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Abstract. It is shown that for n ≥ 2 and p > 2, where p is not an even integer, the only
balls in the Carathéodory distance on Hp,n = {z ∈ Cn : ‖z‖p < 1} which are balls with
respect to the complex `p norm in Cn are those centered at the origin.

1. Introduction. Consider the unit ball

H = Hp,n = {z ∈ Cn : ‖z‖p < 1}

in the complex n-space Cn with respect to the metric which is induced by the complex
`p norm in Cn

‖z‖p =
( n∑

k=1

|zk|p
)1/p

, z = (z1, . . . , zn) ∈ Cn, p ≥ 1.

H is a convex bounded domain in Cn. Next consider the Carathéodory distance C = CH
on H

C(z, w) = sup ρ(f(z), f(w)), z, w ∈ H,

where the supremum is taken over all holomorphic functions f from H into the unit disk
∆ = {z ∈ C : |z| < 1} of the complex plane C. Here ρ is the hyperbolic distance
on ∆. Note that on Hp,n, the Carathéodory distance and the Kobayashi distance are the
same.

For n = 1, and all p > 0, Hp,1 = ∆, and C(a, b) = ρ(a, b), a, b ∈ ∆, and
‖z‖p = |z|, z ∈ ∆, and since, cf. [Sch, Lemma 2.1],

(1.1) ρ(z, a) = r ⇔ |z − b| = R, a, b, z ∈ ∆,
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where

(1.2) b = a
1− α2

1− α2|a|2
and R = α

1− |a|2

1− α2|a|2
, α = tanh r,

it follows that in the case n = 1 every ball (i.e. disk) in the Carathéodory distance on H
is a ball with respect to the `p norm in C for p ≥ 1.

Also, every ball in the Carathéodory distance on Hp,n, n ≥ 1, p ≥ 1 which is centered
at the origin is a ball in the `p norm of Cn. (See Lemma 2 in Section 3.)

For n ≥ 2 and p = 1 the following theorem holds (cf. [Sch], [Sr] and [Z]):

Theorem A. The only balls in H1,n = {z ∈ C2 : ‖z‖1 < 1} in the Carathéodory
distance on H1,n which are balls in the `1 norm in Cn are those which are centered at the
origin.

The proof of this theorem is based on the following proposition for p = 1 (cf. [Sch],
[Sr]).

Proposition. Given
(i) n circles γk = {z ∈ C : |z − ak| = rk > 0}, k = 1, . . . , n,
(ii) n points z1, . . . , zn in motion such that the point zk moves along γk with state
equation

zk(t) = ak + rke
i(t+ϑk), − ∞ < t < ∞, k = 1, . . . , n,

where the phases ϑ1, . . . , ϑn are given,
(iii) n points b1, . . . , bn in C,
(iv) n real positive numbers λ1, . . . , λn and a real positive number c,
(v) a positive real number p which is not an even integer , such that

(1.3)
n∑
k=1

λk|zk(t) − bk|p ≡ c, − ∞ < t < ∞,

then ak = bk for all k = 1, . . . , n.

This proposition is proved in [Sr] in the special case p = 1. The generalization for
every p > 0 which is not an even integer can be obtained by modifying the proof of
[Sr]. For completeness, we will present the whole proof of the general case. With the aid
of the proposition we establish here the following theorem.

Theorem B. Let p > 2 be a real number which is not an even integer. Then the
only balls in Hp,n = {z ∈ Cn : ‖z‖p < 1} in the Carathéodory distance on Hp,n

which are balls in the `p norm in Cn are those which are centered at the origin.

R e m a r k. Theorem B holds also for p = 2, as can be deduced from [R, pp. 29–30].

2. Proof of the proposition. If for some k, ak = bk as desired, then the term
|zk(t) − bk|p yields a constant contribution to the sum in (1.1), and may be dropped. We
thus may assume that ak 6= bk for all k = 1, . . . , n. By rotating, translating, rescaling
and renaming the constants c, λk, bk and ϑk we may assume that for all k = 1, . . . , n,
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ak = 0, rk = 1 and bk is real and positive. Then |zk(t)| = 1, arg zk(t) = t + ϑk,
and by the Cosine Theorem, (1.3) becomes

(2.1)
n∑
k=1

λk ( 1 + b2k − 2bk cos(t+ ϑk) )p/2 ≡ c, − ∞ < t < ∞

or

(2.2)
n∑
k=1

fk(t) ≡ c, − ∞ < t < ∞,

where

(2.3) fk(t) = λ′k (Ak − cos(t+ ϑk) )p/2 , k = 1, . . . , n,

and where λ′k = λk(2bk)p/2 and Ak = 1
2 ( bk + b−1

k ). Since bk > 0, it follows that

(2.4) Ak ≥ 1.

Now let

(2.5) ϕk(z) = Ak − cos(z + ϑk), z ∈ C, k = 1, . . . , n,

and

(2.6) Zk = {z ∈ C : ϕk(z) = 0}, k = 1, . . . , n.

Then Ak = 1 ⇒ Zk = {wk + 2mπ : m ∈ Z} for some real number wk, and

Ak > 1 ⇒ Zk = {wk + 2mπ : m ∈ Z} ∪ {wk + 2mπ : m ∈ Z}

for some non-real number wk in C.
We may assume that ϕj 6= ϕk for all j 6= k, since otherwise the corresponding terms

in (2.2) may be grouped together. Then Aj 6= Ak or ϑj 6= ϑk(mod 2π) for j 6= k. In
the first case Im wj 6= Im wk, and in the latter case we have Re wj 6= Re wk (mod 2π)
for any wj ∈ Zj and wk ∈ Zk with j 6= k. Therefore

(2.7) Zj ∩ Zk = φ for all j 6= k.

Suppose now that Aj = 1. Then ϕj(−ϑj) = 0 and ϕk(−ϑj) 6= 0 for all k 6= j.
Then fk(t) = λ′kϕk(t)p/2 is real analytic at t = −ϑj , for all k, k 6= j, and by (2.2) so
is
∑n
k=1 fk(t). Hence, also fj(t) must be real analytic at t = −ϑj . But fj is not real

analytic (it is not even differentiable) at t = −ϑj , since

fj(t) = λ′j ( 1 − cos(t+ ϑj) )p/2 = λ′j 2p/2| sin 1
2

(t+ ϑj)|p

and p is not a positive even integer. This contradiction shows that Ak > 1 for all
k = 1, . . . , n.

To complete the proof fix j, 1 ≤ j ≤ n, and choose a point w such that ϕj(w) = 0.
Since Aj > 1, w is not real, and by (2.7), ϕk(w) 6= 0 for all k 6= j. Choose a real
number t0. Since Ak > 1 for all k = 1, .., n it follows that ϕk(t0) 6= 0 for all
k = 1, . . . , n. We can, therefore, find a simply connected neighborhood U of t0 such that
ϕk(z) 6= 0 for all z ∈ U and all k = 1, . . . , n. Next, choose a path γ in C \

⋃n
k=1 Zk

which starts and ends at t0, winds once around the point w and does not wind around
any other point of

⋃n
k=1 Zk. Now, for k = 1, . . . , n, let Fk(z) be an analytic branch of
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λ′kϕk(z)p/2 such that Fk(t) = fk(t) for all real numbers t in U , (see (2.3) and (2.5)).
Such branches exist since ϕk(z) 6= 0 for all z ∈ U and k = 1, . . . , n, and since U is
simply connected. Finally, set F0(z) =

∑n
k=1 fk(z). Then F0(z) is analytic in U , and

F0(t) =
∑n
k=1 fk(t) for all real numbers t in U . Therefore, by (2.2),

(2.8) F0(z) ≡ c in U.

For k = 0, 1, . . . , n, let Gk(z) denote the analytic function in U which is obtained by
continuing Fk(z) along γ.

The point w is a simple zero of ϕj(z), and γ winds once around w and does not wind
around any other zero of ϕj(z). Therefore Gj(z) = ωFj(z), where ω = eipπ. Then
ω 6= 0, and since p is not an even integer, also ω 6= 1. For any other k, 0 < k 6= j, γ
does not wind around any zero of ϕk(z). Hence Gk(z) = Fk(z) for all 0 < k 6= j. In
view of (2.8), G0(z) ≡ c in U , and by the Permanence Theorem, G0(z) =

∑n
k=1Gk(z).

Hence
(1− ω)Fj(z) = (F0(z) − G0(z) ) ≡ 0 in U.

Then fj(t) = 0 for all real numbers t in U , and thus λj = 0, contradicting assumption
(iv) of the proposition. This completes the proof.

3. Proof of Theorem B. In the sequel ‖a‖p will stand for the `p norm of

a = (a1, . . . , an) ∈ Cn : ‖a‖p =
( n∑
k=1

|ak|p
)1/p

and in the meantime we assume that p ≥ 1.
For the proof we shall also use the following two lemmas.

Lemma 1. Let ζ ∈ C and a = (a1, . . . , an) ∈ H such that

( a1, . . . , aj−1, ζ, aj+1, . . . , an ) ∈ H.

Then

(3.1) C ((a1, . . . , aj−1, ζ, aj+1, . . . , an) , (a1, . . . , an)) = ρ
(
u−1
j ζ, u−1

j aj
)

Here ρ is the hyperbolic distance in ∆ and

(3.2) uj =
(

1 −
∑

1≤k≤n,k 6=j

|ak|p
)1/p

.

The proof of this lemma follows from Theorem 1 of [JPZ]. The details will be given
at the end of the proof of Theorem B.

Lemma 2. Let a ∈ H and ζ ∈ C such that ζa ∈ H. Then

(3.3) C(ζa, a) = ρ ( ‖a‖p, ‖a‖pζ ) .

See [D, p. 95].

For a ∈ H let

Bc(a, r) = {z ∈ H : C(z, a) < r} and BN (a, r) = {z ∈ H : ‖z − a‖p < r}
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denote the Carathéodory and the `p norm balls respectively, of radius r centered at a. To
prove the theorem suppose that, contrary to its statement, there are points a ∈ H\{0}
and aN ∈ H and real numbers 0 < α < 1 and rN > 0 such that

(3.4) BN (aN , rN ) = Bc(a, r) ⊂ H,

where

(3.5) r = tanh−1 α.

Then ∂BN (aN , rN ) = ∂Bc(a, r) ⊂ H where the inclusion follows from the fact that
H is bounded and convex cf. [D, p. 88]. We will show that this assumption leads to a
contradiction, for p > 2, by considering certain one dimensional subsets of ∂Bc(a, r)
which correspond to the following subsets of C:

(3.6) Aj = {ζ ∈ C : ( a1, . . . , aj−1, ζ, aj+1, . . . , an ) ∈ ∂Bc(a, r)} , j = 1, . . . n,

and

(3.7) B = {ζ ∈ C : ζa ∈ ∂Bc(a, r)},

where r is given in (3.5).
First note that for ζ ∈ Aj , j = 1, . . . , n,

C ((a1, . . . , aj−1, ζ, aj+1, . . . , an) , (a1, . . . , an)) = r.

This and Lemma 1 imply

ρ (u−1
j ζ, u−1

j aj ) = r = tanh−1 α, uj =
(

1 −
∑

1≤k≤n,k 6=j

|ak|p
)1/p

.

Therefore all points u−1
j ζ, ζ ∈ Aj , lie on a hyperbolic circle in ∆, hyperbolically

centered at the point u−1
j aj , which is also a Euclidean circle, whose center and radius

can be computed by (1.1) and (1.2). Hence Aj is a Euclidean circle too which is given by

(3.8) Aj =
{
ζ : ζ =

(1− α2)u2
j

u2
j − α2|aj |2

aj + αuj
u2
j − |aj |2

u2
j − α2|aj |2

eiϕ, 0 ≤ ϕ ≤ 2π
}
,

where uj is given in (3.2).
Suppose, as above, that ∂Bc(a, r) = ∂BN ( aN , rN ) for some aN ∈ H and rN > 0.

Then for all ζ ∈ Aj

rpN = ‖ ( a1, . . . , aj−1, ζ, aj+1, . . . , an ) − aN‖pp(3.9)

= |ζ − aNj |p +
∑

1≤k≤n,k 6=j

|ak − aNk |p.

Since ζ ∈ Aj and Aj is a circle, and since rN , ak and aNk are all constants it follows that
aNj must coincide with the center of Aj . Therefore, by (3.8),

(3.10) aNj =
(1− α2)u2

j

u2
j − α2|aj |2

aj , j = 1, . . . , n,

where uj is given by (3.2). As a corollary we get

(3.11) aj = 0 if and only if aNj = 0.
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Next, consider the set B of (3.7). Then, by Lemma 2 and (3.5). ζ ∈ B if and only if

tanh−1 α = C(ζa, a) = ρ ( ‖a‖pζ, ‖a‖p ) .

Consequently, the points ‖a‖pζ, ζ ∈ B, lie on a hyperbolic circle in ∆, hyperbolically
centered at the point ‖a‖p. By (1.1) and (1. 2) this is a Euclidean circle. Hence B is a
circle which is given by

(3.12) B = {ζ = λ + Reiϕ : 0 ≤ ϕ ≤ 2π},

where

(3.13) λ =
1− α2

1− α2‖a‖2p
and R =

α

‖a‖p
1− ‖a‖2p

1− α2‖a‖2p
.

Thus, for all ζ ∈ B

(3.14) ζa = (λ + Reiϕ ) a and ζak = λak + Rke
i(ϕ+ψk), 0 ≤ ϕ ≤ 2π,

where

(3.15) Rk = α
|ak| ( 1− ‖a‖2p )
‖a‖p ( 1− α2‖a‖2p )

and ψk = arg ak, k = 1, . . . n.

Suppose again that ∂Bc(a, r) = ∂BN ( aN , rN ). Then for ζ ∈ B, ζa ∈ ∂Bc(a, r) and
by (3.12), (3.13) and (3.14)

rN = ‖ζa− aN‖p =
( n∑

k=1

∣∣∣λak + Rke
i(ϕ+ψk) − aNk

∣∣∣p )1/p

, 0 ≤ ϕ ≤ 2π.

Then, by the proposition,

(3.16) aNk = λak, k = 1, . . . n and aN = λa,

where λ is given by (3.13).
We now consider two cases:

Case 1. aj 6= 0 and ak 6= 0 for some 1 ≤ j < k ≤ n.
Case 2. aj 6= 0 for some 1 ≤ j ≤ n and ak = 0 for any other k 6= j.

Suppose that we are in case 1. With no loss of generality we may assume a1 6= 0,
and that ak 6= 0 for some 2 ≤ k ≤ n Using (3.10), (3.16) and (3.13) for aN1 we get

(3.17)
(1− α2)

u2
1 − α2|a1|2

u2
1a1 = aN1 =

(1− α2)
1− α2‖a‖2p

a1,

where u1 = (1−
∑n
k=2 |ak|p)

1/p is as in (3.2). Since a1 6= 0 and 0 < α < 1, (3.17) gives

u2
1 − α2u2

1‖a‖2p = u2
1 − α2|a1|2

or u1‖a‖p = |a1|. This is equivalent to up1‖a‖pp = |a1|p. By (3.2), this is(
1−

n∑
k=2

|ak|p
)

n∑
k=1

|ak|p = |a1|p.
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Hence
n∑
k=1

|ak|p −
n∑
k=1

|ak|p
n∑
k=2

|ak|p = |a1|p or
( n∑
k=2

|ak|p
)(

1 −
n∑
k=1

|ak|p
)

= 0.

‖a‖p < 1 and ak 6= 0 for some 2 ≤ k ≤ n imply that each factor 6= 0, thus leading
to a contradiction. (Note that for this case we have assumed only p ≥ 1, and p is not
an even integer.)

Suppose now that we are in case 2. With no loss of generality we may assume that
a2 6= 0 and that ak = 0 for all other k 6= 2. Then a = (0, a2, 0, . . . , 0). By (3.2)
u2 = 1 and by (3.10)

(3.18) aN2 =
1− α2

1− α2|a2|2
a2 and aNk = 0 for all k 6= 2.

Consider the set Aj of (3.6) with j = 1 for a = (0, a2, 0 . . . , 0). Then, by (3.2),
u1 = ( 1 − |a2|p )1/p and by ( 3.8) ζ ∈ A1, i.e. (ζ, a2, 0, . . . , 0) ∈ ∂Bc(a, r) if and only
if

(3.19) ζ = α ( 1 − |a2|p )1/p eiϕ, 0 ≤ ϕ ≤ 2π.

Assuming ∂Bc(a, r) = ∂BN ( aN , rN ), it follows that

rpN = ‖aN − (ζ, a2, 0, . . . , 0)‖pp = |ζ|p + |aN2 − a2|p,

and by (3.19) and by (3.18) we get

(3.20) rpN = αp ( 1 − |a2|p ) + α2p|a2|p
( 1− |a2|2

1− α2|a2|2
)p
.

We now compute rpN by considering the set B of (3.7). If ζ ∈ B, then ζa ∈ ∂Bc(a, r) =
∂BN ( aN , rN ). Here a = (0, a2, 0, . . . , 0), ζa = (0, ζa2, 0, . . . , 0) and by (3.10) and (3.11),
aN = (0, aN2 , 0, . . . , 0). Therefore, in view of (3.14),

rpN = ‖ζa− aN‖pp = |ζa2 − aN2 |p =
∣∣∣λa2 +R2e

i(ϕ+ψ2) − aN2
∣∣∣p , 0 ≤ ϕ ≤ 2π.

Hence λa2 = aN2 and, consequently, rN = R2. Then, by (3.15)

(3.21) rpN = αp
( 1− |a2|2

1− α2|a2|2
)p
.

Now subtracting the expression for rpN in (3.21) from the expression for rpN in (3.20), we
get

(3.22) αp ( 1− |a2|p ) + αp
( 1− |a2|2

1− α2|a2|2
)p

(αp|a2|p − 1 ) = g (α, |a2| ) .

It follows that
g (α, |a2| )

αp
( 1 − α2|a2|2 )p = h (α, |a2| ) ,

where

(3.23) h (α, |a2| ) = ( 1− |a2|p ) ( 1− α2|a2|2 )p + ( 1− |a2|2 )p (αp|a2|p − 1 ) .

To obtain a contradiction we have to show that, for all α and |a2| in (0, 1)

(3.24) h (α, |a2| ) 6= 0, 0 < α < 1, 0 < |a2| < 1.
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We are going to show that the inequality (3.24) holds for any p, p > 2. (Note that our
proof does not apply for 1 < p < 2.)

To simplify notation we write instead of |a2| the letter x. So we have to show that

(3.24′) h(α, x) 6= 0, 0 < α < 1, 0 < x < 1.

This is the same as

(3.25) ( 1 − xp ) ( 1 − α2x2 )p 6= ( 1 − αpxp ) ( 1 − x2 )p

or

(3.26)
(1− α2x2)p

1− αpxp
6= (1− x2)p

(1− xp)
, 0 < α, x < 1.

We define

(3.27) tp(x) = t(x) =
(1− x2)p

(1− xp)
, p ≥ 1, 0 ≤ x ≤ 1.

Note that for p > 1

(3.27′) t(0) = 1, t(1) = 0.

We are going to show that for p > 2, t(x) is strictly decreasing in (0,1]. This will imply
(3.26) and hence prove the Theorem for p > 2 (6= 4, 6 . . .). To prove this statement we
compute t′(x)

(3.28) t′(x) =
−2xp(1− x2)p−1(1− xp) + pxp−1(1− x2)p

(1− xp)2
or

(3.29) t′(x) =
xp(1− x2)p−1

(1− xp)2
· Np(x)

where

(3.29′) Np(x) = −2(1 − xp) + xp−2(1 − x2) = −2 + xp + xp−2

Let now p > 2. Then

(3.30) N(0) = −2, N(1) = 0.

Furthermore,

(3.31) N ′(x) = pxp−1 + (p− 2)xp−3 = pxp−3
[
x2 +

p− 2
p

]
.

Hence as p > 2, N ′(x) > 0 in 0 < x ≤ 1 and using (3.30) we obtain N(x) < 0 in (0,1)
and it follows by (3.29) that t(x) is strictly decreasing.

To complete the proof of the theorem we give now the proof of Lemma 1.

P r o o f o f L e m m a 1. It seems convenient to change slightly the notation, so we
state Lemma 1 in the following form.

Lemma 1 (restated). Let z̃ = ( z1, b2, . . . , bn ) and w̃ = (w1, b2, . . . , bn ) be points
in Hp,n. Set b = ( b2, . . . , bn ) and denote

(3.2∗) u = ( 1 − ‖b‖pp )1/p .
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Then

(3.1∗) C(z̃, w̃) = ρ (u−1z1, u
−1w1 ) .

As stated this follows from a result on the geodesics of convex complex ellipsoids [JPZ,
Theorem 1] cf. also [JP]. In the notation of this theorem we set p1 = . . . = pn = q and
set 2q = p. We also set s = 1 and α0 = . . . = αn = 0. We define the constants aj of
their theorem as follows: a1 = u, aj = bj , j = 2, . . .,n. The linear complex geodesic
ϕ(λ) = (ϕ1(λ), . . . , ϕn(λ) ) = ( z1, . . . , zn ) is thus of the form z1 = ϕ1(λ) = uλ,
zj = ϕj(λ) = bj , j = 2, . . . , n, and ϕ maps ∆ into Hp,n. By the definition of a complex
geodesic we have

C(ϕ(λ′), ϕ(λ′′)) = ρ(λ′, λ′′)
for all points λ′, λ′′ ∈ ∆. Choosing λ′ = u−1z1, λ

′′ = u−1w1, we obtain (3.1)*. This
proves the lemma and completes the proof of Theorem B.
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