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Abstract. Let σ = (λ1, . . . , λn) be the spectrum of a nonnegative real n × n matrix. It is
shown that σ is the spectrum of a nonnegative real n× n matrix having at most (n+ 1)2/2− 1
nonzero entries.

Let A = (aij) be a real n × n matrix. We say that A is nonnegative if all its entries

aij ≥ 0 and that A is positive if all aij > 0. The nonnegative inverse eigenvalue problem

(NIEP) is the problem of characterizing those lists σ = (λ1, . . . , λn) of complex numbers

λi for which there exists a nonnegative matrix A with spectrum σ(A) = σ.

If such an A exists we say that the list σ is realizable and we say that A realizes σ.

While considerable work has been done on the NIEP, the problem is still far from being

solved and in terms of n, only in the cases n = 2 and n = 3 (Johnson, Loewy and London)

has the question been completely settled. See for example [1], [5] for references.

For a given list σ = (λ1, . . . , λn), one can attempt to realize σ by the companion

matrix C(f) of the polynomial

f(x) := (x− λ1) · · · (x− λn) := xn + p1x
n−1 + · · ·+ pn.

In this case C(f) is nonnegative if and only if pi ≤ 0 for i = 1, 2, . . . , n.

However this condition is very restrictive—it implies for example that f(x) has only

one positive real root (see also [2] for a related discussion)—and one can improve the

prospects of success by seeking to realize σ by a matrix of the form αIn +C where α ≥ 0

and C is a nonnegative companion matrix. There exist realizable sets σ which are not

realizable by matrices of this type. (See Reams’ Thesis [6], Chapter 3 for examples with

n = 4.)
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Matrices of the form αIn + C are relatively sparse, having at most 3n − 1 nonzero

entries. This suggests the problem of determining the “sparsest” n× n matrix realizing

a given list σ and in this paper, we make a contribution to its resolution.

Theorem. Suppose σ = (λ1, . . . , λn) is the spectrum of a nonnegative real matrix B.

Then there exists a nonnegative real n × n matrix A with spectrum σ and such that A

has at most
[
(n+ 1)2/2

]
− 1 nonzero entries (where here [ · ] denotes the greatest integer

function).

To prove the theorem, we need the following result.

Lemma. Let A be an n × n real matrix and suppose that A has k real eigenvalues.

Then there exists a subspace S of Mn(R) of dimension (n2 − 2n + k)/2 such that the

spectrum σ(A+W ) = σ(A) for all W ∈ S.

P r o o f. By a well-known result of Schur, we can find a real orthogonal matrix U such

that T := U−1AU is in upper block triangular form and where each diagonal block is

either a 1× 1 matrix (a) or a 2× 2 matrix

(
b c
−c b

)
for some real numbers a, b, c with

c 6= 0, (corresponding to the eigenvalues a or b± ic of A). Furthermore U can be chosen

so that the k real eigenvalues of A are t11, . . . , tkk where T = (tij).

Let S0 be the space of all strictly upper-triangular real matrices B = (bij) where if

n > k, so n− k = 2h, say, is even, B also has zeros in the positions occurring in the 2× 2

diagonal blocks of T corresponding to nonreal eigenvalues. Thus bij = 0 for all i ≤ j and

also

bij = 0 for (i, j) = (k + 2l − 1, k + 2l), l = 1, 2, . . . , h.

Note that if B ∈ S0, then T + B and B have the same block diagonal and thus σ(A) =

σ(T ) = σ(T +B).

Note that

dimS0 = (n− 1) + (n− 2) + . . .+ (n− k) + 2
[
(n− k − 2) + (n− k − 4) + . . .+ 2

]
= kn− k(k + 1)

2
+ 2h(h− 1) = (n2 − 2n+ k)/2.

Defining S to be US0U−1, the desired result follows.

P r o o f o f t h e T h e o r e m. Suppose that σ is realizable and let A be a nonnegative

matrix which realizes σ and subject to this has the greatest possible number of zero

entries. Let Γ be the set of pairs (i, j) with aij 6= 0. We call Γ the support of A. Let M
be the span of the matrices Eij

(
(i, j) ∈ Γ

)
(where Eij is the n× n matrix with 1 in the

(i, j) position, zeros elsewhere).

Since A is nonnegative, the Perron–Frobenius theorem implies that A has at least one

real eigenvalue, so, by the Lemma, there is a subspace S of Mn(R) of dimension at least

(n2 − 2n+ 1)/2 such that σ(A+W ) = σ(A) for all W ∈ S.

C l a i m. S ∩M = {0}.

For, if not, let 0 6= B ∈ S ∩M. Since the support of B is contained in the support of

A, A+ aB is nonnegative and has the same support as A for all sufficiently small a and

thus we can choose b such that A + bB is nonnegative and such that (A + bB) has its
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(i, j) entry 0 for some (i, j) ∈ Γ. But since σ(A+ bB) = σ(A), this contradicts our choice

of A. So the claim holds.

Now S +M is a subspace of Mn(R) so

dimM≤ n2 − dimS ≤ (n2 + 2n− 1)/2 = (n+ 1)2/2− 1.

This proves the Theorem.

Corollary. Suppose σ = (λ1, . . . , λn) is the spectrum of a nonnegative matrix B.

Then σ is the spectrum of an n × n nonnegative matrix A having at least n − 1 of its

entries equal to 0.

Remarks

1. One can show that (n2 + n)/2 is in fact the correct bound in the theorem for

n = 2, 3. For n = 4, the bound in the theorem is 11 but we do not know an example

requiring more than 9 nonzero entries.

2. If
n∑
i=1

λi = 0,

we can replace M in the above proof by M0 := M + span{E11} and the claim holds

because (in the notation of the proof of the theorem)

S ∩M0 = S ∩M

since the elements of S have trace 0. So in the trace 0 case, the bound can be improved

by 1.

3. Suppose that σ = (λ1, . . . , λn) is realizable and that A=(aij) realizes σ. We define

sk := trace(Ak) = λk1 + · · ·+ λkn.

IfA has exactlym nonzero entries on the diagonal an argument independently constructed

by Johnson [3] and Loewy and London [4] shows that

mk−1sk ≥ sk1 .

So, in particular, if (n− 1)s2 < s21, A must have all its diagonal entries different from 0.

Furthermore if the digraph of A has no 2-cycles (that is aijaji 6= 0 for all i, j with i 6= j)

then it is an easy exercise to check that s1s3 ≥ s22. More generally, if r > 1 is the smallest

integer r for which the digraph of A contains an r-cycle (that is, there exist distinct

integers j1, j2, . . . , jr such that aj1j2aj2j3 · · · ajr−1jrajrj1 6= 0), then

sk = ak11 + · · ·+ aknn for k = 1, 2, . . . , r − 1

and

sr > ar11 + · · ·+ arnn

and thus

sksl ≥ spsq
for all positive integers k, l, p, q with

k ≤ p ≤ q ≤ l and k + l = p+ q ≤ r.
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Thus we may use inequalities between the si to get lower bounds on the size of the

support of A. In this way, one can construct examples to show that the bound in the

theorem is of the right order of magnitude for n = 2, 3 and 4. For large values of n,

however, this author does not know any example of a realizable spectrum of size n which

is not realizable by a matrix with at most 4n + 1 nonzero entries. So it is tempting to

conjecture that the best possible bound in the theorem is linear rather than quadratic

in n.

4. We say that σ = (λ1, . . . , λn) is an extreme spectrum if σ is realizable but for all

α > 0, (λ1 − α, . . . , λn − α) is not realizable. One can show that solving the NIEP is

equivalent to characterizing extreme spectra. Suppose A ≥ 0 realizes an extreme spec-

trum σ. If A is reducible under permutation similarity, that is, there exists a permutation

matrix P such that

P−1AP =

(
A11 A12

0 A22

)
where A11 is r × r, A22 is (n − r) × (n − r) for some r with 1 ≤ r < n, then σ(A) =

σ(A11) ∪ σ(A22) and A11 and A22 have smaller size and an inductive argument can be

invoked.

So we can assume A is irreducible.

In this case, the Perron–Frobenius theorem states that A has an eigenvector v corre-

sponding to the positive eigenvalue ρ which that v has all its entries positive. Replacing

A by D−1AD for a positive diagonal matrix, we can assume v = j, the vector of all

‘ones’. Suppose A has a column with all entries positive. We assume column one of A

has strictly positive entries. Choose ε1 < 0, ε2 > 0, . . . , εn > 0 with
∑n
i=1 εi = 0 and such

that

Aε = A+ (ε1j ε2j · · · εnj) > 0.

But Aε has the same spectrum as A.

Since σ is extreme, this is impossible.

Hence A has at least one zero entry in each column and similarly in each row. Suppose

now that trace(A) > 0. Let Γ = supp(A), the support of A, and let X = (xik) have zero

entries off Γ and indeterminate entries xik(i, k) ∈ Γ. Consider the system of equations

trace(ArX) = nρr for r = 0, 1, 2, . . . , (n− 1). (∗)
If this system is solvable, then

trace
(
Ar(J −X)

)
= 0 for r = 0, 1, 2, . . . , n− 1

(where J is the matrix with all entries equal to 1). Thus if A is nonderogatory (so in

particular, if A has distinct eigenvalues), then

J −X = [A, T ] = AT − TA
for some matrix T .

Consider for small ε > 0,

Aε = (I + εT )−1A(1 + εT ) = A+ ε[A, T ] +O(ε2) = A+ ε(J −X) +O(ε2).

Since supp(X) ⊆ supp(A), A+ ε(J −X) has positive entries for small ε > 0. So Aε > 0

for all sufficiently small ε > 0. But σ(Aε) = σ(A) is extreme. This is a contradiction.
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So the system (∗) is inconsistent.

Since (∗) contains as many indeterminates as the support of A, this inconsistency is

particularly restrictive if A is not relatively sparse. The argument shows that the only

“generic” class of extreme spectra is the class of those with s1 = 0, that is, the spectra

of trace zero nonnegative matrices.
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