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Abstract. The authors are dealing with the Dirichlet integral-type biholomorphic-invariant
pseudodistance ραX(z0, z)[U ] introduced by Dolbeault and  Lawrynowicz (1989) in connection with
bordered holomorphic chains of dimension one. Several properties of the related hyperbolic-
like manifolds are considered remarking the analogies with and differences from the familiar
hyperbolic and Stein manifolds. Likewise several examples are treated in detail.

1. Introduction and outline of results. We are going to recall, after [5], the
definition of a hyperbolic-like manifold:

Let X be a complex manifold of complex dimension n and let γ be a C1-cycle of
real dimension one with support relatively compact in X. Let Γ be a complex analytic
subvariety of complex dimension one of U = X\sptγ, such that the integration current
[Γ] defined by Γ admits a simple extension [Γ̃] having compact support in X and satisfies
d[Γ̃] = γ.

By an elementary (bordered holomorphic) chain we will understand the integration
current [Γ] defined by Γ and to simplify notation we will denote it also by Γ. By Reg Γ
we will understand the regular part of Γ. Reg Γ is the image of a connected Riemann
surface S by biholomorphic mapping f ; Γ is also the image of a Riemann surface

∑
by a

holomorphic mapping ψ : Σ→ X\sptγ such that S ⊂ Σ, ψ/S = f and Σ\S is a discrete
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set of points of Σ.
Let U = {Uj : j ∈ I} be a locally finite open covering of X. Denote by F [U ] ≡

adm(X,U) the family of all admissible pluriharmonic C2−functions uj in Uj , defined in
each member of the covering, which satisfy the conditions

(a) the oscillation of uj in Uj is less than one,
(b) d uj = d uk in Uj ∩ Uk 6= ∅.

Now we equip X with an hermitian metric h so that, in local coordinates, we have the
following associated geodesic distance:

ds2 = hjk̄dzj ⊗ dz̄k̄ (with the Einstein summation convention).

The induced hermitian metric on a connected Riemann surface S of X can be expressed,
via the associated geodesic distance, as f∗ds2 = gdz ⊗ dz̄. Let g(dcv, dcv) ≡ ||∆v||2ds :=
g11̄(∂/∂z)v(∂/∂z̄)v and consider an integral of the form

(1) 2i
∫
s

ĝα|(∂/∂z)v|2dz ∧ dz̄, ĝ := g(dcv, dcv), α 6= 0.

Within Γ there exist compact connected C1−cycles of dimension one. Let γ′ be one
of them. We assume that the length |γ′| of the border γ′ of Γ′ (γ′ = dΓ′) is uniformly
bounded in Γ, so ∆′ := ψ−1[Γ′] is an elementary chain with the border δ′ := ψ−1[γ′], lying
on Σ. Now we can consider an elementary chain as the image under ψ of an elementary
chain with border on Σ. Given a bordered holomorphic chain passing through distinct
points z0, z of U , we can consider it the sum of elementary chains passing through distinct
points zj−1, zj of U := X\sptγ, j = 1, . . . , p, so that z0 is the first given point, while zp
is the last one: zp = z.

For each elementary chain Γ′j passing through the points zj−1, zj with Γ′j contained in
a fixed elementary chain Γj , consider a holomorphic mapping ψj : Σj → Γj ⊂ X\sptγj .
It is biholomorphic except perhaps for a discrete set of points, so we get

(2) inf
Γ′

j
⊂Γj

{
|γ′j |
|Γ′j |
|
∫

Γ′
j

(ψ∗j ĝ)αdu ∧ dcu|} = inf
∆′

j
⊂∆j

{
|δ′j |
|∆′j |
|
∫

∆′
j

ĝαdv ∧ dcv|}

with ĝα as in (1), where |Γ′j | denotes the volume of Γ′j ,∆
′
j := ψ−1

j [Γ′j ] and ∆j := ψ−1
j [Γj ].

Thus with any bordered holomorphic chain passing through points z0, z of X, such that
|γ′| is uniformly bounded in Γ, we may associate the expression

µαΓ(z0, z)[u] :=
∑
j∈I

inf
Γ′

j

µαΓ′
j
[u],

where µαΓ′
j
[u] is defined as the expression from which the infimum is taken at the right-

hand side of (2). The expression

ραX(z0, z)[u,U ] : inf{µαΓ(z0, z)[u] : Γ passing through z0, z ∈ U}

appears to be well defined as well.
Without loss of generality, let z0, z1 be points of the same coordinate neighbourhood U

identified through a chart with an open set in Cn. Suppose that z0, z1 are sufficiently near
to each other so that the segment [z0; z1] is contained in U . Consider the set Γε := {z ∈ L :
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dist (z, z0; z1) < ε}, ε > 0, where L is the complex line in Cn passing through z0, z1. If ε
is so small that the closure of Γε with respect to X is contained in U , then the expression

ραX(z0, z)[U ] := sup{µαX(z0, z)[u,U ] : u ∈ F [U ]}

appears to be well defined for every z0, z ∈ X and, as a function of z0, z, to be a continuous
pseudodistance. It will be called an (α,U)-Dolbeault- Lawrynowicz pseudodistance. If
ραX(z0, z) > 0 for z0 6= z, it will be called an (α,U)−Dolbeault- Lawrynowicz distance. If
ραX( , )[U ] is a distance, X is called, following [5], an (α,U)- hyperbolic-like manifold. An
(α,U)−hyperbolic-like manifold is said to be complete if it is complete with respect to
the corresponding distance ραX( , )[U ]. With a minor modification the definitions are still
valid for the closure of an arbitrary bounded domain in Cn.

In Section 2 the basic properties of the above notions are studied. A special attention is
paid to the properties analogous to those known for the Kobayashi pseudodistance and the
hyperbolic manifolds. It seems to be important that, under suitable hypotheses (Theorem
1), the family of distance-decreasing mappings with respect to a Dolbeault- Lawrynowicz
pseudodistance is locally compact with respect to the compact-open topology.

In Section 3 we prove four lemmas which enable us to establish in Section 4 Theorems
2-4 and Corollaries 4-8 providing examples of hyperbolic-like manifolds of four kinds: (a)
hyperbolic-like and hyperbolic, (b) hyperbolic-like: (b1) Stein but not hyperbolic, and
(b2) neither hyperbolic nor Stein.

The final Section 5 is devoted to a generalisation of the theorems of Dolbeault and
 Lawrynowicz [5] on extendability of holomorphic mappings.

The authors greatly appreciate fruitful discussions and suggestions of Professors Julian
 Lawrynowicz and Pierre Dolbeault who stimulated their research.

2. Basic properties. We start with quoting, after [5], two properties (Propositions
1-2). The proof of the first property requires the following.

Lemma 1. Suppose that X and Y are complex manifolds, and f : X → Y is a proper
holomorphic mapping. Then the image of any elementary chain, passing through points
z0, z of X, is a bordered holomorphic chain passing through the points f(z0), f(z) of Y .

P r o o f. Suppose that γ is the border of the elementary chain Γ in question, f [γ] a
C1−cycle of dimension one with compact support, f?[Γ̃] a current of bidimension (1,1)
with compact support and the border f [γ], and f∗[Γ̃]Y \sptf [Γ] a d-closed positive rec-
tifiable current of bidimension (1, 1). By the structural theorem of J. King. [6], it is a
current of integration, defined by a holomorphic one-chain with positive coefficients in
Y \f [γ]. Therefore f∗[Γ̃] is a holomorphic chain with the border in Y and, clearly, its
support contains f(z0) and f(z), as desired.

Dolbeault showed us the proof of the following result:

Proposition 1. Let (X,h,U), (Y, h̃, Ũ) be two complex analytic manifolds with hermi-
tian metrics h, h̃ and coverings U , Ũ and admissible families F [U ], F [Ũ ] of pluriharmonic
functions. Let f : X → Y be a proper holomorphic mapping such that f−1(Ũ) ⊂ U and
f∗h̃ = h, then

ραX(z0, z)[U ] ≥ ραY (f(z0), f(z))[Ũ ]
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P r o o f. Let u ∈ F [Ũ ]; then f∗u ∈ F [U ].
For each elementary chain Γj either f(Γj) is one point or f(Γj) is a one-dimensional

complex variety and the restriction f |Γj : Γj → f(Γj) is a finite ramified covering. Then
we have the next diagram

∆′j → Γ′j = Φj(Σj) ⊂ Γj ⊂ X
f−→ Y ⊃ Γ̂j = f(Γj) ⊃ Γ̂′j = f(Γ′j)← ∆̂′j

Σj Σ̂j

oO

��

oO

��
Φj

tt
tt
tt
tt
tt

99

fj=Φ−1
j
◦f◦Φj

//
Φ̂j

eeKKKKKKKKKKK

By the definition Φj is a holomorphic map which is locally biholomorphic except on a
discrete set of Σj and each fj : Σj → Σ̃j is locally biholomorphic except on a discrete set
of Σj , thus

|
∫

∆′
j

̂(f∗g̃j)αdvj ∧ dcvj | = degf
∫

∆̃′
j

ˆ̃gj
α
dṽj ∧ dcṽj

with

vj = Φ∗jf
∗
j Φ̃−1∗

j ṽj , as
|δ̃′j |
|∆̃′j |

=
|δj |
|∆′j |

so µαΓ′
j
[f∗ũ] ≥ µα

Γ̃′
j

[ũ].

Then taking the supremum for ũ ∈ F [ũ] and u ∈ F [U ] we obtain the desired inequality.

Proposition 2. A complex submanifold X ′ of a complete hyperbolic-like manifold X
is hyperbolic-like. If , in addition, X ′ is closed , it is also complete.

P r o o f. It is sufficient to apply Proposition 1 to the holomorphic inclusion mapping
f : X ′ → X.

Proposition 3. Suppose that X and Xj , j ∈ I, are complex manifolds such that
X = Πj∈IXj. If all Xj are hyperbolic-like, then also X is hyperbolic-like.

P r o o f. Follows directly from the definition of the set-theoretical product.

Proposition 4 ([5], Proposition 4). Let X be a complex manifold , M a covering
manifold of X with covering projection π : M → X, and α a positive number. Let
z0, z ∈ X and s0, s ∈M so that π(s0) = z0 and π(s) = z. Then

ραX(z0, z) = inf{ραM (s0, s) : s ∈M,π(s0) = z0 π(s) = z}.

Proposition 5. Suppose that X is a complex manifold and M its covering manifold
such that , for every z ∈ X, the preimage of x under the covering projection consists of
one point only. Then, if X is hyperbolic-like, so is M .

P r o o f. Proposition 5 is a direct consequence of Proposition 4.

Proposition 6. Let X be a hyperbolic-like manifold and f a holomorphic function on
X. Then the submanifold X ′ = {z ∈ X : f(z) 6= 0} of X can be made also hyperbolic-like.

P r o o f. The set D = {z ∈ X : f(z) = 0} is closed, so X ′ is an open submanifold of
X. Hence, by Proposition 2, X ′ is hyperbolic-like.

R e m a r k 3. Propositions 2, 3, 4, and 6 have their counterparts for the Kobayashi
(pseudo)distance; cf. [7], pp. 48 and 57.
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Theorem 1. Suppose that M is a locally compact , complex manifold with a Dolbeault-
 Lawrynowicz pseudodistance ραM , and N a locally compact , complete manifold with respect
to Dolbeault- Lawrynowicz pseudodistance ραN . Then the family of distance-decreasing
mappings f : M → N is locally compact with respect to the compact-open topology. If
p ∈ M and K is a compact subset of N , then the subset F (p,K) := {f ∈ F : f(p) ∈ K}
of F is compact as well.

P r o o f. Is analogous to that of Theorem V.3.1. in [7], pp. 73-74.

3. Lemmas. Through the next set of lemmas we will obtain information about the
(α,U)-pseudometric in a manifold respect to the open covering U and the family of
pluriharmonic functions F [U ].

Lemma 2. Suppose that a collection {U1, . . . Uk} of open sets forms a covering of a
connected open set U and let x, y ∈ U . Then there is a sequence of sets U1, . . . , U `, ` < k,
of that covering with the property

x ∈ U1, y ∈ U `, U j ∩ U j+1 6= ∅, j = 1, . . . , `− 1.

P r o o f. Denote by U1 the set of {U1, . . . Uk} containing x. If y ∈ U1, the lemma is
proved. Otherwise we take into account all those remaining sets which have nonempty
intersections with U1; denote them by U2

1 , . . . , U
2
n. If y ∈ U2

j , j ∈ {1, . . . , n2}, then U1,
U2
j form the required sequence. Otherwise consider all those remaining sets which have

nonempty intersections with U2
1 , . . . U

2
n2

, and denote them by U3
1 , . . . U

3
n3

. There exists at
least one such set since otherwise the union of already chosen sets and the union of all
the remaining sets would be disjoint open sets covering U , and this would contradict its
connectivity.

Next we are continuing the above described procedure until we find a set U `j containing
y. This is the only case since the sets are chosen only once and therefore the procedure
is finite. The way of choosing the sets implies that the sought sequence can be chosen by
taking, subsequently, sequences U `j , U

`−1
j,`−1,...,U

2
j,2, U

1 with the property

U `j ∩ U `−1
j,`−1 6= ∅, . . . , U

2
j,2 ∩ U1 6= ∅.

Lemma 3. Suppose that U = {Uj : j ∈ I} and V = {Vk : k ∈ J} are distinct coverings
of the same complex manifold , while F [U ] and F [V] denote the corresponding families of
all admissible pluriharmonic C2−functions. Consider the covering W = {W` : ` ∈ K},
where each W` is a component of some set Uj ∩Vk, where j ∈ I and k ∈ J . If there exists
a positive integer n such that for each j ∈ I the set Uj is the union of at most n sets of
W, then for every u ∈ F [W] there exists an element ũ ∈ F [U ] with the property

(4) du = ndũ and dcu = ndcũ.

P r o o f. Take u ∈ F [W]. For any fixed Uj∗ ∈ U , the components of Uj∗ ∩ Vk, k ∈ J ,
form a covering of Uj∗ and the functions u`, defined on those components, generate the
form duj∗k on Uj∗ . Since Uj∗ is a simply connected set, there is a C∞−function fj∗ ,
defined on Uj∗ , with the property

dfj∗ = du and dcfj∗ = dcu.
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Since, on each componentW` of Uj∗∩Vk, the function fj∗ differs from u` by a constant,
and the oscillation of u` on W` does not exceed one, so is the oscillation of fj∗ on W`.

If x, y ∈ Uj∗ , then by Lemma 2 there exists a sequence W 1, . . . ,W `, ` ≤ n, of com-
ponents of Uj∗ such that

x ∈W 1, y ∈W 2, W 1 ∩W 2 6= ∅, . . . ,W `−1 ∩W ` 6= ∅.

Let x1 ∈W 1 ∩W 2, . . . x`−1 ∈W `−1 ∩W `. Hence

|fj∗(x)− fj∗(y)| ≤ |fj∗(x)− fj∗(x1)|+ |fj∗(x1)− fj∗(x2)|
+ · · ·+ |fj∗(x`−1)− fj∗(y)| ≤ n,

and thus
oscU∗

j
fj∗ = sup

x,y∈Uj∗
|fj∗(x)− fj∗(y)| ≤ n.

Therefore ũj∗ := (1/n)fj∗ is a C∞− function on Uj∗ with oscillation less than one. After
repeating the construction for each j ∈ I, we get

ũ := {ũj : j ∈ I} ∈ F [U ].

In consequence we arrive at the formula (4), as desired.

Lemma 4. Suppose that U = {Uj : j ∈ I} and U ′ = {U ′k : k ∈ J} are open coverings
of a complex manifold X, such that for each j ∈ I there is an element k ∈ J such that
Uj ⊂ U ′k. Next , let F [U ] and F [U ′] denote the corresponding families of all admissible
pluriharmonic C2−functions. Then

ραX(z0, z)[U ′] ≤ ραX(z0, z)[U ] for any z0, z ∈ X and α ≥ 0.

P r o o f. By the definition of U and U ′ for any u′ ∈ F [U ′] there is a function u ∈ F [U ]
such that uj = uk on Uj ⊂ Uk for j ∈ I: in order to see this it is sufficient to take
uj := u′j |Uj , j ∈ I. Hence F [U ′] ⊂ F [U ] and, consequently,

ραX(z0, z)[U ′] = sup{µαX(z0, z)[u′,U ′] : u′ ∈ F [U ′]}
≤ sup{µαX(z0, z)[u,U ] : u ∈ F [U ]} = ραX(z0, z)[U ].

Lemma 5. Suppose that U = {U1, . . . , Un} and V = {Vk; k ∈ J} are distinct open
coverings of a complex manifold X, such that each Uj ∩ Vk is either connected or empty.
Next , let F [U ] and F [V] denote the corresponding families of all admissible pluriharmonic
C2−functions. Then there exists a positive number A with the property

(5) ραX(z0, z)[U ] ≤ AραX(z0, z)[V] for any z0, z ∈ X and α ≥ 0.

P r o o f. LetW = {W` = Uj∩Vk : j = 1, . . . , n, k ∈ J}. The coverings U and V satisfy
the hypotheses of Lemma 4. Hence

(6) ραX(z0, z)[U ] ≤ ραX(z0, z)[W] for any z0, z ∈ X and α ≥ 0

and, moreover, for every chain Γ ⊂ X we have, by Lemma 3,∫
Γ

ĝαdu ∧ dcu =
∫

Γ

ĝαn2dũ ∧ dcũ for u ∈ F [W], ũ ∈ F [V],

so
µαX(z0, z)[u,W] ≤ µαX(z0, z)[ũ,V] for any z0, z ∈ X and α ≥ 0
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Therefore

(7) ραX(z0, z)[W] ≤ AραX(z0, z)[V] for any z0, z ∈ X and α ≥ 0.

and an analoguos estimate holds for ραX(z0, z)[V]. Thus, by (6) and (7), we arrive at (5)
indeed.

Corollary 3. Given a complex manifold X, if there is a finite open covering U with
the corresponding family of admissible pluriharmonic C2−functions, such that for some
α > 0, X is a (α,U)-hyperbolic-like manifold , then X is (α,V)-hyperbolic-like for every
open covering V of X satisfying the condition of Lemma 5 with respect to the covering U .

4. Existence theorems. With the use of Lemmas 2-5 we are going to establish
several existence theorems for hyperbolic-like manifolds of a special kind, being at the
same time examples showing their range relations to hyperbolic and Stein manifolds. In
all the cases we repeat the phrase “can be made hyperbolic-like” because in all the cases,
the hyperbolic-like property depends on the considered covering and the corresponding
family of pluriharmonic functions.

Theorem 2. An arbitrary bounded domain in Cn can can be made hyperbolic-like and
is hyperbolic, but , for n > 1, it is not , in general , Stein.

P r o o f. At first, let n = 1. Denote by X the domain in question and take a positive
number r such that |z| ≤ r for every z ∈ X; let U = {X} be a one-element covering of
X. Define, globally on X, a harmonic function, e.g.,

(8) u(x, y) =
1
2r

(x+ y), x = rez, y = imz, z ∈ C.

Evidently, |u| < 1. Let Γ be an elementary chain with border γ passing through
arbitrary points z0, z ∈ X, and let α ≥ 0. Hence (cf. (1) and (2)):

µαΓ(z0, z)[u,U ] =
|γ|
|Γ|
|
∫

Γ

ĝαdu ∧ dcu| = |γ|
|Γ|
|
∫

Γ

ĝα| ∂
∂z
u|2dz ∧ dz̄|.

Since the derivatives (∂/∂x)u and (∂/∂y)u are constant, the functions gα|(∂/∂z)u|2
are uniformly bounded from below by a number A > 0. Therefore

µαΓ(z0, z)[u,U ] ≥ (|γ|/|Γ|)A|Γ| = A|γ| > 0.

Since the elementary chain Γ has been chosen arbitrarily, then

µαΓ(z0, z)[u,U ] = inf
Γ
µαΓ(z0, z)[u,U ] > 0 for any z0, z ∈ X and α ≥ 0.

Consequently, by the definition of ραX , we get ραX(z0, z)[U ] > 0 and, by Lemma 4,
ραX(z0, z)[U ′] > 0 for an arbitrary locally finite open covering U ′ of X. This concludes the
proof for n = 1.

If n > 1, it is sufficient to replace the function (8) by

u(x, y) =
1

2nr

n∑
j=1

(xj + yj), xj = rezj , yj = imzj , z = (zj) ∈ Cn.
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The remaining statements of the theorem are well-known. In particular, if n > 1, X is
not, in general, holomorphically convex and also is not, in general, a Stein manifold; cf.
[7], pp. 55-57.

Corollary 4. A polydisc domain in Cn can be made hyperbolic-like and as we know
is hyperbolic and Stein.

Suppose that X is a closed manifold Cn, ε an arbitrary positive number and D={z∈
Cn : dist(z,X) < ε}. Consider an arbitrary locally finite open covering U of D and the
corresponding family F [U ] of admissible pluriharmonic C2−functions. Let Γ, Γ ⊂ D, be
an arbitrary bordered holomorphic chain containing points z0, z ∈ X and let Γ′ = Γ|X.
In analogy to Section 1, we define a holomorphic mapping Φ′j : D′j → Γ′j such that
Φ′j = Φj |∆′j , ∆′j ⊂ ∆j , and the quantities µαΓ(z0, z)[U ] and µαX(z0, z)[u,U ] and, finally,
the (α,U)−Dolbeault- Lawrynowicz pseudodistance ραX(z0, z)[U ] for closed X.

Corollary 5. The closure of an arbitrary bounded domain in Cn can be made
hyperbolic-like.

P r o o f. If, in particular, D consists of a finite set of points, say: a1, . . . , an it is
sufficient to take the function f(z) = (z − a1) . . . (z − an), z ∈X, and observe that it is
holomorphic and f(aj) = 0 for j = 1, . . . , n. Hence, by Proposition 6, X\D is hyperbolic-
like indeed. In the general case, Proposition 6 has to be applied a finite number of times.

Corollary 6. If [z′; z′′] denotes the segment of line that connects z′ with z′′, C̄\[z′; z′′]
can be made hyperbolic-like for any z′, z′′ ∈ C̄.

P r o o f. By Theorem 2, the open unit disc ∆(0; 1) hyperbolic-like. On the other
side, by the Riemann mapping theorem, ∆(0; 1) can be biholomorphically mapped onto
C\[z′, z′′], so, by Proposition 1, the result follows.

Theorem 3. If X is a bounded domain in Cn or , more generally , it is a hyperbolic-like
manifold and D is an algebraic set in X, then X\D can be made hyperbolic-like as well.

P r o o f. If, in particular, D consists of a finite set of points, say: a1, . . . , an, it is
sufficient to take the function f(z) = (z − a1) · · · (z − an), z ∈ X, and observe that it
is holomorphic and f(aj) = 0 for j = 1, . . . , n. Hence, by Proposition 6, X\D can be
made hyperbolic-like indeed. In the general case, Proposition 6 has to be applied a finite
number of times.

Corollary 7. C minus a closed disc cl ∆(0; r) can be made hyperbolic-like.

P r o o f. By Theorem 3, we know that Y := ∆(0; 1/r)\{0} can be made hyperbo-
lic-like. The function f(z) = 1/z, z ∈ X := C\ cl ∆(0; r) maps biholomorphically X onto
Y , so, by Proposition 1,

ραX(z0, z) = ραY (f(z0), f(z)) > 0 for z0, z ∈ X,

and this is sufficient to conclude the proof.

Theorem 4. (C,U), where U = {Uj : j ∈ Z} and Uj = {(x, y) : 1
2j < x < 1

2j + 1, y ∈
R}, can be made hyperbolic-like, but not hyperbolic.
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P r o o f. Consider the harmonic function u(x, y) = x, (x, y) ∈ C. Obviously, the
oscillation of u in Uj is less than one for each j, and g := ||∆u||2 = 1. Let z0, z ∈ C and
Γ be an arbitrary holomorphic chain in C with border γ, containing z0 and z. Hence (cf.
(1) and (2)):

(9) µαΓ(z0, z)[u,U ] =
|γ|
|Γ|
|
∫

Γ

ĝαdu ∧ dcu| = |γ| > 0 whenever z 6= z0,

so (C,U) is hyperbolic-like, as desired.

R e m a r k 4. Since |γ| ≥ 2|[z0; z]|, then, by (9),

ραC(z0, z)[U ] ≥ 2|[z0; z]| for z0, z ∈ C.

Corollary 8. From Theorems 3 and 4 it follows that the punctured plane C\{z0}
can be made hyperbolic-like, but not hyperbolic. If , however , we take A = {z1, . . . , zk},
z1, . . . , zk ∈ C and k ≥ 2 then C\A can be made hyperbolic-like and is hyperbolic as well.

Corollary 9. If domain Y is a simply connected in C such that every holomorphic
function f in Y can be approximated by polynomials uniformly on compact subsets of Y ,
then Y can be made hyperbolic-like. Indeed , this type of domains is conformally equivalent
to the open unit disc in C.

Suppose again that X is a complex manifold. An analytic polyhedron P in X is a
relatively compact open set in X of the form P = {p ∈ W : |fj(p)| < rj , j = 1, . . . , t},
where W is a neighbourhood of clP and all functions fj are holomorphic in W . By
Proposition 4 (and Corollary 4) we obtain directly

Theorem 5. Let X be a complex manifold and P an analytic polyhedron in X deter-
mined by r = (rj) and f = (fj), 1 ≤ j ≤ m. If , for some j, the manifold f−1

j [∆(0; rj)] is
hyperbolic-like, then so is P .

5. Extension theorems. First of all, it is convenient to recall some definitions.
An symmetric tensor h = 2b(z)dzdz is a hermitian pseudometric in U ⊂ C if:

a) b(z) is a continuous and real-valued function and b(z) ≥ 0,
b) Z = {z ∈ U ; b(z) = 0} is a discrete subset of U ,
c) b(z) is a C∞ function on U\Z.

The Gaussian curvature of h on U ,Kn : U → [−∞,∞) is defined by

Kh(z) =
{
− 1
b(z)

∂2 log b(z)
∂z∂z̄ , z ∈ U\Z,

−∞, z ∈ Z,
For two pseudo-metrics hi = 2bi(z)dzdz̄, i = 1, 2, we write h1 ≤ h2 if b1(z) ≤

b2(z),∀z ∈ U . With this definition, on the punctured disc D?
R(0) := {0 < |z| < R} set

bR(z) =
2

|z|2(log |z/R|2)2
, hR = 2bR(z)dzdz̄;

then bR is a hermitian metric on D?
R(0) and it is called the Poincaré-Bergman metric on

D?
R(0).

After a calculation we have
KhR

≡ −1
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For the case of DR
r (0) := {z ∈ C|0 ≤ r < |z| < R ≤ 1}. The Poincaré Bergman metric

can be given by

aRr (Z) =
2

(|z| − r)2(log |z/R|2)2
, hRr = 2aRr dzdz̄.

After a long but straightforward calculation it is possible to see that given 0 < ε < 1,
and z0 with 0 < |z0| < 1, there exists 0 < r(ε) such that if 0 < r < r(ε), then

−1 < Kh1−r
r

(z0) < −1 + ε.

Now we will see that the Poincaré-Bergman metric is extremal with respect to any her-
mitian metric in the punctured disc (for the complete disc case, see [7], p. 40).

Lemma 6. Let h = 2b(z)dzdz̄ be a hermitian pseudometric on the punctured disc
D?

1(0). Assume that Kh ≤ −1; then h ≤ h1.

P r o o f. As b is defined on a neighbourhood of the closure of D1−r
r (0) if 0 < r < 1,

then

µ(z) = log
b(z)

a1−r
r (z)

,

so we have µ(z) −→ −∞ if z → ∂D1−r
r (0) then there is a point z0 ∈ D1−r

r (0) such that

µ(z0) = sup{µ(z) : z ∈ D1−r
r (0)} > −∞.

Hence b(z0) and b are C∞ around z0. By the hypothesis and the definition of the Gaussian
curvature, we get

0 ≥ ∂2µ

∂z∂z̄
(z0) =

∂2 log b
∂z∂z̄

(z0)− ∂2 log a1−r
r

∂z∂z̄
(z0)

= −b(z0)Kh(z0) +Kh1−r
r

(z0)a1−r
r (z0) ≥ b(z0) +Kh1−r

r
(z0)ar(z0)

and we can take r sufficiently small to assure that −1 < Kh1−r
r

(z0) < 0, z0 ∈ D1−r
r (0).

Thus

−Kh1−r
r

(z0)a1−r
r (z0) ≥ b(z0), log

b(z0)
−Kh1−r

r
(z0)

a1−r
r (z0) ≤ 0,

and

µ(z0) = log
b(z0)

a1−r
r (z0)

≤ 0

as well. Therefore µ(z) ≤ 0 on D1−r
r (0), so

b(z) ≤ a1−r
r (z) on D1−r

r (0).

Now consider a sequence rn → 0. Hence we have that on each D1−rn
rn

b(z) ≤ a1−rn
rn

(z);

thus in the limit
b(z) ≤ a1

0(z) = b1(z) ∀z ∈ D?
1(0).

Length of curves. Let C be a curve in X and Γ = Σj∈IΓj , a bordered holomorphic
chain in X containing C. Consider all the bordered holomorphic chains Γ′C = Σj∈IΓ′j
such that Γ′j ⊂ Γj , C ⊂ Γ′C and the length |γ′C | of the border γ′C of Γ′C is uniformly
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bounded in Γ, so for any open cover U of X, the corresponding family of pluriharmonic
functions F [U ], and α ∈ R we can associate with each u ∈ F [U ] the expression

µαΓ(C)(u) = Σj∈I inf
Γ1

j
⊂Γj

µαΓ1
j
(u).

In the same way we define the expressions

ραX(C)[u,U ] = inf
X
{µαΓ(C)(u) : C ⊂ Γ}

and
ραX(C)[U ] = sup{ραX(C)[u;U ], u ∈ F [U ]}.

We will say that C is rectifiable with respect the (α − U) -Dolbeault -  Lawrynowicz
pseudodistance if ραX(C)[U ] <∞ and in that case we will say that the length of C, length
(C)(α,U) := ραX(C)[U ].

Consider in particular the case when X is the punctured disc D?
1(0) and C is the circle

{|z| = r < 1}. If ΓR is the elementary chain in X containing C given by {0 < |z| < R}
with r < R < 1, then given a finite open covering U of X there exists a number AΓR

> 0
such that on ΓR for any pluriharmonic element u ∈ F [U ] we have [see proof of Lemma 4
of [5]]

ĝα|(∂/∂z)V |2 < AΓR
.

Thus if Γ′R′ = {0 < |z| < R′}, r < R′ < R, with border γ′R′ = {|z| = R′}, we have

|γ′R′ |
|Γ′R′ |

∫
Γ′

R′

ĝα|(∂/∂z)v|2dv ∧ dv ≤ |γ
′
R′ |
|Γ′R′ |

AΓR
|Γ′R′ | = AΓR

|γ′R′ |

where |γ′R′ | are the lengths and the volume of γ′R′ and Γ′R′ in the original hermitian metric
h. Thus

µαΓ(CR)[u] ≤ AΓR
|γ′R′ |

and by definition of ραX we have that

ραD?
1 (0)(Cr)[U ] ≤ AΓR

|γ′R′ |.

By the preceding Lemma 6 we have, that the Poincaré-Bergman metric is extremal
with respect to any hermitian metric in D?

1(0); thus

ραD?
1 (0)(Cr)[U ] ≤ AΓR

|γ′R′ | ≤ AΓR
||γ′R′ ||,

where ||γ′R′ || denotes the length of γ′R′ in the Poincaré-Bergman metric. Thus if R→ 0,
||γ′R′ || → 0 and ραD?

1 (0)(Cr)[U ] converges to zero too.
With the aid of Lemma 6 and with a similar proof to that of Theorem VI,3.1 in [7]

we have:

Theorem 6. Let ∆∗ denote the punctured unit disc and Y be an (α,U)-hyperbolic-like
manifold. Let further f : ∆∗ → Y be a holomorphic mapping such that , for a suitable
sequence of points zk ∈ ∆∗k converging to the origin, f(zk) converges to a point s0 ∈ Y .
Suppose the Dolbeault- Lawrynowicz distances considered on ∆? and Y and the map f

satisfy the conditions of Proposition 1. Then f extends to a holomorphic mapping of the
unit disc ∆ into Y .

Obviously, we can complete Theorem 6 by
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Corollary 10. Let Y be a complex manifold and M ⊂ Y an open subset such that :
1) clM is compact ,
2) M is an (α,U)-hyperbolic-like manifold ,
3) f is a map such that the Dolbeault- Lawrynowicz distances on ∆? and Y , and f

satisfy the conditions of Proposition 1.
Then every holomorphic mapping f satisfying 3 ) of a punctured disc ∆∗(0; r) into M

satisfies one of the following two conditions:
a) f can be extended to a holomorphic mapping of ∆(0; r) into M ,
b) For every neighbourhood U of the boundary ∂M = clM\M of M in clM there

exists a neighbourhood W of the origin in ∆∗(0; r) such that f(W\{0}) ⊂ U .

The following result gives a solution to the problem of generalising the big Picard
theorem to the case of an (α,U)−hyperbolic-like manifold. The proofs of Theorems 7
and 9 are similar to that of Theorems 6.1 and 6.2 in [7] and it is just necessary to be
careful with some details.

Theorem 7. Suppose that Y is a complex manifold and M ⊂ Y an open subset such
that :

1) M is an (α,U)-hyperbolic-like manifold ,
2) clM is compact in Y ,
3) Given a point p in clM and a neighbourhood W of p in Y , there exists a neigh-

bourhood V of p in Y such that clV ⊂W and the (α,U)−Dolbeault- Lawrynowicz distance
between M ∩ (Y \W ) and M ∩ V is positive,

4) f is an holomorphic mapping from ∆?(0; r) into Y such that the Dolbeault- Lawry-
nowicz distances on ∆? and Y , and f satisfy the conditions of Proposition 1.

Then f can be extended to a holomorphic mapping from the disc ∆(0; r) into Y .

P r o o f. Let (xm), 0 < xm < 1, be a sequence converging monotonously to zero. Then
we can assume (by restriction if necessary) that f(xm) converges to a point y0 ∈ clM . If
y0 ∈ M , we can apply the same argument as in the proof of Theorem 6 and the result
follows. If y0 ∈ clM\M , let W be an arbitrary neighbourhood of Y0 in Y . The result
follows if we show that there exists a number δ > 0 such that if ∆∗δ = {z ∈ ∆∗(0; r) : |z| <
δ}, then f(∆∗δ) ⊂ W . We claim that there is a number δ > 0 such that if 0 < xk < δ,
then f(∂∆(0;xk)) ⊂W .

In order to prove our claim, suppose the contrary case. By taking, if necessary, a
subsequence, we may assume that each circle ∂∆(0;xk) has a point zk such that f(zk) 6∈
W . Taking again, if necessary, a subsequence, we may assume that f(zk) converges
to w0 ∈ clM . If w0 ∈ M , since the (α,U)−Dolbeault- Lawrynowicz length of ∂∆(0;xm)
converges to zero and, by Proposition 1, all but a finite number of the curves f(∂∆(0;xk))
are in W , so the claim follows. Otherwise we can proceed as in the proof of Theorem 6.
If w0 ∈ clM\M , we note that w0 6∈ W and if V ⊂⊂ W is also a neighbourhood of y0,
then w0 6∈ clV and Y \V is an open subset of Y which contains w0. Now, by the condition
3) of the statement, there exists a neighbourhood B of w0 such that clB ∩ clV = ∅ and
the (α,U)- Dolbeault- Lawrynowicz distance δ between M ∩ V and M ∩ B is positive,
so ραM (f(xk), f(zk))[U ] ≥ δ > 0 for sufficiently large k. On the other hand, as we saw,
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the arc length L of ∂∆(0; r) measured in the Dolbeault- Lawrynowicz distance tends to
0 as k → ∞; we have ραM (f(xk), f(zk)) ≤ L(f [∂∆(0;xk)]) ≤ L[∂∆(0;xk)], and this
contradiction proves the claim.

Consider next the set of integers k such that f(∆(0;xk)\cl∆(0;xk+1)) is not entirely
contained in W . If this set is finite, then f maps a small punctured disc ∆∗(0; δ) into
W . If the set is infinite, there is a sequence of points ak situated in ∆(0;xk)\cl(0;xk+1)
such that f(ak) 6∈ W . Now we can proceed as in the proof of the claim to conclude
that there exists a positive number δ∗ such that ραM (f(ak), f(xk))[U ] ≥ δ∗ for sufficiently
large k. Since we have still ραM (f(ak), f(xk))[U ] ≤ L[∂∆(0;xk)], we arrive again at a
contradiction.

In turn we quote Theorem 3 of [5] which reads:

Theorem 8. Let X be a complex manifold and A its subset which is nowhere dense
in an analytic subset , say B, of X, with topological codimension ≥ 2. Let further Y be a
compact or complete (α,U)-hyperbolic-like manifold. Suppose that X is the completion of
X\A with respect to the Dolbeault- Lawrynowicz distance considered on X\A and that f
is a map such that the triple X\A, f , Y satisfies conditions of Proposition 1.

Then f can be extended to a holomorphic mapping from X into Y .

With this theorem it is possible to extend Theorem 7 as follows:

Theorem 9. Suppose that M and Y satisfy the conditions 1)-4) of Theorem 7. Let
X be a complex manifold of dimension n and A a locally closed complex submanifold of
X of dimension ≤ n− 1. Suppose further that X is the completion of X\A with respect
to the Dolbeault- Lawrynowicz distance defined on X\A. Then f can be extended to a
holomorphic mapping from X into Y .

P r o o f. Since A has no singular points we may assume, as in the proof of Theorem 8,
that X\A = ∆∗ ×∆n−1. If f is a holomorphic mapping of ∆∗ ×∆n−1 into M , then, by
Theorem 7, the restriction of f to ∆∗ × {t} can be extended to a holomorphic mapping
from ∆ × {t} into Y for every fixed t ∈ ∆n−1. It remains to prove that this extended
mapping f : ∆∗ → Y is continuous at every point (0, t) ∈ A. It suffices to show that f is
continuous at (0, 0) ∈ ∆×∆n−1. Let y0 = f(0, 0) ∈ Y . If y0 ∈ M , then we can proceed
exactly as in the proof of Theorem 8. Suppose therefore that y0 ∈ clM\M and let W be
a neighbourhood of y0 in Y defined by |wj | < a, j = 1, . . . ,m, with respect to the local
co-ordinates around y0. Let V be a neighbourhood of y0 given by the condition 3) of the
statement and let β = ραM (M ∩ (Y \W ),M ∩V )[U ]. Next, let r be a positive number such
that ∆(0; r) × {0} is mapped by f into V , which is possible by Theorem 7. Let r′ be a
positive number such that ρα∆m−1(0, t)[U ] < β if |tj | < r for j = 1, . . . , n− 1.

If 0 < |z| < r and |tj | < r for j = 1, . . . , n− 1, then, by Proposition 1 applied to the
mappings: (i) f : ∆∗ ×∆n−1 → M and (ii) the injection ∆n−1 → ∆∗ ×∆n−1 given by
t 7−→ (z, t), we get

ραM (f(z, 0), f(z, t))[U ] ≤ ρα∆∗×∆n−1((z, 0), (z, t))[U ] ≤ ρα∆n−1(0, t) < β

Since f(z, 0) is in V and the (α,U)-Dolbeault- Lawrynowicz distance between f(z, 0) and
f(z, t) is less than β, it follows that f(z, t) is in W . Therefore, by the Riemann extension
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theorem, f is holomorphic in ∆(0; r)× {t ∈ ∆n−1 : |tj | < r′, j = 1, . . . , n}.
With the aid of the next proposition (see [1]) we can generalise Theorem 8 to the case

of a covering space (W,π) of Y .

Proposition 7. Let S be a relatively closed subset of some analytic set M of a poly-
cylinder P in Cn. We assume that S has topological dimension 2n − (3 + s) and the
complex dimension of M is n − (1 + k), where 0 ≤ k ≤ 1

2s. Then the open set P\S is
arcwise and simply connected.

Theorem 10. Let τ : A → Y be a holomorphic mapping of an open subset A of a
complex manifold X into a complex space Y . We assume that Y has a covering space
(W,π) such that W is a compact or complete (α,U)-hyperbolic-like manifold. Suppose
that M=X\A is a thin set and that τ , X\M , Y , satifies the hypothesis of Proposition 1.
Then, if M has topological codimension ≥ 3, τ can be extended to a holomorphic mapping
τ∗ : X → Y with τ∗|A = τ .

P r o o f. Since the theorem is of a local nature for X, we may assume, in analogy to
Theorem 9, that X is a polycylinder in Cn. Let S be the set of irregular points of τ , that
is, the set of points x ∈ M which have the property that there is no neighbourhood V

of x such that τ can be holomorphically extended to A ∪ V . Let τ0 be the extension of
τ to X\S. Note that τ0 is distance decreasing too. We are going to prove that S = ∅.
By Proposition 7, X\S is simply connected. Since τ0 can be factorized through any
covering space (W,π) of Y , there exists a holomorphic mapping τ̃0 : X\S →W such that
τ0 = π ◦ τ̃0 and τ̃0 is univocally determined. Owing to Theorem 8, τ̃0 can be extended to
a holomorphic mapping τ̃∗ : X →W , so τ∗ = π ◦ τ̃∗ is the desired extension of τ to X.
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