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I. Introduction. Spectral projections and semigroups of operators may be united

with the concept of a functional calculus . Of particular interest is a functional calculus

that may be represented as an integral with respect to these spectral projections. In

particular, we would like a semigroup of operators to be a Laplace transform of spectral

projections.

This paper is meant to be an informal introduction and survey. For space and exposi-

tory considerations, I will only outline proofs and the more technical parts of definitions.

I will give references for these details.

I will focus on functional calculi that directly produce spectral projections. See [1],

[5], [6], [25], [17], [4], [7], [10], and their references, for more general functional calculi.

Similarly, I will not address spectral projections that do not come from functional calculi;

see [1], [16], [20], [25], and their references, for the subject of decomposable operators.

For motivation, we will begin in finite dimensions. Some familiar elementary results

will be stated in the language we want to use in infinite dimensions. In Section III, I

will give some indication of how diagonalizable matrices may be generalized to infinite

dimensions. This may be introduced with Fourier series in Lp[0, 1]. The nature of their

convergence, for different p, will be significant. Section IV will introduce the abstract

Cauchy problem and semigroups of operators. Section V will give an integrated form of

Widder’s theorem, that is valid for Laplace transforms of vector-valued functions. All

these ideas will be tied together in Section VI.

Throughout, we will assume that A is a closed, densely defined linear operator, with

real spectrum, on a Banach space X . We will write D(A) for the domain of A, σ(A) for

the spectrum of A, ρ(A) for the resolvent set of A, B(X) for the Banach space of bounded

linear operators from X to itself. We will write Im(B) for the image of an operator B.
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II. Spectral projections and semigroups of operators in finite dimensions.

In this section, we will consider linear operators in finite dimensions, that is, matrices.

Recall that a system of n linear constant-coefficient first-order initial-value problems

may be written

(2.1)
d

ds
~u(s) = A(~u(s)), ~u(0) = ~x,

where A is an n × n matrix, ~u(s) ∈ Cn. We guess what the solution of (2.1) is, by

pretending that A is a number, so that we think we recognize the solution as

~u(s) = esA~x.

Then we must decide what esA means; it is not immediately clear how one exponentiates

a matrix. This is an example of a functional calculus—making sense out of f(A), where

A is an operator and f is a function; in this case, f is an exponential function, f(t) ≡ ets.

For a polynomial p, it is clear how to define p(A); if p(t) =
∑N

k=0 αkt
k, then

(2.2) p(A) ≡
N∑

k=0

αkA
k.

For any bounded linear operator, the power series for the exponential function may

be similarly applied:

(2.3) esA ≡
∞∑

k=0

sk

k!
Ak.

Equation (2.3) defines a (norm) continuous semigroup, generated by A. The semigroup

property means that e(t+s)A = etAesA, for any s, t ≥ 0.

Note that the semigroup property corresponds to the fact that f 7→ f(A) is an algebra

homomorphism, since, if hs(t) ≡ est, then hshr = hs+r.

It is not hard to show that ~u(s) ≡ esA~x is a solution of (2.1). However, the formula

(2.3) is not pleasant; it is not something we hope to calculate directly. We would like

a simpler expression for esA; more generally, let us try to construct f(A), for as many

functions f as we reasonably can.

We will restrict our attention to the most desirable class of matrices, those that are

diagonalizable; that is, there exists diagonal D and invertible S so that A = SDS−1.

What this means is that Cn may be decomposed into a sum of subspaces on which A

behaves like a complex number. In the language of operators, this means the following.

There exist projections {Ej}kj=1 and numbers {aj}kj=1 (the eigenvalues of A) such that

(2.4) EjEi = 0, ∀j 6= i, I =
k∑

j=1

Ej , and A =
k∑

j=1

ajEj .

Semigroups and spectral projections are united by the functional calculus that I will now

construct.

For any polynomial p, (2.2) becomes p(A) =
∑k

j=1 p(aj)Ej .
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Thus it seems natural to define, for any function f ,

(2.5) f(A) ≡
k∑

j=1

f(aj)Ej .

The map f 7→ f(A) is an algebra homomorphism; (2.4) is saying that f0(A) = I, f1(A) =

A, where f0(s) ≡ 1, f1(s) ≡ s.

For any subset Ω of the complex plane, we may use (2.5) to define a projection:

E(Ω) ≡ 1Ω(A). Note that

E(Ω) =
∑

aj∈Ω

Ej , and AE(Ω) =
∑

aj∈Ω

ajEj .

Thus we have the following.

Proposition 2.6. Suppose A is a diagonalizable matrix. Then

A : Im(E(Ω)) → Im(E(Ω)), and σ(A|Im(E(Ω))) = Ω ∩ σ(A).

The operator E(Ω) is a spectral projection, corresponding to Ω, for A. It is desirable

thus to decompose A into pieces with specific behaviour.

Of particular interest is to recover our semigroup esA, defined by (2.3). By choosing

f ≡ hs, where hs(t) ≡ ets, in (2.5), it is not hard to see that, for any s,

(2.7) esA = hs(A) ≡
k∑

j=1

esajEj .

III. Infinite-dimensional analogues of diagonalizable matrices. The unifying

theme in Section II was the concept of a functional calculus, as in (2.5).

Definition 3.1. Suppose F is a Banach algebra of complex-valued functions on

a subset of the complex plane containing f0(s) ≡ 1 and gλ(s) ≡ (λ − s)−1, for some

complex λ. An F-functional calculus for A (see, for example, [5]) is a continuous algebra

homomorphism, f 7→ f(A), from F into B(X) such that

(1) f0(A) = I, and

(2) λ ∈ ̺(A), with gλ(A) = (λ −A)−1, whenever gλ ∈ F .

In Section II, we obtained spectral projections by choosing f ≡ 1Ω, for some closed

set Ω, and a semigroup of operators by choosing hs(t) ≡ ets.

We will be interested in the following two choices of F . We will write B(R) for the

space of bounded, Borel measurable complex-valued functions on the real line, with the

supremum norm, and AC(R) for the space of absolutely continuous functions on the real

line such that

‖f‖AC(R) ≡ |f(∞)|+
∞\
−∞

|f ′(t)| dt

is finite. It is clear how AC([0,∞)) would be similarly defined.

For an infinite-dimensional example, let’s first consider the discrete analogue of a

diagonal matrix, an operator A that has a total set of eigenvectors. We would like a

functional calculus analogous to (2.5), with the finite sum replaced by an infinite sum.
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The following familiar example will illustrate some of the difficulties.

Example 3.2. Let A ≡ −id/dx on X ≡ Lp[0, 1] (1 ≤ p < ∞), with maximal domain.

For any integer k, define hk(x) ≡ e2πikx(x ∈ [0, 1]). Then

Ahk = 2πkhk (k ∈ Z),

and the span of {hk}k∈Z is dense.

For any integer k, we have the natural one-dimensional projection Ek, onto the

eigenspace corresponding to 2πk:

(3.3) Ekf ≡ f̂(k)hk,

where f̂(k) is the kth Fourier coefficient for f . Thus our desired representation of a

functional calculus looks like

(3.4) (g(A))f ≡
∑

k∈Z

g(2πk)Ekf ≡
∑

k∈Z

g(2πk)f̂(k)hk (f ∈ X).

The behaviour of this functional calculus hinges on the nature of the convergence of

the Fourier series for f .

First, consider a very natural choice for g, g ≡ 1[0,∞). Then P ≡ 1[0,∞)(A) has the

effect of removing all the negative values of k from the Fourier series,

(3.5) Pf ≡ 1[0,∞)(A)f ≡
∞∑

k=0

f̂(k)hk (f ∈ X).

For X equal to L1[0, 1], (3.5) is known to define an unbounded operator; if we think

of X as L1(∂D), where D is the unit disc in the complex plane, then P is equivalent to

the projection onto H1(D), the set of functions in L1(∂D) with holomorphic extensions

to D.

Thus for X equal to L1[0, 1], we are outside the scope of this paper; other functional

calculi, or a notion of regularized projections, are necessary (see [7], [11], [9] or [12]).

In general, for any Ω ⊆ R, we may use (3.4) to define a projection

(3.6) E(Ω) ≡ 1Ω(A).

At the other extreme, consider X = L2[0, 1]. Here Ek is an orthogonal projection, for

any integer k, thus

(3.7) sup{‖E(Ω)‖ |Ω ⊆ R} < ∞.

It may be shown that (3.7) implies that (3.4) defines a B(R) functional calculus for

A (see [14, Proposition 5.3]).

For p 6= 2, (3.7) is false. But for 1 < p < ∞,

(3.8) sup{‖E([a, b])‖ | a, b ∈ R} < ∞.

This enables us to apply summation by parts to (3.4), to obtain an AC(R) functional

calculus,

(3.9) g(A)f ≡
∞∑

j=−∞

[g(2πj)− g(2π(j − 1))]E([j,∞))f (f ∈ X).
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We remark that (3.7) is equivalent to unconditional convergence of the Fourier series,

for all f ∈ X , while (3.8) is equivalent to convergence; for p 6= 2, we do not have

unconditional convergence, thus cannot have a B(R) functional calculus for A.

An entirely different problem arises when we consider −id/dx on Lp(R) (1 ≤ p < ∞).

Here there are no eigenvalues, so a representation such as (3.4) is impossible; E({a}) is
trivial, for any number a.

However, spectral projections E(Ω), as in Proposition 2.6 and (3.6), may be general-

ized.

Definition 3.10. Suppose Ω is a Borel subset of the complex plane. Then a projec-

tion P is a spectral projection, corresponding to Ω, for A, if

A : D(A) ∩ Im(P ) → Im(P ) and σ(A|Im(P )) ⊆ Ω ∩ σ(A).

Note that an eigenspace is the image of a spectral projection corresponding to a set

containing a single point (the eigenvalue).

We shall also produce an analogue of (2.5), by replacing the sum with an integral,

with respect to a family of spectral projections.

A projection-valued measure for A (see [14] or [15]) is a bounded map Ω → E(Ω),

from the Borel subsets of the real line into B(X), such that E(Ω) is a spectral projection,

corresponding to Ω, for A, for any Borel set Ω, Ω 7→ E(Ω)x is a countably additive

vector-valued measure, for all x ∈ X ,

(3.11) E(Ω1)E(Ω2) = E(Ω1 ∩Ω2), for all Borel sets Ω1, Ω2, and I = E(R).

Definition 3.12. An operator A with real spectrum is scalar (short for spectral

operator of scalar type) if there exists a projection-valued measure E such that

Ax = lim
N,M→∞

N\
−M

t dE(t)x,

with maximal domain.

Note that (3.11) and Definition 3.12 are continuous analogues of (2.4).

A B(R) functional calulus for A is now given by

(3.13) f(A)x ≡
\
R

f(t) dE(t)x (x ∈ X, f ∈ B(R)).

The integral (3.13) is a continuous analogue of (2.5).

Example 3.14. Let A ≡ −id/dx, on Lp(R), and let F be the Fourier transform. Then

continuous analogues of (3.3) and (3.4) are given by

E(Ω)f ≡ F−1(1ΩFf), g(A)f ≡ F−1(gFf).

For p = 2, this defines, respectively, a projection-valued measure and a B(R) func-

tional calculus for A. For p 6= 2, E(Ω) may not define a bounded operator, for arbitrary

closed sets Ω. However, for 1 < p < ∞, {E(−∞, b]}b∈R defines a uniformly bounded

family of spectral projections.
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We will be interested in operators with nonnegative real spectrum. Integrating (3.13)

by parts then gives us, when f ∈ AC([0,∞)),

(3.15) φ (f(A)x) ≡ φ(f(∞)x) −
∞\
0

f ′(t) (F (t)φ) x dt (φ ∈ X∗, x ∈ X),

where F (t) ≡ E([0, t])∗.

The family of operators {F (t)}t≥0 is called a decomposition of the identity for A (see

[14]). If A were scalar, then F would be of bounded variation, in some sense. However, we

would like to consider the case, as with A ≡ −id/dx on Lp(R), 1 < p < ∞, p 6= 2, where

s 7→ F (s) is merely a bounded map into the set of spectral projections corresponding to

closed intervals, for A∗ (see [14, Definition 15.3], for the definition of a decomposition of

the identity for X). We then say that A is well-bounded.

We will use the equivalent definition in terms of functional calculi (see [14, Chapter

15] for A bounded, and see [8] or [23] for A unbounded). See also [3] and its references

for information on well-bounded operators.

Definition 3.16. The (possibly unbounded) operator A is well-bounded on [0,∞) if

it has an AC([0,∞)) functional calculus.

We remark that, for a large class of Banach spaces X , A is scalar if and only if A has

a B(R) functional calculus (see [13]).

Summary 3.17. Let us make the following informal dichotomies between scalar oper-

ators and well-bounded operators, with real spectrum.

If A ≡ −id/dx, on Lp(R) or Lp[0, 1], then A is scalar if and only if p = 2, while A is

well-bounded if and only if 1 < p < ∞.

A scalar operator has a uniformly bounded family of spectral projections correspond-

ing to arbitrary closed sets. A well-bounded operator has a uniformly bounded family of

spectral projections corresponding to arbitrary closed intervals.

A scalar operator has a B(R) functional calculus, while a well-bounded operator has

an AC(R) functional calculus.

For an operator with a total set of eigenvectors, being scalar is equivalent to the

corresponding eigenvalue expansion (such as the Fourier series) for each x ∈ X converging

unconditionally, while being well-bounded is equivalent to the corresponding eigenvalue

expansion converging, for each x ∈ X .

For a scalar operator, the decomposition of the identity is of bounded variation, in

some sense, while for a well-bounded operator, the decomposition of the identity is merely

bounded.

Finally, in future sections we will obtain the following dichotomy in terms of strongly

continuous semigroups (see Definition 4.2), when A has real nonnegative spectrum. If A

is scalar or well-bounded, then −A generates a strongly continuous semigroup {e−sA}s≥0.

If A is scalar, then {e−sA}s≥0 is the Laplace–Stieltjes transform of a measure of bounded

variation, while if A is well-bounded, then {e−sA}s≥0 is the once-integrated Laplace

transform of an L∞ function, in some sense.
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IV. Semigroups of operators and the abstract Cauchy problem. An intimate

relationship between functional calculi and integro-differential equations is obtained from

the infinite-dimensional version of (2.1), known as the abstract Cauchy problem:

(4.1)
d

ds
u(s, x) = A(u(s, x)) (s ≥ 0), u(0, x) = x,

where s 7→ u(s, x) is a map from [0,∞) into a Banach space X , x ∈ X and A is an

operator on X .

By a solution we will mean a strong solution, that is,

s 7→ u(s, x) ∈ C1([0,∞), X) ∩ C([0,∞), [D(A)]),

where [D(A)] is given the graph norm.

When A is chosen to be a differential operator, (4.1) represents a partial differential

equation. This may be thought of as a limit, as n → ∞, of the system of ordinary

differential equations (2.1).

Definition 4.2. A strongly continuous family {T (s)}s≥0 ⊆ B(X) is a strongly con-

tinuous semigroup generated by A if T (0) = I, T (s)T (t) = T (s+ t), for s, t ≥ 0, and

Ax = lim
s→0+

1

s
(T (s)x− x),

with maximal domain; that is, D(A) equals the set of all x for which the limit exists.

We then write T (s) ≡ esA.

See [18], [22] or any other reference on strongly continuous semigroups, for the fol-

lowing fundamental result.

Proposition 4.3. The following are equivalent.

(a) A generates a strongly continuous semigroup.

(b) ̺(A) is nonempty and (4.1) has a unique strong solution, for all x ∈ D(A).

The solution is then given by the semigroup

u(s, x) = esAx (s ≥ 0, x ∈ D(A)).

The terminology esA suggests taking an exponential via a functional calculus, esA ≡
hs(A), hs(t) ≡ ets. This realization is always possible (see [10]). In the cases we are

focussing on, scalar and well-bounded operators, it is particularly straightforward and

constructive.

In practice, the generator A is observed, while the semigroup it generates is what we

need. Thus a representation of the semigroup is of more value than a representation of

its generator.

Suppose A is scalar, with real spectrum, as in Definition 3.12. Then

(4.4) eisAx ≡
\
R

eits dE(t)x (s ∈ R, x ∈ X)

defines a strongly continuous group generated by iA (see (3.13)). If the spectrum of A is

positive, then
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(4.5) e−sAx ≡
∞\
0

e−st dE(t)x (s ≥ 0, x ∈ X)

defines a strongly continuous semigroup generated by −A.

If A is well-bounded on [0,∞), with decomposition of the identity {F (t)}t≥0, then it

may be shown (see (3.15)) that

(4.6) φ(e−sAx) ≡ s

∞\
0

e−st (F (t)φ)x dt (s ≥ 0, x ∈ X,φ ∈ X∗)

defines a strongly continuous semigroup generated by −A.

These representations of semigroups may be thought of as continuous analogues of

(2.7); a linear combination of spectral projections is replaced by integrals with respect to

projection-valued measures or functions. Note that (4.6) follows from (4.5) by integration

by parts, since, when A is scalar with nonnegative spectrum, F (t) ≡ E([0, t])∗.

V. Vector-valued Laplace transforms. For complex-valued functions, we have

the well-known Widder’s theorem (see [24]).

Proposition 5.1.Suppose f : (0,∞) → C and M ≥ 0. The following are equivalent.

(a) There exists F ∈ L∞([0,∞)) such that

f(s) =

∞\
0

e−stF (t) dt, ∀s > 0,

and ‖F‖∞ ≤ M .

(b) f is infinitely differentiable on (0,∞) and

sk+1

k!
|f (k)(s)| ≤ M, ∀s > 0, k = 0, 1, 2, . . .

Widder’s theorem is not true for vector-valued functions. It is shown in [2, Theo-

rem 1.4] and (independently) [26] that, if X is a Banach space, then Widder’s theorem

holds for f : (0,∞) → X if and only if X has the Radon–Nikodym property.

If we integrate by parts in the Laplace transform, we obtain

f(s) = s

∞\
0

e−st

t\
0

F (r) dr dt;

note that F ∈ L∞([0,∞)) if and only if G(t) ≡
Tt
0
F (r) dr is Lipschitz continuous.

It is surprising that the following “integrated version of Widder’s theorem” is valid,

on any Banach space X .

Proposition 5.2 ([2, Theorem 1.1]). Suppose f : (0,∞) → X , M ≥ 0. Then the

following are equivalent.

(a) There exists G : [0,∞) → X such that

f(s) = s

∞\
0

e−stG(t) dt, ∀s > 0,

G(0) = 0, and ‖G(t1)−G(t2)‖ ≤ M |t1 − t2|, for all t1, t2 ≥ 0.
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(b) f is infinitely differentiable on (0,∞) and

sk+1

k!
‖f (k)(s)‖ ≤ M, ∀s > 0, k = 0, 1, 2, . . .

Most of the classical theory of the Laplace transform has a vector-valued “integrated”

analogue. See [2] and [21].

VI. Equivalences. For a scalar operator, it is not hard to show that (4.4) provides

an equivalence.

Proposition 6.1. Suppose A has real spectrum. Then the following are equivalent.

(a) A is scalar.

(b) iA generates a strongly continuous group {eisA}s∈R and there exists a projection-

valued measure E such that

eisAx =
\
R

eits dE(t)x, ∀x ∈ X, s ∈ R.

Or, when A has nonnegative spectrum, we may characterize being scalar in terms of

a Laplace–Stieltjes transform, as in (4.5).

Proposition 6.2.Suppose A has nonnegative real spectrum. Then the following are

equivalent.

(a) A is scalar.

(b) −A generates a strongly continuous semigroup {e−sA}s≥0 and there exists a

projection-valued measure E such that

e−sAx =

∞\
0

e−st dE(t)x, ∀x ∈ X, s ≥ 0.

See [19] for recent results regarding scalar operators and the semigroups they generate.

The Laplace transform (4.6) is of more interest to us, because it is easier to characterize

being a Laplace transform, than it is to characterize being a Laplace–Stieltjes transform.

In some sense, (4.6) is saying that the operator-valued function s 7→ 1
s
e−sA is a Laplace

transform. Especially when X is not reflexive, the “sense” is something we have been

avoiding, involving as it does the precise definition of the decomposition of the identity

{F (t)}t≥0. Formally, (4.6) followed from (4.5) by integrating by parts. If we integrate by

parts one more time, letting G(t) ≡
Tt
0
F (r) dr, so that 1

s
e−sA is the integrated Laplace

transform of G(t), as in Proposition 5.2,

1

s
e−sA = s

∞\
0

e−stG(t) dt,

we shall see that we can avoid the technical problems associated with {F (t)}t≥0. In fact,

although F (t) acts on X∗, and may not be the adjoint of an operator on X , G(t) will

be a bounded operator on X . The Laplace transform of G will converge in the operator

norm, while the Laplace transform of F converged only in a very weak sense.

We may then use Section V to characterize being well-bounded, once we have shown it

to be equivalent to 1
s
e−sA being the appropriate integrated Laplace transform. Since F is
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bounded, G will be Lipschitz continuous, which is perfect for the vector-valued Widder’s

theorem, Proposition 5.2. Laplace transform inversion will enable us to construct the

decomposition of the identity {F (t)}t≥0.

Theorem 6.3. The following are equivalent.

(a) A is well-bounded on [0,∞).

(b) −A generates a strongly continuous semigroup {e−sA}s≥0 and there exists Lips-

chitz continuous G : [0,∞) → B(X) such that G(0) = 0 and

e−sA = s2
∞\
0

e−stG(t) dt, ∀s > 0.

(c) −A generates a strongly continuous differentiable semigroup {e−sA}s≥0 such that

{Hn(s) | s > 0, n = 0, 1, 2, . . .}
is bounded in B(X), where

Hn(s) ≡
( n∑

k=0

skAk

k!

)
e−sA (s > 0, n = 0, 1, 2, . . .).

(d) −A generates a strongly continuous holomorphic semigroup {e−zA}Re(z)>0 such

that

K(t) ≡
\

1+iR

ezte−zA dz

2πiz3
,

with the integral converging in the operator norm, has a Lipschitz continuous derivative,

with K ′(0) = 0.

A decomposition of the identity for A is then given by

(F (t)φ)x =
d

dt
(φ(G(t)x)) =

(
d

dt

)2

(φ(K(t)x))

= lim
n→∞

φ

(
Hn

(
n

t

)
x

)
, ∀φ ∈ X∗, x ∈ X, almost all t.

Ou t l i n e o f P r o o f (see [8]). (a)⇒(b) follows from (4.6).

For (b)⇒(a), we may represent p((1+A)−1), for any polynomial p, as an appropriate

integral as in (3.15), by using the Laplace transform in (b) and the Laplace transform of

the semigroup,

(1 +A)−nx =
1

(n− 1)!

∞\
0

sn−1e−se−sAx ds (n ∈ N, x ∈ X).

Since the polynomials are dense in AC[0, 1], this implies that (1 +A)−1 is well-bounded

on [0, 1], which may be shown to be equivalent to A being well-bounded on [0,∞).

A calculation shows that, for f(s) ≡ 1
s
e−sA,

sk+1

k!
f (k)(s) = (−1)kHk(s), ∀s > 0, k = 0, 1, 2, . . .

Thus the equivalence of (b) and (c) follows from the “integrated version of Widder’s

theorem,” Proposition 5.2.
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Finally, the equivalence of (b) and (d), and the representations of the decomposi-

tion of the identity, follow from (vector-valued or classical) Laplace transform inversion

theorems.

Example 6.4. Let A ≡ △, the Laplacian, on L1(R) or C0(R). Then it may be shown

that, for f of compact support, t ≥ 0,
(

d

dt

)2

(K(t)f) = Pt ∗ f,

where K(t) is from Theorem 6.3(d), and

Pt(x) ≡
1

πx
sin(x

√
t) (t ≥ 0, x ∈ R).

Since ‖Pt‖1 is infinite, for all t > 0, our representation of a decomposition of the identity,

in Theorem 6.3, implies that A cannot be well-bounded on [0,∞).

R ema r k s 6.5. In [8, Theorem 2.4], it is shown that the equivalent conditions of

Theorem 6.3 are equivalent to the resolvent of A being a modified Stieltjes transform.

One of the referees has proposed the following interesting open problem. Given k ∈
C∞[0,∞) which is Laplace transformable for positive λ, is it the case that A has a

functional calculus for functions of the form t 7→
Tt
0
k′(t−s)f(s) ds, for some f ∈ L1[0,∞),

if and only if −A generates a strongly continuous semigroup of the form

e−sA = k(s)

∞\
0

e−st dG(t), ∀s > 0,

for G as in Theorem 6.3(b)? Note that Theorem 6.3(a)⇔(b) is the case k(t) ≡ t.

For k(t) = tn, essentially the same argument gives us this equivalence; note that, for

this choice of k, this class of functions becomes those whose (n − 1)th derivative is in

L1([0,∞)).

One can also ask for a resolvent equivalence.

Although the Laplacian on L1(R) or C0(R) is not well-bounded, it does have a func-

tional calculus for Banach algebras similar to AC([0,∞)). More generally, if A is the

Laplacian on Lp(Rn) (1 ≤ p < ∞) or C0(R
n), for n ∈ N, then it is shown in [17] that A

has a functional calculus for functions f such that
∞\
0

f (ν)(x)xν dx < ∞,

where ν is a nonnegative number that depends on both n and p. In [11] it is shown

that A has a (1−A)−m-regularized BCk([0,∞)) functional calculus, where m and k are

nonnegative integers that depend on both n and p.
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