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Introduction. Links between operators and function theory are often fruitful in

both directions. For example, in operator theory one tends to build models for various

classes of Hilbert space operators, expressing them (up to some equivalence) as certain

simple actions defined on suitable function spaces. Working in the opposite direction, one

can view function-theoretic phenomena as statements about the related linear operators.

Sometimes the interpretation of operations on functions via different functional models

allows one to view them “at a more convenient angle”. The last section is intended

to exemplify this approach and despite its simplicity, the underlying idea seems worth

further studying.

We begin with outlining the Hardy space model for a quite large class of subnormal

operators S. Among various functional models preferred are those satisfying as much as

possible of the following three postulates. Namely, they should be: 1◦ determined up to

unitary equivalence, 2◦ acting by a simple formula, 3◦ defined on a space consisting of con-

crete functions (rather than, say, of distributions). All these three requirements are met by

the model, introduced (under quite restrictive assumptions on the geometry of the spec-

trum σ(S) of S) by Abrahamse and Douglas [AD1], [AD2]. The first substantial relaxation

of these geometric assumptions (still in the case of finitely connected σ(S)) was presented

in [R1], but the serious difficulty in extending the model to (any) infinitely connected σ(S)

was overcome in [R2] after the employment of new tools: W. Mlak’s absolute continuity

result [M] and M. Hasumi’s and C. Neville’s extension of the Beurling–Lax theorem [H].

In the present paper we use the results of [S] to simplify the earlier construction [R2].

These results eliminate the need for certain additional assumptions and provide a better

explanation of the role of other requirements.
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1. Preliminaries. We shall consider subnormal operators S on complex separable

Hilbert spaces H , which means the existence of a normal operator N on some bigger

space K ⊃ H with N(H) ⊂ H and N |H = S, a fact referred to as S being a part of

N and N being a normal extension of S. In what follows we assume N to be a minimal

normal extension (m.n.e.) of S; then the well known Spectral Inclusion Theorem says

that

(SI) ∂σ(S) ⊂ σ(N) ⊂ σ(S),

where ∂ stands for the topological boundary. It follows that σ(S) is obtained from σ(N)

by filling in some holes. An equivalent conclusion is that locally (i.e. for each hole of σ(N))

one of the (SI) inclusions must be an equality. The second inclusion turning into equality

is typical for Bergman Shifts, but this fragment of spectral picture (i.e. the equality

σ(N) = σ(S) and the concrete knowledge of this set) does not determine the nature of S,

since adding orthogonally any other subnormal operator whose spectrum is contained in

a given hole yields the same pair (σ(N), σ(S)). The situation on the left-hand side of (SI)

is, in this regard, more interesting and therefore, from now on, we assume that (globally)

the first (SI) is an equality, which in view of (SI) is equivalent to requiring that

(1.0) σ(N) ⊂ ∂σ(S).

Abrahamse and Douglas proved in [AD1], [AD2]—assuming additionally (a rather

strong) geometric regularity of σ(S)—that S is unitarily equivalent to the orthogonal

sum of a normal operator (the normal part of S) and of some bundle shift TE defined

below. This model can be viewed as a Generalised Wold Decomposition of S.

Assume further that S is pure subnormal , meaning it has no nontrivial normal part.

Then the model theorem says that S is, up to unitary equivalence, a bundle shift of

some flat unitary bundle E spread over the interior, say Ω, of σ(S). The latter acts as

multiplication by the independent variable z on the Hardy spaceH2[E]. The term “shift”

comes from the case when Ω is the unit disc: the orthonormal basis {ek} of H2, where

ek(z) = zk, indeed undergoes a shift when multiplied by z, i.e. zek(z) = ek+1(z). The

Abrahamse–Douglas model theorem explains therefore the name proposed in the title for

our class of subnormal operators. Actually, it is more convenient to modify slightly the

assumption (1.0) defining it, due to some topological difficulties (absent in [AD1], [AD2],

where only finitely many smoothly bordered holes of Ω were admittted).

Definition 1.1. Let Ω be a domain in the complex plane C. We say that a bounded

operator S is of Hardy type with respect to Ω if S is pure subnormal and the spectra of

S and of its minimal normal extension N = m.n.e.(S) satisfy the following condition:

(1.2) σ(S) ⊂ Ω and σ(N) ⊂ ∂Ω.

Using (SI) and the connectedness of Ω one easily deduces that such a set must nec-

essarily be bounded, with Ω = σ(S). Hence (1.2) implies (1.0). Moreover, the pure part

([AD1, Prop. 1.1]) of a subnormal operator satisfying (1.2) is of Hardy type (cf. [R2,

(2.1b)]), which allows one to restrict considerations to the case when S itself is pure.

Note that the set Ω is not determined by S satisfying (1.2) due, e.g., to possible slit

indentations in Ω. Such indentations are, however, excluded by our next assumptions
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made in Proposition 2.8 below. In particular, if σ(S) equals the closure of its interior,

then (1.2) with Ω = int(σ(S)) is equivalent to our “provisional assumption” (1.0).

Essential to our analysis is the use of certain spaces of functions on Ω. Let us begin

with recalling some notions. We say that E (more precisely, a pair (E, π), where π : E →

Ω) is a flat unitary bundle over Ω if E is a topological space, its fibers Eλ = π−1{λ}

over the points λ ∈ Ω are Hilbert spaces and Ω has a covering W = {U ;U ∈ W} by open

sets U such that π−1U = EU are homeomorphic via some mappings τU to trivial bundles

U ×KU . Here KU are certain Hilbert spaces and τU : EU → U ×KU are supposed to be

compatible in such a way that the transition functions

(1.3) τU ◦ τ−1

V : (U ∩ V )×KV → (U ∩ V )×KU

map (λ, x) into (λ, τUVλ (x)) with τUVλ : KV → KU some unitary operators depending

holomorphically on λ ∈ U ∩ V . Consequently, τUVλ are constant with respect to λ, which

explains the term flat [AD1]. A mapping f : Ω → E is called a holomorphic cross-section

of E if π(f(λ)) = λ (∀λ ∈ Ω) and the mappings τU ◦ f |U : U → U ×KU are holomorphic

(∀U ∈ W). Note that for λ ∈ Ω the norms ‖f(λ)‖U in the coordinate spaces KU are

the same for all U ∈ W whenever λ ∈ U , so that the notation ‖f(·)‖ for the function

Ω ∋ λ 7→ ‖f(λ)‖ ∈ R+ is unambiguous.

Definition 1.4. For 1 ≤ p <∞ the Hardy space Hp[E] of a flat unitary bundle E is

the set of all holomorphic cross-sections f of E such that the function ‖f(·)‖p possesses

a harmonic majorant, i.e. a harmonic function h : Ω → [0,+∞) satisfying

‖f(λ)‖p ≤ h(λ) ∀λ ∈ Ω.

The norm ‖f‖p of f ∈ Hp[E] is defined with respect to some fixed norming point λ0 ∈ Ω

as the quantity

‖f‖p = (h(λ0))
1/p ,

in which h is the least harmonic majorant of |f |p. We define analytic Toeplitz operators

Tϕ for ϕ ∈ H∞(Ω), by

(1.5) Tϕ : Hp[E] ∋ f 7→ ϕf ∈ Hp[E], (Tϕf)(λ) = ϕ(λ)f(λ).

The bundle shift TE is the multiplication by the independent variable: TE = T̺ for the

function ̺(λ) = λ, i.e.

(TEf)(λ) = λf(λ), λ ∈ Ω.

In particular, if E is a trivial bundle Ω × K (so that π(λ, k) = λ), we identify its

sections with functions f : Ω → K, denoting the corresponding Hardy class by Hp
K(Ω).

In the scalar-valued case (K = C), we write Hp(Ω). For functions defined on the unit

disc D = {z ∈ C : |z| < 1}, the notation Hp
K (resp. Hp) replaces Hp

K(Ω) (resp. Hp(Ω)).

The language of bundles is used to cope with multi-valued functions, providing one

with more elegant formulations, but our analysis will be carried out mostly on equivalent

objects known as automorphic functions , arising in the uniformisation technique. Here

the basic fact is that the unit disc is (via some continuous mapping t : D → Ω) a universal

covering space for Ω. This means that Ω is a union of some open setsW ⊂ Ω for which the

restriction of t to any connected component of t−1W maps the latter homeomorphically
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onto W . More importantly, the covering map t can be chosen to be holomorphic. Let

G = Aut(D, t) be the set of all Möbius automorphisms (i.e. fractional-linear bijections

A : D → D) such that t ◦ A = t. We call G the deck transformations group of the cover

(D, t). Let α be a unitary representation of this group in some Hilbert space K.

Definition 1.6. We say that a function f : D → K is automorphic with factor α, or

α-automorphic, if

f(A(λ)) = α(A)f(λ), ∀A ∈ G, λ ∈ D.

In the same manner we distinguish α-automorphic functions among K-valued func-

tions defined almost everywhere with respect to the normalized Lebesgue measure µ on

the unit circle ∂D. Here we extend the Möbius maps holomorphically to neighbourhoods

of D and we note that they preserve the class of µ-null subsets of the unit circle. If F

is some space of K-valued functions on D (or defined a.e. [dµ] on ∂D), we shall use the

notation

F/α
def
= {f ∈ F : f is α-automorphic}.

In the case of the trivial representation (α(A) = IK , the identity operator ∀A ∈ G), we

simply speak of automorphic functions , using the notation F/G in place of F/α.

Clearly, these subsets are closed linear subspaces. Using analogous notation H∞/G

for automorphic elements of the Banach algebra H∞ of bounded analytic functions on

D, we see that Hp
K/α are even H∞/G-submodules: Any function ϕ ∈ H∞/G defines in

the same manner as (1.5) a bounded linear operator

Tϕ : Hp
K/α ∋ f 7→ ϕf ∈ Hp

K/α.

In the case when ϕ is the covering map t, we use the notation Tα instead of Tt and the

special role of this operator is explained by the following two results.

Proposition 1.7 ([AD1, Theorem B]). There is a one-to-one correspondence between

the classes modulo unitary equivalence of unitary representations α : G→ U(K) and the

equivalence classes of flat unitary bundles E over Ω satisfying dim(Eλ) = dim(K).

Here α being equivalent to α1 means the existence of a unitary W ∈ U(K) such

that α(A) =W−1α1(A)W ∀A ∈ G, while two bundles E,E1 are considered equivalent if

there is a homeomorphism Λ : E → E1 such that the transition functions τU ◦ (τ1V ◦Λ)−1

analogous to (1.3) are of the form (λ, k) 7→ (λ,WUV k) for some unitary operators WUV

independent of λ ∈ U ∩ V .

Let us also recall how one can view Ω and E as quotient spaces of D and D × K

respectively. Namely, points of Ω are identifiable as orbits of points z ∈ D under the

equivalence ζ1≃ζ2 iff t(ζ1)= t(ζ2) (which, in turn, takes place iff for some A∈G one has

ζ2=A(ζ1)). Similarly, (ζ, k) and (ζ1, k1) are identified in D×K iff (ζ1, k1)=(A(ζ), α(A)k)

for some A ∈ G. This also suggests how the bundle projection π : E → Ω should arise.

Furthermore, if f : D → K is α-automorphic, then ζ1 ≃ ζ2 implies that (ζ1, f(ζ1)) and

(ζ2, f(ζ2)) define the same point of E, say F (λ), where λ ∈ Ω is identified with the coset

of ζ1. Thus F is the cross-section of E corresponding to f . Finally, this correspondence

between cross-sections and automorphic functions is isometric. Here Hp
K/α is considered
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with the least harmonic majorant norm, but the latter coincides with the LpK(µ)-norm,

as shown in [AD1] (explaining why for p = 2 we get Hilbert spaces).

Proposition 1.8. Any automorphic function ψ ∈ H∞/G is of the form ψ = ϕ ◦ t

for a unique function ϕ ∈ H∞(Ω). Moreover , the Toeplitz operator Tψ on Hp[E] is

isometrically equivalent to Tϕ on Hp
K/α for the unitary representation α : G → U(K)

corresponding to E in the above described manner.

In particular, for p = 2, ̺(λ) = λ, the bundle shift TE is unitarily equivalent to

Tα. This result follows from a slight modification of the analogous Theorem 5 of [AD1].

One shows that the mentioned correspondence between cross-sections and α-automorphic

functions is isometric and carries Tϕ onto Tψ.

2. Behaviour at the boundary. In this section we explain the role played by

condition (1.2) and the necessity of assuming some regularity for ∂Ω in the Hardy space

model theory. We begin with recalling some facts on harmonic measure dm = dmΩ for a

bounded plane domain Ω. We fix a universal covering map t : D → Ω, always assuming

that the norming point λ0 ∈ Ω is chosen so that λ0 = t(0) and that the harmonic

measure m is taken from the point λ0. In other words,
T
∂Ω

f dm evaluates at λ0 the

generalised solution f̂ of the Dirichlet problem for Ω, given any continuous boundary

data f : ∂Ω → C. The set I of irregular (“bad”) boundary points λb, where f̂(λ) fails to

converge to f(λb) as λ→ λb, λ ∈ Ω, is of logarithmic capacity zero.

The harmonic measure for D taken from the origin is clearly the normalized Lebesgue

measure dµ on the unit circle. The principle of invariance of harmonic measure under

holomorphic mappings extends to boundary values h(eiθ), θ ∈ R, of bounded holomorphic

mappings h ∈ H∞. In particular, t carries dµ onto dm (cf. [R3, p. 445]), i.e.

(2.1)
\
∂Ω

f dm =
\
∂D

f ◦ t dµ

and the “lifting to the covering disk” operation

(2.2) LpK(m) ∋ f 7→ f ◦ t ∈ LpK(µ)

is an isometry between these vector-valued Lp-spaces, whose image is precisely the sub-

space LpK/G of automorphic elements of LpK [AD1], [R2].

Actually, more important to our considerations will be the absolute continuity with

respect to the harmonic measure—which, of course does not depend on the base point λ0.

It is here that some regularity conditions enter the picture. We begin with introducing

one more concept.

Definition 2.3. Let R(Ω) be the closure in the uniform convergence norm of the set

of all rational functions having poles outside Ω. Let Repr(λ0) be the set of all nonnegative

Borel measures ν on ∂Ω representing the evaluation functional at λ0, so that

f(λ0) =
\
∂Ω

f(λ) dν(λ) ∀f ∈ R(Ω).

We shall formulate below the conditions sufficient for the absolute continuity relation

(2.4) ν ≪ m ∀ν ∈ Repr(λ0).
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The relevance of all these notions to Hardy type operators is explained by the following

fundamental result (cf. [R2], with corrections in [R4]).

Theorem 2.5. Let S be a Hardy type operator with respect to a plane domain Ω whose

boundary has zero area.

(1) The scalar-valued spectral measure of S is absolutely continuous with respect to

some representing measure ν ∈ Repr(λ0).

(2) If , moreover , the absolute continuity (2.4) holds , then there exist a Hilbert space

K and a subspace M of L2
K(m), pure invariant under multiplication by the functions

from R(Ω), such that S is unitarily equivalent to the restriction Mz|M to M of the

multiplication by the independent variable on L2
K(m).

Here we denote by Mϕ the multiplication by ϕ defined exactly as in (1.5), and the

pure invariance of M means that none of its nonzero subspaces can reduce all operators

Mϕ, ϕ ∈ R(Ω). The proof is analogous to that of [R2, Prop. 2.5] except that in order

to apply the result of Mlak [M, Lemma 1] on absolute continuity of Szegő measures, one

has to know that there is only one non-trivial Gleason part of the maximal ideal space of

R(Ω). But since Ω is contained in one such part, all the remaining Gleason parts must be

subsets of ∂Ω, hence of zero area. However, nontrivial (i.e. having more than one point)

parts must have positive area [G].

As we shall see, the absolute continuity condition (2.4) is one of the three function-

theoretic fundamentals implying the model theorem. The failure of each of these three

was shown in [R2, R3] to lead to the failure of the model theorem, i.e. to the existence of

Hardy type operators with respect to Ω, not equivalent to any bundle shift over Ω. Let

us recall the remaining two conditions.

Definition 2.6. We say that R(Ω) is pointwise boundedly dense in H∞(Ω) if for

any function h ∈ H∞(Ω) there exists a sequence of rational functions rn ∈ R(Ω) with

|rn(λ)| ≤ M(h) and rn(λ) → h(λ) as n → ∞ (∀λ ∈ Ω). Here M(h) is some constant

depending only on h.

The last, perhaps most difficult condition is responsible for the validity of the Beurling

–Lax theorem in LpK(m), stated in Theorem 2.9(1) below.

Definition 2.7. Ω is a Parreau–Widom type domain if any flat unitary bundle E

admits nontrivial bounded holomorphic sections: H∞[E] 6= {0} (here ∞ can be replaced

by any 1 ≤ p < ∞). For such domains we use as a further regularity condition the so

called Direct Cauchy Theorem (cf. [H]), or briefly (DCT). If {ak} are the all critical points

(counting according to their multiplicity) of the Green function G of Ω, put

Λ(z) = exp
(

−
∑

G(z, ak)
)

.

The assertion of (DCT) is that for any meromorphic function f on Ω such that z 7→

Λ(z)|f(z)| possesses a harmonic majorant on Ω and for any fixed base point z0 ∈ Ω one

has

f(z0) =
\
f(z) dχ(z),
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where we integrate over the Martin boundary the corresponding boundary values of f

against the harmonic measure for z0 on this boundary.

The importance of the (DCT) condition rests on the fact that it is equivalent to

the validity of the Beurling–Lax theorem for LpK(m). For K = C this result is due to

Morisuke Hasumi [H].

There are several geometric assumptions on ∂Ω implying the absolute continuity

relations (2.4). In [R2, R3] Sarason’s free arcs condition was assumed to the effect that

“nearly all” of ∂Ω consists of free arcs γ, with free meaning that Ω is situated only on

one side of γ. The “nearly all” phrase was used to mean “except some peak set K of

Hausdorff dimension dimHausd(K) less than one”. Due to the results of Samokhin [S], we

can do even better. Let us recall first that the inner boundary ∂innΩ is the complement

in ∂Ω of the union of all boundaries of holes in Ω. (Holes are defined as the connected

components of C\Ω.)

Proposition 2.8. Assume that Ω is a Parreau–Widom domain satisfying the (DCT )

condition. If dimHausd(∂innΩ) < 1, then

(1) the absolute continuity condition (2.4) holds ,

(2) R(Ω) is pointwise boundedly dense in H∞(Ω).

P r o o f. The second assertion is the theorem of Davie and Øksendal cited in [R2]. In

particular, the algebra A(Ω) containing R(Ω) is pointwise boundedly dense in H∞(Ω)

and the assumptions of Theorem 10 in [S] are satisfied. Consequently, each measure κ

orthogonal to A(Ω) (i.e. such that
T
f dκ = 0 ∀f ∈ A(Ω)) is absolutely continuous with

respect to m. Now, for any ν ∈ Repr(λ0) one has m−ν ⊥ A(Ω), since m−ν ⊥ R(Ω) and

we can use pointwise bounded approximation. The conclusion from [S] is thatm−ν ≪ m

and hence ν ≪ m.

Now, as in [R2], we deduce the main result, stated now under weaker assumptions.

Theorem 2.9. Let Ω be a domain satisfying the assumptions of Proposition 2.8 and

let 1 ≤ p <∞.

(1) For any closed subspace M of LpK(m), pure invariant for R(Ω), there exists a

Hilbert space M , a unitary representation α : G → U(M) and a decomposable isometry

Ψ : LpM → LpK of multiplicative character α such that the canonical lift M◦ t = {f ◦ t :

f ∈ M} of M is the image under Ψ of the Hardy class Hp
M/α:

M◦ t = Ψ(Hp
M/α).

(2) Any operator of Hardy type with respect to Ω is unitarily equivalent to some bundle

shift TE for a flat unitary bundle E over Ω.

3. Multiplication operators. In this section an application of the bundle shift

model to a concrete class of operators is presented. Its aim is to find some useful links

between properties of functions and the behaviour of the related multiplication operators.

One can argue that

(3.1) Tϕf(λ) = ϕ(λ)f(λ)
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is already a form simple enough. If we change it, however, to a form in which ϕ(λ) =

λ (with vectors f running through some different function space), spectral properties

become much easier. We begin with a simple observation, proved essentially in [R3]

and partially (the claim asserting purity) in [R4]. Let G be an arbitrary open set in

C and fix a strictly nonconstant bounded analytic function ϕ on G (i.e. nonconstant

on any component of G). This already involves a mild assumption on G so that ∂G

supports a harmonic measure, say mG, evaluating at fixed points the “local” solutions

of the generalised Dirichlet problem. Here the term local refers to solutions considered

separately in each connected component of G. Our formula (3.1) with f ∈ Hp
K(G) and

λ ∈ G defines a bounded linear operator Tϕ on Hp
K(G), called analytic Toeplitz , or a

multiplication operator .

Lemma 3.2. For p = 2 the multiplication operator Tϕ by a strictly nonconstant func-

tion ϕ ∈ H∞(G) is pure subnormal. This operator is of Hardy type if the following

“preservation of the boundary” condition is satisfied by ϕ:

(3.3) Cℓn(ϕ, λ) ⊂ ∂Ω for [dmG]-almost all points λ ∈ ∂G.

If , moreover , G is connected and if ψ = ϕ ◦ τ ∈ H∞ is a lifting of ϕ to D via some fixed

universal covering map τ : D → G, then (3.3) is equivalent to the [dµ]-essential image

(cf. [AK]) of ψ being a subset of ∂Ω.

Here Cℓn(ϕ, λ0) stands for the “non-tangential” cluster set of ϕ at λ defined to consist

of all limit points of {ϕ(λn)}
∞
n=1, for all sequences {λn} ⊂ G converging to λ0 non-

tangentially in the following sense: If G0 is a connected component of G satisfying λ ∈ G0,

then the λn should all stay within the image of some Stolz region in D under an (analytic)

universal cover of G0. The set of analogous limits without the “non-tangency” constraint,

called the (full) cluster set, is denoted by Cℓ(ϕ, λ0).

Note that although proved in [R3, R4] in the case of connected G, the above result

holds without such restrictions. What is even more important, the properties of Hardy-

type multiplication operators Tϕ discussed here (i.e. satisfying the assumption (3.3))

depend solely on the ranges of functions ϕ—and not on their domains of definition, G.

Since we have here a concrete normal extension N (namely, multiplication by ψ on

some L2-space of automorphic vector-valued functions on ∂D), we may directly establish

in this case the absolute continuity of N with respect to the harmonic measure dmΩ , by

using the disintegration methods of [AK] rather than Samokhin’s result [S]. As follows

from [R3], a conformally invariant version of the assumptions from Prop. 2.8 suffices:

Theorem 3.4 [R3, Thm.1.3]. If a strictly nonconstant function ϕ ∈ H∞(G) satisfies

(3.3) and if Ω = ϕ(G) is conformally equivalent to a domain satisfying the conditions of

Proposition 2.8, then Tϕ is unitarily equivalent to a bundle shift TE over Ω.

To show an example of application, consider the following classical boundary value

principle for holomorphic maps.

Proposition 3.5 [P, Thm.1.9]. If Ω is a plane domain consisting of points interior

to a Jordan curve J and ϕ : G → Ω is a nonconstant holomorphic function defined on

some domain G of the extended plane such that the cluster values of ϕ at points of ∂G
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belong to ∂Ω = J , then ϕ(G) = Ω. If , moreover , some value λ ∈ Ω is attained by ϕ only

once (counting multiplicity), then ϕ must be (globally) injective on G.

Our methods allow for a considerable weakening of the above assumptions.

Proposition 3.6. The conclusions of 3.5 remain valid if we assume that the domain

Ω and function ϕ satisfy the conditions of Theorem 3.4.

P r o o f. Since Tϕ is by 3.4 unitarily equivalent to some bundle shift TE, it suffices to

give a suitable interpretation for the fact that the value ζ is attained at some point of G.

This is equivalent to ζ̄ being an eigenvalue of T ⋆ϕ. The eigenvalues of T ⋆E are the points

of bounded evaluations, hence Ω ⊂ ϕ(G). Likewise, the injectivity can be interpreted in

terms of unitary invariants, namely as the multiplicity of eigenvalues being equal to one,

and must be locally constant, by the well-known properties of the index.

Another application can be found in [R3], where the following dichotomy for cluster

values of functions ϕ satisfying (3.3) above is established: Denote by Cℓ(ϕ, ∂G) the union

over all boundary points λ ∈ ∂G of the cluster sets Cℓ(ϕ, λ). Then assuming 3.4 we see

that only two possibilities occur:

either Cℓ(ϕ, ∂G) ⊂ ∂Ω, or else Cℓ(ϕ, ∂G) = Ω.

Analogously, one can prove (cf. [R5]) the corresponding local statements (for individual

cluster sets at given points λ ∈ ∂G). The author has learned recently about analogous

results of [S1], where more restrictive assumptions about the domains of definition (im-

plying our conditions) were taken. This explains again the general phenomenon that only

the regularity of the ranges is essential.
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Adv. Appl. 42, Birkhäuser, 1989, 305–415.

[Y1] —, Dual piecewise analytic bundle shift models of linear operators, J. Funct. Anal. 136

(1996), 294–330.


