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0. Introduction. Let H be a complex Hilbert space of finite or infinite dimension,

and let E be a collection of bounded linear operators on H. We say E is reducible if there

exists a subspace of H, closed by definition and different from the trivial subspaces {0}
and H which is invariant under every member of E . We call E triangularizable if the set

of invariant subspaces under E contains a maximal subspace chain. These questions have

been studied extensively and the central problems in the infinite-dimensional case, i.e.,

the invariant subspace problem and the transitive algebra problem are still unsolved for

arbitrary operators on H [20, 21].

We are interested in the effect of certain spectral conditions on reducibility and tri-

angularizability of a collection E . If f is any function, defined at least on all products of

members of E , we say that f is permutable if

f(A1 . . . Ak) = f(Aτ(1) . . . Aτ(k))

for every integer k, every permutation τ , and all A1, . . . , Ak in E . Special cases of interest

for us are when f is the trace, the spectral radius, or the spectrum itself. Permutability

of each of these three functions is easily seen to be necessary for triangularizability of a

collection of operators at least on a finite-dimensional H.

Since E will be a multiplicative semigroup in many of our considerations, let us ob-

serve that in this case the definition of permutability simplifies for the three functions

just named. For example, it follows from the identity tr(AB) = tr(BA) and the de-

composability of permutations into adjacent transpositions that trace is permutable on a

semigroup E of trace-class operators if and only if tr(ABC) = tr(CBA) for all A,B,C in

E . The same proof works for the spectral radius since r(AB) = r(BA) for all operators A

and B. Although the spectrum does not satisfy σ(AB) = σ(BA) in infinite dimensions,
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it is still true that it is permutable on a semigroup if and only if σ(ABC) = σ(CBA) for

all A,B,C. To verify this, one must only note that if A and B are in the semigroup and

if AB is invertible, then the relations

σ((AB)2) = σ(AB ·A ·B) = σ(B ·A ·AB) = σ(BA ·AB)

imply that (BA)(AB) is invertible and so is BA. This means that in a semigroup satisfying

the condition σ(ABC) = σ(CBA), the identity σ(AB) = σ(BA) holds, so that, just as

in the cases of trace and spectral radius, this condition implies permutability of the

spectrum.

A second kind of spectral condition we shall consider is submultiplicativity. We say

the spectral radius is submultiplicative on E if

r(AB) ≤ r(A)r(B)

for all A and B in E . The spectrum itself is said to be submultiplicative on E if the

condition

σ(AB) ⊆ σ(A)σ(B)

holds for all A and B in E . By σ(A)σ(B) we mean, as usual, the set

{αβ : α ∈ σ(A), β ∈ σ(B)}.

Like permutability, these submultiplicativity conditions are also obviously necessary

for triangularization in finite dimensions.

In what follows, by a semigroup we shall just mean a collection closed under multi-

plication.

1. Permutability in finite dimensions. Perhaps one of the most well-known tri-

angularizability results is Levitzki’s result [11]: a semigroup of nilpotent operators (on

a finite-dimensional space) is triangularizable. If “nilpotent” is replaced by “unipotent”,

one obtains Kolchin’s Theorem [8]. (An operator A is called unipotent if σ(A) = {1}.)
In both of these results trace is constant on the semigroup (and therefore permutable).

Kaplansky [8] unified the Levitzki and Kolchin theorems by proving the following result.

Theorem 1. A semigroup S with constant trace is triangularizable. Furthermore,

constancy of the trace implies that σ(A) ⊆ {0, 1} for every A in S, where 1 has a fixed

algebraic multiplicity k.

There are many other sufficient conditions for triangularizability of collections, e.g.,

the well-known elementary exercise in linear algebra that a commutative collection is

triangularizable. It turns out that permutability of trace, which is obviously necessary, is

also sufficient for triangularizability [16].

Theorem 2. A set of operators is triangularizable if and only if trace is permutable

on it.

The most elementary proof of Theorem 2 is perhaps given in [17] which proves and

uses the following extension of Engel’s Theorem: if E is a set of operators closed under

the Lie bracket [A,B] = AB −BA, then E is triangularizable if and only if AB −BA is

nilpotent for every A and B in E . Given this result, here is how one deduces Theorem 2.
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Let trace be permutable on a semigroup S. It is easily verified that it is permutable on

the linear span of S, i.e., the algebra A generated by S. Now we will be done if we show

that the set

{AB −BA : A,B ∈ A}

consists of nilpotents, This can be accomplished by verifying that the positive powers of

AB −BA all have trace zero. But the permutability of trace implies that, for every k,

tr((AB −BA)k) =

k∑
m=0

(−1)m
(
k

m

)
tr(AkBk) = 0.

A nonobvious corollary of Theorem 2 is the following result on bands. A band means

a semigroup of idempotents.

Corollary 1. A band of operators is triangularizable.

P r o o f. Denote the rank of A by %(A) and observe that %(A) = tr(A) for any idem-

potent A. Let S be a band. If A and B are in S, then

%(BAB) = tr(BAB) = tr(B2A) = tr(BA) = %(BA).

But the range of BAB is always contained in that of BA, so the equation above shows

that these ranges coincide. Thus CBAB and CBA have the same range for every C in

S, yielding %(CBAB) = %(CBA). Interchanging A and C we also obtain %(ABCB) =

%(ABC). These two equations together with

%(ABCB) = tr(ABCB) = tr(CBAB) = %(CBAB)

yield the desired relation tr(ABC) = tr(CBA) for all A,B, and C in the band. Thus S
is triangularizable by Theorem 2.

We note here that this corollary is true for a band over an arbitrary field, as are some

other results in this paper, but we confine ourselves to the complex field.

Classifying bands of operators is an interesting but seemingly, and perhaps surpris-

ingly, nontrivial task. A start is made in [3].

There are other, easy, corollaries of Theorem 2.

Corollary 2. If G is a group of operators, then G is triangularizable if and only if

trace is constant on each coset of G relative to the commutator subgroup.

Corollary 3. A self-adjoint set of operators is commutative if and only if trace is

permutable on it.

If an arbitrary linear functional is considered in place of trace, one cannot always get

triangularizability. Reducibility is all that could be hoped for.

Proposition 1. Let φ be a nonzero linear functional on the algebra of all operators.

If φ is permutable on a set E of operators, then E is reducible.

The proof is easy; it uses the fact that if a nonzero ideal in an algebra A is reducible, so

is A itself. Now the permutability of φ on E implies the same for the algebra A generated

by E . For commutative A there is nothing to prove. Otherwise, pick AB − BA 6= 0 in

A and let J be the ideal generated by AB − BA. The permutability condition implies
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that φ is zero on J . This shows that J is reducible by Burnside’s Theorem: every proper

subalgebra of operators on Cn is reducible [4].

An obvious corollary of Proposition 1 is that if a nonzero functional φ is constant on a

semigroup or, more generally, if it is multiplicative, then the semigroup is reducible. This

simple proposition and its corollaries are used in the proofs of some results to follow.

We next consider the permutability of the spectrum. (The weaker condition of per-

mutability of the spectral radius will be discussed in connection with submultiplicativ-

ity.) This turns out to be quite a strong condition for groups, but not so strong for

semigroups [10].

Theorem 3. Every group of operators with permutable spectrum is triangularizable.

Every semigroup satisfying this condition (on a space of dimension greater than 1) is

reducible.

One ingredient in the proof of the group case [10] is that the commutator subgroup

consists of unipotent operators by the permutability hypothesis, and is thus triangular-

izable by Kolchin’s result.

It is easy to give examples of nontriangularizable semigroups with permutable spec-

trum. For instance, let n ≥ 2 and let E be the collection of all “basic” matrices, that

is, those with one entry 1 and all other entries zero. Let S be the semigroup of all

(n+ 1)× (n+ 1) matrices of the form{(
1 X
0 Y

)
: X arbitrary, Y ∈ E ∪ {0}

}
.

Then σ(S) = {0, 1} for every S in S, i.e., spectrum is even constant on S, and yet S has

only one nontrivial invariant subspace.

We should note here that we are speaking of the spectrum of an operator as a set, with

no regard for algebraic multiplicities. If one assumes the stronger condition that, for every

A,B,C in a semigroup, ABC and CBA have the same spectrum with the same respective

multiplicities, then the permutability of trace and thus triangularizability follows for the

semigroup.

2. Submultiplicativity in finite dimensions. The group of unitary operators is

the best example to show that the submultiplicativity of spectral radius by itself cannot

yield reducibility. (In this example r is multiplicative, even constant, and thus also per-

mutable.) However, in the presence of additional conditions [18, 19] affirmative results

can be obtained. Here is a sample result [19].

Theorem 4. Let S be a semigroup of operators represented (simultaneously) by ma-

trices with nonnegative entries. If r(AB) ≤ r(A)r(B) for all A and B in S, then S is

reducible.

Let us mention certain facts, of some interest in themselves, that are used in the proof

of this and other similar results.

(1) If S is a semigroup of n×n matrices with nonnegative entries and σ(S) is contained

in the unit circle for every S in S, then S is reducible (if n > 1) [19].
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More generally, let S be a semigroup of matrices with nonnegative entries and let P

be an idempotent of rank ≥ 2 in S. Assume that for every S ∈ S, the spectrum of the

operator PSP , when restricted to the range of P , is entirely on the unit circle. Then

PSP has a nonzero invariant subspace properly contained in the range of P .

(2) No irreducible semigroup S with submultiplicative spectral radius can contain

nonzero nilpotents. Assume otherwise. Then the nilpotents in S would form a semigroup

ideal J . (This means that for every J in J and S ∈ S both SJ and JS belong to J .)

Now J is reducible by Levitzki’s Theorem and, just as in the case of algebras, it can be

verified easily that the reducibility of a nonzero ideal implies that of the semigroup itself.

(3) An irreducible semigroup S with submultiplicative r cannot contain divisors of

zero. For if AB = 0 with nonzero A and B in S, then (BSA)2 = 0 for every member S

of S and thus BSA = 0 by the preceding paragraph. Therefore, the range of A generates

an invariant subspace M of S contained in the kernel of B. (This subspace is the span

of all SAx, with x in the space and S in S.)

(4) If A is any operator with r(A) = 1. Then the closure of the set{
1

m
An : m and n positive integers

}
contains a nonzero operator which is either nilpotent or idempotent. To see this we can

express A as a direct sum A1⊕A2, where σ(A1) and σ(A2) are, respectively, on the unit

circle and in the open unit disc. Since the powers of A2 tend to zero, we can assume

A = A1 for our purposes. Now A is similar to an operator U +N with U unitary and N

a nilpotent operator commuting with U . There is no harm in assuming A = U + N . If

N = 0, observe that some subsequence of 〈Un〉 tends to the identity operator, and we are

done. If Nk 6= 0 and Nk+1 = 0 for some positive integer k, then consider the expansion

(U +N)n = Un +

(
n

1

)
Un−1N + . . .+

(
n

k

)
Un−kNk

and note that some subsequence of 〈Un−kNk〉 approaches Nk. Thus the corresponding

subsequence of An/
(
n
k

)
has limit Nk.

Let us use these facts to prove a special case of the preceding theorem, where we make

the stronger hypothesis of multiplicativity for r. First observe that there is no loss of

generality in assuming that S is closed (in norm), by continuity of the spectral radius.

There is also no harm in assuming that S is closed under multiplication by positive

scalars. In view of (3) above, we can assume S has no divisors of zero, so that it can be

replaced by S \ {0} if 0 ∈ S. Also assume r(S) 6= 0 for all S, by (2).

Pick a member A of S with minimal rank and r(A) = 1. By (2) and (4), we can

assume that S contains an idempotent P as a limit of powers of A.

Replacing S by {S/r(S) : S ∈ S}, we can now assume that every member has spec-

tral radius 1. So the subsemigroup PSP , when restricted to the range of P , consists of

operators with spectrum on the unit circle, by the minimality of the rank k of P . Thus,

if k > 1, then some nontrivial subspace of the range of P is invariant under PSP by (1)

above. This implies the existence of nonzero vectors x = Px and y = Py such that the
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inner product (PSPx, y) is zero for all S, so that S has an invariant subspace perpendic-

ular to y. If k = 1, then it is easily seen that PSP = P for all S. This yields a functional

(PSPx, x) = 1 on the semigroup, which implies reducibility by Proposition 1.

In light of the following result from [13], Theorem 4 reduces to the special case we

have just proved.

Theorem 5. If the spectral radius is submultiplicative on an irreducible semigroup,

then it is multiplicative.

Obvious examples of irreducible semigroups with multiplicative r are unitary groups,

but there are other, more interesting examples. These semigroups are studied in [15].

The theorem above is itself a special case of the following theorem [13] on arbitrary

(not necessarily irreducible) semigroups.

Theorem 6. The spectral radius is submultiplicative on a semigroup if and only if it

is permutable.

More on this later.

A condition much stronger that the submultiplicativity of the spectral radius is that

of spectrum itself: for every S and T in a semigroup

σ(ST ) ⊆ σ(S)σ(T ).

Like permutability, this condition is clearly necessary for triangularizability. However,

there are finite groups of n × n matrices for every odd n that satisfy this condition but

are irreducible [10]. To form such a group for an odd prime p, let Ω be the set of complex

pth roots of unity and let D denote the group of all diagonal matrices diag(w1, . . . , wp)

with determinant 1 and wi ∈ Ω, i = 1, . . . , p. Let

U =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . 1 0

 ,

and let Gp be the group generated by D and U . It is not hard to verify that σ(G) = Ω

for all nondiagonal G. It can also be verified, by distinguishing a few cases, that σ is

submultiplicative on Gp. That G is irreducible can also be checked easily.

For a composite odd n = p1 . . . pk, with (not necessarily distinct) primes pi, let G be

the tensor product of the Gpi and observe that σ(A⊗B) = σ(A)σ(B) for any A and B.

A semigroup with submultiplicative spectrum is reducible if it has a nonzero singular

member.

3. The case of compact operators. Many of the results we have listed have exten-

sions to the appropriate sets of compact operators in the infinite-dimensional case. For

example, Theorem 2 holds when it makes sense, that is, for operators in the trace class C1
[16]. So do Corollaries 1 and 3. Extensions of results on trace permutability are treated

in [6]. Proposition 1 is true for compact operators; the functional φ should of course be
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assumed continuous and not zero on the algebra of all compact operators. Or, one could

restrict the operators to the class C1, and require φ to be a nonzero functional on C1 ,

continuous in trace norm.

The relevant part of Theorem 3, considered for general compact operators, poses a

problem. The following special case of it remains unresolved [14, 23].

Question 1. Is a semigroup of compact quasinilpotent operators reducible?

If we confine ourselves to the class C1, or to any larger Schatten class Cp, the answer

is affirmative; in fact, it suffices to assume the presence of one nonzero member in the

semigroup that belongs to some Schatten class [14]. Of course, if the semigroup is entirely

contained in C1, it is even triangularizable by Theorem 2.

The well-known Lomonosov Theorem [12] implies that if the semigroup in Question

1 is an algebra, then it is triangularizable. This result and Ringrose’s work on diagonal

coefficients for compact operators [22] are important ingredients in proofs of reducibility

and triangularizability for collections of compact operators. For example, they yield the

following theorem [9], which also holds for operators on Banach spaces.

Theorem 7. An algebra A of compact operators is triangularizable if and only if

AB −BA is quasinilpotent for all A and B in A.

This theorem can be used to give a simple proof of Theorem 2 applied to trace class

operators: Let S be any semigroup that has permutable trace. Then so does the algebra

A generated by S. If A and B are in A, then tr((AB − BA)k) = 0 for all k, as in the

proof of Theorem 2 in the finite-dimensional case. This shows that σ(AB−BA) = 0, and

thus A is triangularizable. The converse also follows from Ringrose’s results.

It is possible to avoid Question 1, as in the following result from [10].

Theorem 8. Let S be a semigroup of operators with permutable spectrum. If S con-

tains a nonquasinilpotent compact operator , then S is reducible.

Note that S itself is not assumed to be contained in the set of compact operators. This

is because, as discussed earlier, one can always consider the semigroup ideal of compact

operators in S. If the ideal is reducible, so is the semigroup.

We turn now to submultiplicativity conditions. Theorem 4 holds verbatim for semi-

groups of compact operators. More generally, it holds whenever S contains some nonzero

compact operator [10]. The proof is not essentially different from that outlined in Section

2; this is why we dwelt on it so long there. Extensions of these results using positivity

are treated in [2, 26].

Theorems 5 and 6 are valid for semigroups of compact operators [13]. An obvious

corollary is that, as in the finite-dimensional case, if the spectral radius is submultiplica-

tive on a semigroup of compact operators but not multiplicative, then there is a nontrivial

invariant subspace.

The stronger condition of submultiplicativity for spectrum itself is a little different in

infinite dimensions, because we cannot have groups of compact operators. On the other

hand, we must avoid the unsettled Question 1.
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Theorem 9. Let S be any semigroup of operators on infinite-dimensional Hilbert

space containing a nonquasinilpotent compact operator. If σ(ST ) ⊆ σ(S)σ(T ) for all S

and T in S, then S is reducible.

This theorem and other results using submultiplicativity conditions are proved in [10].

For other related results see Shul’man’s paper [24].

4. General operators in infinite dimensions. Many assertions made so far fail

to hold in infinite dimensions, some spectacularly. For example, consider a semigroup S
of operators with σ(S) = {0} for every S ∈ S. In finite dimensions and in the trace-class

case, such an S is triangularizable. In the general compact case, we are in the unsettled

situation of Question 1. As soon as we drop the compactness condition, however, there is a

“very irreducible” semigroup S of “very nilpotent” operators. The first “very” means that

S is not just irreducible, but (what is apparently a stronger state of affairs) weak-operator

dense in the algebra of all operators [6, 7]. The second “very” refers to the fact that every

member S of S satisfies S2 = 0. This example is given in [6] and is constructed as follows.

Fix an orthonormal basis for H. Every operator will be represented by its matrix

relative to this basis. For a given square matrix M of finite size, we write M ⊕ . . . to

indicate the inflation of M , i.e., the direct sum of infinitely many summands all equal to

M . For every positive integer n, let M(n) denote the set of complex n× n matrices and

let

Sk =

{(
A A
−A −A

)
⊕ . . . : A ∈M(2k−1)

}
for k = 1, 2, . . . It is easily verified that Sk is a semigroup of operators of square zero.

Furthermore, if S ∈ Sk and T ∈ Sm and k < m, then ST and TS both belong to Sm.

Thus S =
⋃∞
k=1 Sk is a semigroup of nilpotents of index two. It is not difficult to show

that the closure of S in the weak operator topology is B(H).

One can go further with this example and form a dense algebra of nilpotent operators.

Just let A be the linear span of S. Since S is closed under multiplication by scalars, every

member of A is simply a sum A = S1 + . . . + Sk. It can be shown by induction that

A2k = 0. Observe that there are nilpotents of arbitrarily high index in A. In fact an

algebra of nilpotents of bounded index is triangularizable [7].

What about a band in general? We have seen that a band of compact operators is

triangularizable. (A compact idempotent is necessarily of finite rank. Thus the proof

given for Corollary 1 applies, showing that trace is permutable.) Of course, to get just

one invariant subspace, we only need one nonzero finite-rank idempotent: An arbitrary

band with at least a nonzero finite-rank member is reducible. The general question is

unsettled.

Question 2. Is a band of operators reducible?

There are some results and more questions on permutability and submultiplicativity.

We shall confine ourselves to the spectral radius here. An interesting result of Aupetit and

Zemánek [1, 25] gives several equivalent conditions involving the spectral radius. Note
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that this theorem is true for a general Banach algebra, not just a norm-closed algebra of

operators.

Theorem 10. For a Banach algebra A the following conditions are mutually equiva-

lent :

(1) A/RadA is abelian.

(2) r(ab) ≤ r(a)r(b) for all a, b in A.

(3) r(a+ b) ≤ r(a) + r(b) for all a, b in A.

It is interesting that these conditions are also equivalent to permutability [10]. If S is

any multiplicative semigroup in a Banach algebra A, then permutability of r on S implies

its submultiplicativity. This is easy to see [10]: Let a and b be arbitrary members of S.

For positive integer n, the permutability of r implies that

r[(ab)n] = r(anbn) ≤ ‖anbn‖ ≤ ‖an‖ · ‖bb‖.
Hence [r(ab)]n ≤ ‖an‖ · ‖bn‖. Taking roots of both sides and letting n approach infinity,

we obtain r(ab) ≤ r(a)r(b).

The converse is the content of the following open question.

Question 3. Let S be a semigroup in a Banach algebra. Does the submultiplicativity

of r on S imply its permutability?

A special case of the question is, of course, the one in which we restrict ourselves to

operators. Let us include here the very short proof [10] that the answer is yes when S is

a Banach algebra: Let a, b, c be arbitrary members of A, where A satisfies Condition (2),

and thus all conditions of the Aupetit–Zemánek theorem above. Then, by Condition (3),

r(abc) ≤ r(abc− bac) + r(bac) = r[(ab− ba)c] + r(bac).

Now (1) implies that (ab− ba)c is quasinilpotent and thus r(abc) ≤ r(bac). Interchanging

a and b we get r(abc) = r(bac).

If S is merely a semigroup, the question is answered affirmatively in some cases. The

case of compact operators has already been mentioned. (This includes the affirmative

answer in finite dimensions.) Another case is where S is contained in the set of normal

operators. In this case r, being equal to the norm, is automatically submultiplicative. Its

permutability is shown in [13], where some other cases are also treated.
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