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0. Introduction. We consider general (linear inhomogeneous) evolution problems of

the type

(1) u′ = Au+ F (t), u(0) = f,

on [0, a[, a > 0, in a Banach space X , A being any closed linear operator in X (i.e.

with domain D(A) and range I(A) in X) (1), F ∈ L1
loc([0, a[, X). A problem of this kind

may be regular (i.e. have a unique C1 solution on [0, a[ for every initial value f ∈ X),

however this is often not the case. Here we shall direct our attention to the matter of

how to deal with singular problems (specifically problems not regular at t = 0) (2), and

describe briefly some of the methods and results developed recently by many people

including the author, to treat and often solve in a useful/usable sense the mentioned

singular problems (3).

Let us start by recalling that much interesting work in the just mentioned direction

was done in the last ten years or so (and in part even earlier), first by using (n-times)

integrated semigroups (or C-regularized semigroups) in lieu of the usual semigroups to
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(1) The set of all such operators (closed or not) will be denoted L(X).

(2) Regular problems appear as special cases in this approach.
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survey of results or references; however, we believe it provides enough information on recent

progress (results, methods, applications) and trends in the area mentioned, to be of interest to

both people working on such and related matters, and people wanting to learn about them.
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treat singular problems. Arendt [1], Da Prato [12], Kellermann and Hieber [17], Neubran-

der [33], deLaubenfels [21], Lumer [23], Miyadera [32], are some references (among many

others) on this work (4).

We now take up directly the description of the recently developed regularization ap-

proach based on the systematic use of local generalized solutions and generalized evolution

operators. This approach widely extends (5) the earlier ones mentioned in the above para-

graph; first developed by the author since 1990 at the level of local integrated solutions

[23], [24], [26], [30], and then at the very general level of local K(t)-generalized solutions

and corresponding evolution operators SK(t) by I. Cioranescu and the author in 1994,

[8], [9] (in particular for “K-convoluted semigroups” in [9]). This goes as follows:

1. K(t)-regularized solutions and evolution operators. Keeping the notations

of Section 0, let K : [0, a[ → B(X) (the space of all bounded linear operators on X , i.e.

with D(·) = X , I(·) ⊂ X) be strongly continuous, here for simplicity even strongly C1,

and satisfying K(t)K(s) = K(s)K(t), K(t)A = AK(t) on D(A), for 0 ≤ s, t < a. We

also assume that A has the uniqueness property (6).

We write K(0) = C, K(t) = C +K0(t); we call K a kernel .

The original problem (1) is now replaced by the regularized problem:

(2) v′ = Av +K(t)f + FK(t), v(0) = 0,

where v′ = v′K stands for v′(t) = v′(t, f) = v′K(t, f),

FK(t) = (K ⋆ F )(t) =

t\
0

K(t− s)F (s) ds,

and v is a C1 solution of (2) on [0, a[. vK is called a K-strong generalized solution of (1)

(K-s.g.s.) starting at f , and v′K is called a K-mild generalized solution of (1) (K-m.g.s.)

starting at f .

Nothing is presumed about the set of initial values f for which (2) can be solved. We

define:

(3) ZK = ZK(a) = {f ∈ X : there exists a K-s.g.s. vK(t, f) on [0, a[ of (1)

with F = 0 starting at f},

and define the K(t)-evolution operators SK(t) via

(4) SK(t)f = v′K(t, f), 0 ≤ t < a, for f ∈ ZK(a).

When K(t) = constant = C, we write simply ZC , SC(t); when K(t) is “scalar”, i.e.

a scalar function multiplying the identity operator 1, we omit 1 and identify K(t) with

the scalar part.

In the present general context the operators SK(t) satisfy specific functional equations,

depending on K(·) of course, which we describe below. We cannot give the proof for the

(4) More details and examples of the latter will appear below.

(5) As will be seen in a moment.

(6) I.e. u = 0 on any [0, a[ on which u′ = Au with u(0) = 0 is satisfied.
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general case here, but it will be instructive to prove a very easy particular case, which

we do next.

Proposition 1. Suppose K(·) = constant = C ∈ B(X). Let 0 ≤ t < a, 0 ≤ s,

t+ s < a, f ∈ ZC(a). Then SC(t)f ∈ ZC(a− t), and

(5) CSC(t+ s)f = SC(s)SC(t)f.

Rema r k 2. We can state also: CSC(t+ s) = SC(s)SC(t) = SC(t)SC(s) on ZK(a)

for 0 ≤ s, t, t+ s < a, SC(t) : ZC(a) → ZC(a− t). (It is the functional equation satisfied

by the “C-semigroups” mentioned in our introduction.)

P r o o f o f P r o p o s i t i o n 1. Since f ∈ ZC(a), we can consider v(·) = vC(·, f). For

0 ≤ s < a − t set w(s) = C(v(t + s) − v(t)). Then w(0) = 0, ∃w′(s) = Cv′(t + s) =

C(Av(t+s)+Cf) = AC(v(t+s)−v(t))+C(Av(t)+Cf) = Aw(s)+CSC(t)f , using (3),

(2), (4). This proves that SC(t)f ∈ ZC(a− t) with SC(s)SC(t)f = w′(s) = Cv′(t+ s) =

Cv′C(t+ s, f) = CSC(t+ s)f .

Of course in general no such simple arguments as above will suffice. Among the ana-

lytic tools most useful, and used throughout the whole theory, is the following extremely

general variant of the so-called “variation of parameters formula”, Duhamel formula,

stated next.

Theorem 3. Consider any K as defined above, f ∈ ZK = ZK(a), F : [0, a[ → ZK

and SK(·)F (·) : [0, a[× [0, a[ → X strongly continuous. Then

(6) w(t) = SK(t)f +

t\
0

SK(t− s)F (s) ds,

0 ≤ t < a, is a K-m.g.s. of (1) starting at f .

Using this and other facts one can prove general functional equations. In the scalar

case one has:

Theorem 4. Let K be any scalar kernel with K(0) = 0, 0 ≤ s, t < a, t+ s < a. Then

ZK(t) : ZK(a) → ZK(a− t), and

SK(s)SK(t) =

t+s\
0

K ′(t+ s− r)SK(r) dr −

t\
0

K ′(t+ s− r)SK (r) dr(7)

−

s\
0

K ′(t+ s− r)SK(r) dr, on ZK(a).

One has a (more complicated) general formula in the non-scalar case.

An important particular case occurs for K(t) = Kn(t) = tn/n!, n = 1, 2, 3, . . . In that

situation (where we write Sn(t) for SK(t), Zn+1 for ZKn
, and Sn(t) when in addition

Zn+1 = X , see [23], [30]), (7) becomes (on Zn+1(a))

(8) Sn(s)Sn(t) =

t+s\
t

(t+ s− r)n−1

(n− 1)!
Sn(r) dr −

s\
0

(t+ s− r)n−1

(n− 1)!
Sn(r) dr,
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a functional equation which serves as basis for the definition of n-times integrated semi-

groups (n-i.s.g.) in [1]. More precisely, the latter are defined in [1] as a family

{Sn(t) ∈ B(X)}t≥0 with t 7→ Sn(t) strongly continuous, S(0) = 0, satisfying (8) for

0 ≤ s, t. (We always implicitly assume our n-i.s.g. are non-degenerate, i.e. Sn(t)f = 0

∀t > 0 implies f = 0, [1], [23].) One has (see [23], [30])

Theorem 5. In the above context , {Sn(t)}t≥0 is an n-times integrated semigroup iff

Zn+1 = X. On the other hand given an n-times integrated semigroup (as defined above

following [1]) {Sn(t)}t≥0, there is a uniquely determined A in X (the “generator” of

Sn(t)) such that Sn(t) = Sn(t, A), i.e. Sn(t) with respect to A for every t ≥ 0.

So we see exactly how n-i.s.g. are special cases of K(t)-evolution operators; similarly

for local n-i.s.g. [2], see [30]; also a similar situation holds for C-semigroups.

Before looking at the use of “higher order kernels”, i.e. kernels more regularizing than

tn/n! (or C), we shall in the following two sections give some details, and some of the

numerous useful applications, concerning integrated semigroups (i.s.g.).

2. 2-times integrated solutions, locally lipschitz i.s.g., and irregular ana-

lytic semigroups. Applications. A number of important applied problems (in physics,

engineering, biology) give rise to singular problems which become however well-posed (on

X) in terms of K-s.g.s. with K(t) = Kn(t), n = 1, i.e. in terms of generalized solutions

which are “2-times integrated solutions” (7), the mild solutions (1-m.g.s.) being then

given by the i.s.g. SKn
(t) = S1(t) (n = 1), which we denote simply S(t). (See Theorem 5

and the paragraph preceding it.)

Since often the applied problems mentioned are formulated in terms of second order

parabolic PDEs (and in sup-norm) the resulting i.s.g. have additional properties: (i)

the i.s.g. S(t) are locally lipschitz (loc. lip.) which means by definition that ∀δ > 0

∃M(δ) > 0 such that ‖S(t)−S(t)‖ ≤M(δ)|t−s| ∀0 ≤ s, t ≤ δ (8); (ii) S(t) is an analytic

loc.lip. i.s.g. (extending analytically to S(z) in some angular neighborhood of the positive

half axis {t > 0}; for the exact definition see [27], or [30]). Moreover the latter S(z) are

very closely related to the “irregular bounded analytic semigroups” defined like the usual

bounded analytic semigroups except that no continuity as z → 0 is assumed (see [27]).

The following result plays in these matters an essential role ([27], [30]).

Theorem 6. S(z) is a lip. analytic i.s.g. of angle α, 0<α≤π/2 (with angular domain

Γα) iff S
′(z) = Q(z) is a irregular bounded analytic semigroup of angle α. A ∈ L(X) is the

generator of such a S(z), Q(z) = S′(z), (both having automatically the same generator ,)

iff ∃M > 0, 0 < α ≤ π/2 such that ∃R(z, A) for z ∈ Γα+π/2 and for such z (9),

(9) ‖R(z, A)‖ ≤M/|z|.

See [27], [30], [13], [35]. Actually the theory of i.s.g. is quite useful in establishing the

just mentioned results, and in related investigations.

(7) Recall that convolution by Kn(·) is (n+ 1)-times iterated integration.

(8) “lip” instead of “loc.lip.” is defined similarly (see [30], [27]).

(9) We use below the standard notation for the resolvent of A, R(z,A) = (z−A)−1 ∈ B(X).
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For general loc.lip. i.s.g. (without analyticity being necessarily present) one has the

following essential result and formula ([23], [30], see also [37]).

Theorem 7. A ∈ L(X) is the generator of a loc.lip. i.s.g. S(t) iff ∃M,ω ≥ 0 such

that R(λ,A) exists ∀λ > ω, and ‖(R(λ,A))n‖ ≤M/(λ−ω)n, n = 1, 2, 3 . . . If in addition

∃A−1 ∈ B(X) (which under the circumstances is not a major assumption) then S(t) has

the representation

(10) S(t) = (etA0 − 1)A−1,

where A0 is the “part of A in D(A)” (i.e. the largest restriction of A operating in D(A)).

If A(x,D) is a second order strongly elliptic operator with real C∞ coefficients defined

on the closure of a bounded domain Ω ⊂ RN with smooth boundary (10), X = C(Ω),

then operator A in L(X) = L(C(Ω)) defined by

(11)
D(A) = {f ∈W 2,p(Ω) ∩C0(Ω) : A(x,D)f ∈ C(Ω)},

Af = A(x,D)f, p > N,

is independent of p and, while not densely defined, satisfies the assumptions of Theorem

6 (and also of Theorem 7).

This permits the use of the above methods and results in many applied singular

problems, as mentioned earlier, expressed by initial value-boundary value PDE problems

of the type

(12)

∂u

∂t
= A(x,D)u + F (t, x) in [0, a[×Ω,

u(0, x) = f(x), x ∈ Ω,

Bu(t, ξ) = ϕ(t, ξ) in ]0, a[× ∂Ω,

B a boundary operator (in what follows of trace type). In the corresponding Banach

space formulation in which we then apply the above methods and results, we write

(13)

u′ = Âu+ F (t),

u(0) = f,

Bu(t) = ϕ(t) ∈ H, t > 0.

Everything is written in a single space X , by identifying the boundary values with their

Â-harmonic (i.e. A(x,D)-harmonic) extensions to Ω in the classical situation, and letting

in the general Banach space situation B : X → H take values in the subspace H of X

(thought of as the abstract replacement of the space of Â-harmonic functions). The

operator Â appearing in (13) is closely related to the operator A defined in (11) for the

classical situation X = C(Ω), but not equal in general (indeed for u ∈ D(Â) satisfying

(12)—in the classical case—Bu(t) = ϕ(t) in general not 0, hence u(t) 6∈ D(A) in general),

and it is easily seen that u(t) = w(t) + ϕ(t) with w(t) ∈ D(A). In the general Banach

space setup in which we consider (13), the classical properties of the A of (11) as described

(10) We make strong regularity assumptions for simplicity, actually much less smoothness is

necessary.
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above are replaced by the corresponding general simple assumptions:

(14) A generates an irregular bounded analytic s.g. on X , Q(t), and ∃A−1 ∈ B(X),

Â being then derived from A via

(15)
D(Â) = D(A) ⊕H, (D(A) ∩H = 0),

Â(f + g) = Af (for f ∈ D(A), g ∈ H).

In this context, we deal in the next section with a large class of singular parabolic problems

involving variable boundary values, abrupt changes in boundary conditions, and highly

singular interface transitions. However, before we take up these matters, of extremely

recent vintage, in the next section, let us say that there are of course many other appli-

cations of i.s.g. and/or related irregular analytic semigroups (applications, and problems

to which these methods can be applied), such as: the parabolic boundary value problems

treated by Sinestrari and von Wahl in [36], as well as non-parabolic problems of con-

siderable interest in mathematical biology (renewal equations and related equations of

population dynamics) as in [24] and references given there to similar/related ample work

by Ph. Clément, O. Diekmann and coworkers, see also [11] and references given there.

3. Solutions for problems of parabolic type with variable boundary values.

Heat shocks. Singular transition problems. We take up (13), under (14) and (15).

The change of variable u(t) = w(t) + ϕ(t) in (13) gives Bw(t) = 0, w(t) ∈ D(A).

(16)
w′ = Aw − ϕ′(t) + F (t),

w(0) = f − ϕ(0).

Now (16) can be solved using results of Da Prato and Sinestrari [13] and the explicit

formula in [25], at least for appropriate initial conditions (11), yielding

(17) u(t) = ϕ(t) +Q(t)(f − ϕ(0))−

t\
0

Q(t− s)ϕ′(s) ds+

t\
0

Q(t− s)F (s) ds.

Even for general f , ϕ, F , the solution (17) gives the unique “optimal regular” generalized

solution (see [29]), is always C1 on ]0,∞[, and always takes on the initial value f in at

least an appropriate generalized sense (see [29], [30]).

In what follows we take for simplicity F = 0. If Bf 6= ϕ(0) we have at least a “shock”

at t = 0. We shall now always write Bf = ϕ(0−), ϕ(0) = ϕ(0+), ϕ(0+)−ϕ(0−) = c0. So

for ϕ constant, with c0 in general 6= 0,

u(t) = ϕ+Q(t)(f − ϕ) = ϕ+Q(t)(f − ϕ(0−))−Q(t)c0

is the generalized solution, with the shock represented by −Q(t)c0. Periodic shocks, peri-

odic heat shocks, were studied in detail via generalized solutions in [29], [30], and in the

latter applications to solar cells in spinning satellites, accelerated testing, were made.

Starting in 1994 there was initiated the study by asymptotic methods of such prob-

lems with discontinuous boundary behavior (some preliminary research on this is in [31],

(11) C1 solutions exist on [0,∞[ iff f − ϕ(0) ∈ D(A), A(f − ϕ(0)) + F (0) − ϕ′(0) ∈ D(A),

mild solutions iff Bf = ϕ(0); F and ϕ are assumed to be in C1.
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but otherwise, i.e. essentially all, this work is still unpublished) (12). For the just above

mentioned shocks situations this consists in: (i) “connecting” in “small” intervals of

time [0, η[ (where η will tend to 0) ϕ(0−) = Bf (or Bfn with fn near f) to ϕ, i.e.

replacing the given t-dependent discontinuous boundary condition (ϕ(0−), ϕ(t) t > 0) by

the “fast varying” continuous boundary conditions ϕη(t) = ϕ(t)+ψη(t), supp ψn ⊂ [0, η[,

approaching in an appropriate sense the discontinuous data, ϕη (i.e. ψη) being such that

for it a classical (or mild) solution exists up to and including t = 0, (ii) computing the

solutions uη corresponding to the ϕη, and seek the limit (if it exists) as η → 0 of the uη, u,

as being the solution to the problem with the given discontinuous initial value-boundary

value data.

To understand better the scope and possibilities of this asymptotic approach (prob-

lems that can be treated, future possible developments) let us return, in (i) of the above

paragraph, to the matter of “ϕη . . . approaching in an appropriate sense the discontinuous

data”. So in the above considered shock situation (13), where the initial-boundary data

only contain information expressing a “jump” c0 = ϕ(0+) − ϕ(0−) at t = 0 (as in the

passage, transition, through an interface separating two media) (13), the way the ϕη, or

equivalently the ψη, approach (tend to) the given data as η → 0, must express this. The

conditions: ‖ϕη‖ ≤ a constant and ψ′
η → c0δ in E ′ will do that in the “jump” situation

being considered (14).

If there is interaction at t = 0 (say for example a “heat explosion” occurs at t = 0

by brief violent chemical reaction at the interface transition) this must appear in the

statement of the problem (and correspondingly the above conditions will be modified so

as to express this fact). (13) is then replaced by:

(18)

u′ = Âu+ F (t),

u(0−) = f,

(si u)(0) = σ,

Bu(t) = ϕ(t), t > 0,

where si stands for “singular interaction” ((13) corresponds to σ = 0), σ is a distribution,

or even a hyperfunction (see [20], [34], [16] (analytic functionals)) with support at 0

(12) In the just above described approach, the singular problem (13) is posed and solved

in terms of appropriate generalized solutions (n-times integrated solutions). In the asymptotic

approach the singular problem (P ) is treated as limit of approximating regular problems (Pη),

η → 0, with “fast varying” boundary conditions producing regular solutions uη that tend to the

solution u of (P ). The solution obtained by either approach, in the situations considered above, is

(as it should be) the same. However, the asymptotic approach has recently permitted treatment

of problems of a “much higher order of singularity” than those in the situations considered above

(where only shocks can occur).

(13) Essentially a “passive” transition between media, but without sudden addition or sub-

traction affecting ϕ at t = 0 (of energy, heat, . . . ) injected or drained at t = 0, i.e. a transition

without “interaction”.

(14) Though somewhat weaker conditions can also be used, i.e. will lead to the same solution

u = limuη .
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(σ ∈ E ′, or more generally σ ∈ B0 = {hyperfunctions on R with values in X and support

at 0}), with now (instead of ψ′
η → c0δ as for (13)) ψ′

η → c0δ + σ′, while ϕη(0) = Bfη,

fη → f in X , (σ′ is necessarily of the form
∑∞

k=1 ckδ
(k)) (15). We have a solution u of

(18) if ψη as just described exists such that uη → u.

Theorem 8. For any f ∈ X , ϕ ∈ C1, F ∈ L1
loc, σ ∈ B0, there exists a unique solution

u for (18).

The details concerning all these recent results are still unpublished at this time, and

further research on this matter is in progress. There are a number of applications to

physical and engineering problems with singular interface transitions.

We shall now, as promised towards the end of Section 1, return to matters concerning

higher order kernels.

4.K(t)-convoluted semigroups and applications. Recently Arendt, El-Mennaoui

and Keyantuo [2] studied extensively local n-times i.s.g. (loc. n-i.s.g.), which correspond

essentially to the SK(t) of Section 1 with ZK(a) = X (0 < a < ∞), K(t) = tn/n!,

some n = 1, 2, . . . (16), and gave generation theorems for such loc. n-i.s.g. in terms of the

growth of (the norm of) the resolventR(z, A) in some subdomain of {z ∈ C : Re z > 0}, an

“exponential domain” indeed (see [2]) (17). On the other hand, loc. n-i.s.g., and the local

n-times integrated solutions from which they arise, are directly related to distributional

solutions (and distribution semigroups, see [22]), a fact which in turn is roughly speaking

due to the local structure property of distributions as local derivatives (of some order

n) of C1 functions, hence the regularizing role of the “(n + 1)-integration” convolution

kernels Kn(t) = tn/n!. Moreover, Kn(t) can be identified with the fundamental solution

u of

(19) Pn(D) = Dn+1 = dn+1/dtn+1 (Pn(D)u = δ)

having support in [0,∞[.

Now, in more singular problems, where for instance ultradistributions would replace

distributions, the local structure properties of the former brings in convolution kernels

K(t) of “highter order” instead of the Kn(t), Pn(D) = Dn+1 of (19) being then replaced

by an ultradifferential operator P (D), K(t) being now identified with the fundamental

solution of the latter P (D) (with support in [0,∞[), see the recent work of Cioranescu

[7], and Cioranescu and the author [8], [9]. So a kernel K(t) associated to a typical

ultradifferential operator P (D) (and the corresponding Cauchy problems in terms of

ultradistributions of Gevrey class) arises as follows (see [7], [8], [9]): (i) let Mk, k =

0, 1, 2, . . . , be a sequence of positive numbers such that M0 = 1, M2
k ≤ Mk−1Mk+1 and

(15) As for the precise description of the notion of convergence, topology, in “ψ′η → c0δ+σ
′ =

h ∈ B0”, notice that “moments” are defined for the ψ
′
η, and h via m

η
k
= 〈ψ′η, z

k〉, mk = 〈h, z
k〉,

k=0, 1, 2, . . . Then the above convergence is expressed by: mη
k
→mk in η for each k=0, 1, 2, . . . ,

and k

√
‖mη
k
‖ → 0 in (η, k).

(16) See [30].

(17) Which may be replaced by a “half-plane” if the local n-i.s.g. is indeed a (global) n-i.s.g.
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∑∞
k=1Mk−1/Mk < ∞; (ii) set mk = Mk/Mk−1 for k ≥ 1 (so

∑∞
k=1 1/mk < ∞) and

define the entire function

(20) P (z) =

∞∏

k=1

(
1 +

z

mk

)
.

To the P (·) in (20) corresponds an ultradifferential operator P (D) as mentioned just

above, and by inverse Laplace transform of P (z) we obtain the corresponding kernel

K(t). This K(t) is a typical example of scalar kernels K(t) “of higher order” among

those introduced in Section 1 (18).

We now describe in the general context of Section 1 but considering only scalar kernels,

a very general generation theorem which contains not only the recent one in [2] but earlier

results of Beals [3], [4], Chazarain [5], [6], Emamirad [15], Cioranescu and Zsidó [10],

Cioranescu [7]; this and other related results are in [8], [9].

Specifically, in the context of section 1, if ZK(a) = X then SK(t) (which we write

SK(t) in that case) ∈ B(X) and we call {SK(t)}0≤t<a the K-convoluted semigroup (K-

c.s.g.) generated by A. Even if A does not have the uniqueness property one can

define a similar concept of K-convoluted semigroup in the extended sense (K-c.s.g.e.)

{SK(t)}0≤t<a having A as a generator (19). We assume in what follows K scalar, de-

fined on [0,∞[, K(0) = 0, with |K ′(t)| ≤ Ceωt for some C > 0, ω ≥ 0, and that

K̃(z) =
T∞
0
e−tzK ′(t) dt 6= 0 for Re z > 0.

Let Φ be a real-valued positive function on [r0,∞[, r0 ≥ 0, in C1 with Φ′ > 0, and

limr→∞ Φ(r) = ∞. Define

(21) χ(Φ) = χ = lim
r→∞

Φ(r)

r
, σ(Φ) = σ = lim

r→∞

ln r

Φ(r)
, µ(Φ) = µ = lim

r→∞

ln r

Φ(r)
.

For α, β > 0, we define the subdomain Γαβ(Φ) of {Re z > 0} by

Γαβ(Φ) = Γαβ = {z ∈ C : Re z ≥ β, Re z ≥ αΦ(|z|)}.

We have the following generation theorem:

Theorem 9. If for 0 < α < χ−1, β, ℓ > 0, −1 < γ < ℓ− σ, one has Γαβ ⊂ ρ(A) and

(22) |K̃(z)| = O(e−ℓΦ(|z|)), ‖R(z, A)‖ = O(eγΦ(|z|)), ∀z ∈ Γαβ ,

then A generates a K [1]-c.s.g.e. on [0, a[, with a = (ℓ − γ − σ)α−1 and a K [1]-c.s.g. if

χ = 0 (20), (21).

(18) There are examples of still “more general” kernels K(t); all these kernels are connected

to interesting applications.

(19) See [9]. We can also say that “A generates {SK(t)}0≤t<a”.

(20) ρ(·) denotes as usual the resolvent set; K[1](t) = (D−1K)(t) =
Tt
0
K(s) ds.

(21) For more details, a result in the opposite direction, examples and applications, see [9].

See also the recent papers by Keyantuo [18], [19], for other examples.
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5. Some research directions and problems. We mention briefly a few (among

many) (22) directions in which further research in the areas described in this article is

progressing at present, and some of the corresponding open questions.

One direction concerns the matter of investigating completely general single equations

of the type (1) above directly or rather in K(t)-regularized form (2), or similarly investi-

gating evolution operators SK(t) on arbitrary subspaces Z of ZK including 1-dimensional

spaces Z (i.e. again single equations), in particular from the point of view of generation

theorems. Among the people working on this, Frank Neubrander, and the author, have

obtained results very recently, following each one somewhat different routes, using local

resolvents, and alternatively approximate resolvents on subdomains Γαβ(Φ) of {Re z > 0};

further research is in progress.

Another wide open direction of further work concerns the singular transition problems

(s.t.p.) discussed in Section 3 above. Problems in this area concern: the classification

of s.t.p. in problems with finite order singularities (f.o.s.) or infinite order singularities,

characterization of f.o.s., in particular in an “observable sense”, i.e. in terms of the solution

u of the given problem; also the investigation of the inverse problem for s.t.p. (feasibility

in principle, and possibly explicit formulas); investigation of physical phenomena and

engineering mathematical models in which s.t.p. of “higher order” than shocks and/or

heat explosions occur (the latter is of course a natural objective and some research on

this is under way).

The above are, however, as already said, only some examples of research directions

and problems in the areas discussed in the present article.
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