
factor embedded as a line. The degenerations of Y (n,4) to the union of all X (n,d, ) is
just obtained applying induction on n to the factor P*~1.

Proof (of part (iii)). By part (ii) and induction, it is sufficient to degenerate @ :=
P* x P! embedded by the complete linear system H°(Q,0q(1,1)) (i.e. each P¥ and each
P! is embedded as a linear space) into P21, With this embeddeng @ is a minimal degree
scrool over P1. The case k = 1 was proved in [M], section 4, or (but only for the line
bundle Og(1,y)) can be proved exactly as in [BE], Lemma 2.2. Hence we obtain that for
every dimension the variety Q may be degenerate to a chain of k+ 1, (k + 1)-dimensional
linear subspaces Q(1) U ... U Q(k + 1) with Q(¢) N Q(j) a linear subspace of dimension
k+1—1i—j| in both Q(7) and Q(j). =

Remark 2.1. Let A and B be different irreducible components of the reduced
schemes II considered in the statement of 0.1. If we are in part (i) of the statement
of 0.1 we know AN B. Assume that we are in part (ii) of 0.1. By induction on n the
proofs of this part gives the various possibility for AN B and even more: it gives for each
point P of IT what are the components (the number, their degree, and so on) containing
P, i.e. we know the combinatorian structure of II. However the situation is messy. Now
assume that we are in part (iii) of 0.1. Again, in principle the proof gives inductively the
combinatorial structure of II. However the situation is very messy even for low n and we
never tried compute it in the general case.

The following remark shows an interesting application of therems 0.1 and 3.1 and of
any other theorem on projective degenerations.

Remark 2.2. Take a subscheme G of the reduced scheme II union of linear spaces
obtained in part (iii) of Theorem 0.1. Suppose that we may see G as flat limit of a family
{Gu}uea\joy of subschemes of P" which goes to Gy under the projective degeneration
(call it {Vy, }uen) inside P of the Veronese embedding of P™ to II. Let My (resp. M,,) be
the linear span of Gy (resp. G,) in Pt. Consider the image Ty (resp. T},) of the projection
of IT (resp. V) from My (resp. M,). We may see Ty (resp. T,) as the image of the blowing
up Ag of Gy in II (resp. A, of G, in V,,) by a suitable linear system. We may see Tj as
a "limit” of {7 }nea\fo3- For general u € A many cohomological properties of A, and
T, can be controlled by the corresponding cohomological properties of Ay and Ty using
a semicontinuity theorem.

3. In this section we consider other projective degenerations (see Theorem 3.1). These
varieties are more general than just Veronese embeddings of projective spaces as in Theo-
rem 0.1, but we will have very few informations about the limit reduced scheme obtained
(essentially only that it is equidimensional, connected and with linear subspaces of the
ambient projective space as irreducible components).

The case a = 2,m(1) = m(2) = 1 of the following theorem was proved in [M],
section 4.
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THEOREM 3.1. Fiz integers a > 2,{m(i) }1<i<a, {r(J) h1<j<a with m(i) > 0 and r(j) >
0 for alli,j. SetT(r) :=PmM xP™2) % xP™@; let Op () be the line bundle on T (r)
which have degree (i) on the i'"-factor ™). Let T(r, s) be the image of T(r) by the com-
plete linear system HO(T(r), Op(y)(s)) into P!, t+1 := I <i<q ((m(i)+7(i))!/m(i)lr(i)!).
Then T(r,s) may be degenerated inside P! to a configuration of deg(T(r,s))(m(1) + ...
... + m(a))-dimensional linear spaces.

Proof. (a) By induction on a we reduce to the case a = 2, say P* x P, in which
the first factor is embedded linearly, i.e. to the case Z := P x PY embedded by O(1,r).
We apply part (iii) of Theorem 0.1 to the r-ple Veronese embedding of P¥. In this way
we reduce easily to the case r = 1. We have to degenerate P* x PY embedded by O(1, 1)
to the union of (u + v)/(ulv!) linear spaces.

(b) (Sketch) We will make a general construction of projective degenerations and
apply it to the particular case of Z we need for Theorem 3.1. We see Z as P(E) with E
(trivial) rank u + 1 vector bundle on Y :=P?. Let 7 : P(E) — Y be the projection. We
take a hypersurface H of Y and a vector bundle @ on E which is a quotient of E|H; call
q: E — E|H — @ the associated surjection. For Theorem 3.1 we take as H a hyperplane
Pl of Y and Q = Qg (1)®“. Set F := Ker(q). By [Ma] F is a rank u+1 vector bundle on
Y; it is even called ”the elementary transformation of F' along ¢”. Then we may repeat
the construction, even changing the hypersurface. For instance if we take again H as
hypersurface and Ker ((E|H) — Q) as new bundle, there is a surjections ' — K with
E(—H) as kernel ([M]). Assume P(E) embedded in a big projective space, P with Op(1)
or degree one on the fibres of 7. By Grothendieck’s definition of projective space, P(Q)
is a subvariety of P(E). Let M be the linear space spanned by P(Q). Geometrically, the
composition of the elementary transformation along ¢, taking the projectivization P(F')
and the induced embedding in a projective space corresponds to the linear projection of
P(E) from M into a lower dimensional projective space, J. Call Z’' the image of P(F')
in J and see J as a linear subspace of P. Inside PP as in the proof of [BE], Lemma 2.2,
we obtain a flat family of embeddings {j.}uea\{oy of P(E) and a family {g.}uea\{o}
gu € Aut(P) with j,(P(E)) = ¢.(P(F)) and with as flat limit, Zy, inside P at o €
A the union of Z' and of the exceptional divisor, I, obtained blowing up P(FE) along
P(Q) and then mapping it to P with the corresponding linear system, exactly as in
construction (D). In particular the fibres of I' — P(Q) are mapped linearly into P. In
our situation, this gives a true embedding of I' with fibres embedded linearly and we
may apply induction on v since H = P¥~!; the starting point v = 1 of the induction was
proved in the proof of part (iii) of Theorem 0.1 (essentially in the same way by induction
on u seeing P* x P! as a trivial P*-bundle over P*). Then we may iterate the elementary
transformation and the construction with Z’ inside J (even using a different H). In our
situation we use the same H and apply the elemntary transformation which has E(—H)
as kernel. Since in our situation P(E(—H)) = Z in not embedded by O(0, 1), in the flat
limit we obtain a contraction, too (look at the case u = v = 1 of the quadric surface).
We can check that there will not be any embedded component in the flat limit taking
restrictions and induction on v; the case v = 1 was checked in the proof of part (iii) of
Theorem 0.1. m
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Remark 3.2. Note that part (b) of the proof of Theorem 3.1 is a general method
for projective degenerations and that, when it applies, it gives a geometric understanding
of what is the limit obtained using construction (D).
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