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Abstract. It is shown that for n > 2 and p > 2, where p is not an even integer, the only
balls in the Carathéodory distance on Hpn = {z € C": |z|lp < 1} which are balls with
respect to the complex £, norm in C™ are those centered at the origin.

1. Introduction. Consider the unit ball
H = H,, = {z € C": |z|, < 1}

in the complex n-space C™ with respect to the metric which is induced by the complex
¢y norm in C"

2 1/p
Il = ( Dlal ), 2 = (aeuz) €T p o2 L
k=1

H is a convex bounded domain in C™. Next consider the Carathéodory distance C = Cg
on H

C(z,w) = Ssup p(f(z)v f(w))v z,w € H,

where the supremum is taken over all holomorphic functions f from H into the unit disk
A = {z € C: |z| < 1} of the complex plane C. Here p is the hyperbolic distance
on A. Note that on Hy, ,,, the Carathéodory distance and the Kobayashi distance are the
same.

Forn = l,andallp > 0, H,; = A, and C(a,b) = p(a,b), a,b € A, and
Izll, = |z], 2 € A, and since, cf. [Sch, Lemma 2.1],

(1.1) plz,a) = r & |z—b = R, a,b,z € A,
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where
1—a? 1—|a|?

1.2 b=qgq—— and R = o« —1
(12) a17a2|a|2 an a17a2\a|2’

a = tanh 7,
it follows that in the case n = 1 every ball (i.e. disk) in the Carathéodory distance on H
is a ball with respect to the £, norm in C for p > 1.

Also, every ball in the Carathéodory distance on Hy, ,, n > 1, p > 1 which is centered
at the origin is a ball in the £, norm of C”. (See Lemma 2 in Section 3.)

Forn > 2 and p = 1 the following theorem holds (cf. [Sch], [Sr] and [Z]):

THEOREM A. The only balls in Hy,, = {z € C?: ||z]i < 1} in the Carathéodory
distance on Hi , which are balls in the {1 norm in C" are those which are centered at the
origin.

The proof of this theorem is based on the following proposition for p = 1 (cf. [Sch],
[St]).

PROPOSITION. Given

(i) ncirclesy, = {z € C: |z—ag| = m > 0}, k = 1,...,n,
(ii) n points z1,...,zn in motion such that the point zi moves along i with state
equation
2(t) = ap+ e o0 <t < 00, k =1,...,n,
where the phases ¥4, ...,9, are given,

(iil) n points by,..., b, in C,
(iv) n real positive numbers A1, ..., A\, and a real positive number c,
(v) a positive real number p which is not an even integer, such that

(1.3) Z)\k\zk(t) — P = ¢ —o00 < t < oo,
k=1

then a, = by forallk = 1,...,n.

This proposition is proved in [Sr] in the special case p = 1. The generalization for
every p > 0 which is not an even integer can be obtained by modifying the proof of
[Sr]. For completeness, we will present the whole proof of the general case. With the aid
of the proposition we establish here the following theorem.

THEOREM B. Let p > 2 be a real number which is not an even integer. Then the
only balls in Hy,, = {z € C": |z|, < 1} in the Carathéodory distance on Hy,
which are balls in the €, norm in C™ are those which are centered at the origin.

Remark. Theorem B holds also for p = 2, as can be deduced from [R, pp. 29-30].

2. Proof of the proposition. If for some k, ap = by as desired, then the term
|2k (t) — bi|P yields a constant contribution to the sum in (1.1), and may be dropped. We
thus may assume that ar # by for all k = 1,...,n. By rotating, translating, rescaling
and renaming the constants c, Ag, by and ¥; we may assume that for all k = 1,...,n,
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ar, = 0,7y = 1 and by is real and positive. Then |z;(¢)] = 1, arg zx(t) = t + U,
and by the Cosine Theorem, (1.3) becomes

(2.1) zn:/\k(l + b2 — 2y cos(t + U) )P/? = «, —00 < t <
o k=1
(2.2) zn:fk(t) = ¢ —o00 < t < o0,
k=1

where
(2.3) fot) = N (Ap — cos(t+0x))%, k = 1,...,n,
and where N, = Ap(2b;)P/2 and A, = L (by + by'). Since b, > 0, it follows that
(2.4) A, > 1.

Now let
(2.5) or(z) = A — cos(z+9), 2 € C, k = 1,...,n,
and
(2.6) Zy = {z € C: gi(z) = 0}, E=1,...,n.
Then A, = 1 = Z; = {wr + 2mr: m € Z} for some real number wy, and

Ak>1:Zk:{wk+2mﬂ:m€Z}U{Ek+2mﬂ:meZ}

for some non-real number w;, in C.

We may assume that ¢; # ¢, for all j # k, since otherwise the corresponding terms
in (2.2) may be grouped together. Then A; # Ay or ¥; # Ui(mod 27) for j # k. In
the first case Im w; # Im wy, and in the latter case we have Re w; # Re wy (mod 27)
for any w; € Z; and wy, € Zj with 7 # k. Therefore

(2.7 Z; N Zy = ¢ for all j # k.

Suppose now that A; = 1. Then ¢;(—9;) = 0 and ¢i(—9;) # 0forall k& # j.
Then fi(t) = N.or(t)P/? is real analytic at t = —4;, for all k,k # j, and by (2.2) so
is > p_, fr(t). Hence, also f;(t) must be real analytic at ¢ = —d;. But f; is not real
analytic (it is not even differentiable) at t = —4;, since

1
Fit) = X (1 = cos(t+9;))"% = X 2% |sin o (t+0;)]7

and p is not a positive even integer. This contradiction shows that Ay > 1 for all
k=1,...,n.

To complete the proof fix j, 1 < j < n, and choose a point w such that ¢;(w) = 0.
Since A; > 1,w is not real, and by (2.7), ¢r(w) # 0 for all & # j. Choose a real
number ¢o. Since Ay > 1 for all & = 1,..,n it follows that ¢x(tg) # 0 for all
k = 1,...,n. We can, therefore, find a simply connected neighborhood U of ¢y such that
op(z) # Oforall z € Uandallk = 1,...,n. Next, choose a path v in C \ J;_; Zk
which starts and ends at tg, winds once around the point w and does not wind around
any other point of (J;_, Zx. Now, for k = 1,...,n, let Fi(z) be an analytic branch of
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N, pr(2)P/? such that Fy(t) = fi(t) for all real numbers ¢ in U, (see (2.3) and (2.5)).
Such branches exist since ¢i(z) # 0forall z € Uand k = 1,...,n, and since U is
simply connected. Finally, set Fy(z) = > ,_; fu(2). Then Fy(z) is analytic in U, and
Fo(t) = > p_y fr(t) for all real numbers ¢ in U. Therefore, by (2.2),

(2.8) Fy(z) = cin U.

For k = 0,1,...,n, let Gx(z) denote the analytic function in U which is obtained by
continuing Fy(z) along ~.

The point w is a simple zero of ¢;(z), and v winds once around w and does not wind
around any other zero of p;(z). Therefore Gj(2) = wkFj(z), where w = €™, Then
w # 0, and since p is not an even integer, also w # 1. For any other k, 0 < k # j, 7y
does not wind around any zero of ¢y (z). Hence Gi(z) = Fi(z) forall0 < k& # j. In
view of (2.8), Go(z) = cin U, and by the Permanence Theorem, Go(z) = >.;_; Gi(2).
Hence

(1-w)Fj(z) = (Fo(z) — Go(z)) = 0 inU.

Then f;(t) = 0 for all real numbers ¢ in U, and thus A\; = 0, contradicting assumption
(iv) of the proposition. This completes the proof. m

3. Proof of Theorem B. In the sequel ||al|, will stand for the ¢, norm of

a = (a,...,a,) € C": ||aHp:(Z|ak|p)l/p

k=1
and in the meantime we assume that p > 1.
For the proof we shall also use the following two lemmas.

LEMMA 1. Let ¢ € C anda = (a1,...,a,) € H such that
(ala"'va’j—la C7 aj+17"~;an) €H.
Then
(3.1) C((a1,...,aj-1, ¢ ajy1,...,an),(a1,...,an)) = p (u;lc, u;laj)
Here p is the hyperbolic distance in A and

(3.2) uj = (1 -3 |ak|p)1/p.

1<k<n,k#j
The proof of this lemma follows from Theorem 1 of [JPZ]. The details will be given
at the end of the proof of Theorem B.

LEMMA 2. Leta € H and ( € C such that (a € H. Then

(3-3) C(Ca,a) = p(llallp, llallp¢)-
See [D, p. 95].
Fora € H let
B.(a,7) = {# € H: C(z,a) < r}and By(a,7) = {z € H: |z—al, < r}
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denote the Carathéodory and the ¢, norm balls respectively, of radius r centered at a. To
prove the theorem suppose that, contrary to its statement, there are points a € H\{0}
and eV € H and real numbers 0 < a < 1andry > 0 such that

(3.4) BN(aNmN) = B.(a,r) C H,
where
(3.5) r = tanh™'a.

Then OBy (a¥,ry) = 0B.(a,r) C H where the inclusion follows from the fact that
H is bounded and convex cf. [D, p. 88]. We will show that this assumption leads to a
contradiction, for p > 2, by considering certain one dimensional subsets of 9B.(a, )
which correspond to the following subsets of C:

36) A;j={¢ € C: (a1,...,a5-1, ¢, aj41,...,a,) € O0Bc(a,r)}, j=1,...n,
and
(3.7) B = {¢ € C: ¢a € IB.(a,r)},
where 7 is given in (3.5).
First note that for ( € A;,57 = 1,...,n,
C((ar,.. s ai—1, ¢, QGj41,---,0p), (01, an)) = T

This and Lemma 1 imply

1/p
p(uj_lg, uj_laj) = 7 = tanh™'q, uj = (1 - Z |ak\p) .
1<k<n,k#j
Therefore all points u;lg , ¢ € Aj, lie on a hyperbolic circle in A, hyperbolically
centered at the point u;laj, which is also a Euclidean circle, whose center and radius
can be computed by (1.1) and (1.2). Hence A, is a Euclidean circle too which is given by

g (ot @l
where u; is given in (3.2).
Suppose, as above, that dB.(a,r) = dBx (a”,ry ) for some a™ € H and ry > 0.

Then for all { € A;

(39) ’f‘% = H (a17...,aj,1, <, aj+1,...,an) — aN||g
=lC=afl” + > lax—af”.
1<k<n,k#j

Since ¢ € Aj and A, is a circle, and since 7y, a) and alY are all constants it follows that

aév must coincide with the center of A;. Therefore, by (3.8),
(1 —a?)u?
(3.10) N = —F L a;, j=1,...,n,
J uf — a?|a;? J

where u; is given by (3.2). As a corollary we get

(3.11) a; = 0 if and only if aj»v = 0.
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Next, consider the set B of (3.7). Then, by Lemma 2 and (3.5). ( € B if and only if
tanh ™' o = C(Ca,a) = p(llallpC, llally)-

Consequently, the points ||a|,{, ¢ € B, lie on a hyperbolic circle in A, hyperbolically
centered at the point ||la|,. By (1.1) and (1. 2) this is a Euclidean circle. Hence B is a
circle which is given by

(3.12) B ={C=X+ R™:0 < ¢ < 21},
where
1—a? a 1—|al?
19 R AR e
Thus, for all { € B
(3.14) Ca = (N + Re¥¥)aand Car, = Aap, + Rye#tvn) 0 < ¢ <2m,
where
(3.15) R, = « |ak|(1—||a|\12,) and v, = arg ai, k=1,...n.

lall, (1 —a?[la]l})
Suppose again that 0B.(a,r7) = 0By (a”,ry). Then for ¢ € B,(a € 0B.(a,r) and
by (3.12), (3.13) and (3.14)
- , p\1/p
rn = |[¢a— o™, :( Z‘/\ak + Rye’eton) aff‘ ) 0 < g < 2m
k=1

Then, by the proposition,
(3.16) al = Xap,k = 1,...nand aV = )a,

where A is given by (3.13).
We now consider two cases:

Casel. a; # Oanday # Oforsomel < 7 < k <n.
Case 2. a; # Oforsomel < j < nandar = 0 for any other £ # j.

Suppose that we are in case 1. With no loss of generality we may assume a; # 0,
and that a;, # 0 for some 2 < k < n Using (3.10), (3.16) and (3.13) for a¥ we get

(1-a?) 2 N (1-a?
3.17 —_— 7 = N S
( ) 1—0[2”0,”12) al?

where uy = (1=, _, |ak|p)1/p is as in (3.2). Since a1 # 0 and 0 < a < 1, (3.17) gives
ui — o?uillaly = ui — o®|af?
or uillall, = la1]. This is equivalent to uflalb = |ai[P. By (3.2), this is

(1 -3 |ak|p> S Jal? = fa?.

k=2 k=1
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Hence

n n n n n

bl =Dl Yol = Jaror (Slan) (1= Y laal) = 0
k=1 k=1 k=2 k=2 k=1

llall, < 1 and ar # O for some 2 < k < n imply that each factor # 0, thus leading
to a contradiction. (Note that for this case we have assumed only p > 1, and p is not
an even integer.)

Suppose now that we are in case 2. With no loss of generality we may assume that
az # 0 and that a, = 0 for all other k& # 2. Then a = (0,a9,0,...,0). By (3.2)
uz = 1 and by (3.10)
2

N l-a

(3.18) ay as and a) = 0forallk # 2.

T1- a?|as]?
Consider the set A; of (3.6) with j = 1fora = (0,a2,0...,0). Then, by (3.2),
up = (1 — |a2|p)1/p and by (3.8) ¢ € Ay, ie. (¢, a2,0,...,0) € 0B.(a,r) if and only
if

(3.19) ¢ = a(l - |af)Pe? 0 <y <o
Assuming dB.(a,r) = OBy (a",ry), it follows that
iy =l = (Gaz, 0, 0)F = K7+ oy’ — aal

and by (3.19) and by (3.18) we get
1 —Jay|? )p
1—a2|ag|? / °
We now compute 75, by considering the set B of (3.7). If { € B, then a € 0B.(a,r) =
OBy (a",ry ). Here a = (0,as,0,...,0), Ca = (0,az,0,...,0) and by (3.10) and (3.11),
a™ = (0,ad,0,...,0). Therefore, in view of (3.14),

(3.20) M= o (1~ [aof) + a®lasf?(

B p
R = lCa = a¥ |l = ICaz — af'I? = [Aaz + Ree'#+¥2) —a}|", 0 < o < 2.

Hence Aas = a)’ and, consequently, ry = Ry. Then, by (3.15)
1-— |a2|2 p
3.21 b= ()
( ) "N Q 1— a2|a2|2
Now subtracting the expression for r5; in (3.21) from the expression for r%; in (3.20), we
get

022 @ (-lal)+ o ((2 ) (et - 1) = g a).
It follows that
9 lal) (1 a2y = h(alal),
where
(323 hlalaal) = (1 [aal") (1 - a%lasl )" + (1~ [asf* )" (aPlas]? ~ 1)

To obtain a contradiction we have to show that, for all @ and |az| in (0, 1)

(3.24) h(a,laz]) #0, 0 < a <1, 0 < Jaz| < L
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We are going to show that the inequality (3.24) holds for any p, p > 2. (Note that our
proof does not apply for 1 < p < 2.)
To simplify notation we write instead of |as| the letter z. So we have to show that

(3.24") ha,z) 20, 0 <a <1, 0<z<1.
This is the same as
(3.25) (1 — aP)(1 — o?22)P # (1 — aPaP)(1 — 22)P
or
_ 2.2\p 2y
(3.26) oo * Gy O<aw<l
We define
(3.27) tp(z) = t(z) = a2 p>1,0<z<1

Note that for p > 1

(3.27) t(0) = 1, 1) = 0.

We are going to show that for p > 2,¢(x) is strictly decreasing in (0,1]. This will imply
(3.26) and hence prove the Theorem for p > 2 (# 4,6...). To prove this statement we
compute t'(x)

—2xp(1 — 2P~ (1 — 2P) + paP~ (1 — 2?)P

2 4 —
(3.28) t'(z) oy
or
xp(l — 2?)P~1
(3.29) t'(z) = El—aﬂ’iz . Ny()
where
(3.29") Ny(z) = —2(1 — aP) + 2P72(1 — x2) T
Let now p > 2. Then
(3.30) N(0)=—-2, N(1)=0.
Furthermore,
(331) N'(z) = pa? ' + (p—2)aP™° = px”_B[m2 .2 }
p

Hence as p > 2, N'(z) > 0in 0 < z < 1 and using (3.30) we obtain N(z) < 0in (0,1)
and it follows by (3.29) that ¢(z) is strictly decreasing.
To complete the proof of the theorem we give now the proof of Lemma 1.

Proof of Lemma 1. It seems convenient to change slightly the notation, so we
state Lemma 1 in the following form.

LEMMA 1 (restated). Let Z = (2z1,b2,...,b,) and w = (wi,be,...,b,) be points
in Hy,. Setb = (ba,...,b,) and denote

(3.2%) wo= (1 — [plp ).
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Then
(3.1%) Ciz,w) = p(utz, v lwy).

As stated this follows from a result on the geodesics of convex complex ellipsoids [JPZ,
Theorem 1] cf. also [JP]. In the notation of this theorem we set p; =...= p, = ¢and
set 2¢ = p. Wealsoset s = land ag =...= o, = 0. We define the constants a; of
their theorem as follows: a1 = wu,a; = b;,j = 2,...n. The linear complex geodesic

o(A) = (e1(A)y..y0n(N)) = (21,...,2,) is thus of the form z; = 1 (A) = w),
zj = ¢j(A\) = b;,j=2,...,n,and ¢ maps A into Hp,,,. By the definition of a complex
geodesic we have

Clp(N), e(X")) = p(X, ")
for all points A, \” € A. Choosing N = u~1z;, A’ = w lwi, we obtain (3.1)*. This
proves the lemma and completes the proof of Theorem B. m
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