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Abstract. This paper is concerned with double families of evolution operators employed in
the study of dynamical systems in which cause and effect are represented in different Banach
spaces. The main tool is the Laplace transform of vector-valued functions. It is used to define
the generator of the double family which is a pair of unbounded linear operators and relates to
implicit evolution equations in a direct manner. The characterization of generators for a special
class of evolutions is presented.

1. Introduction. The Cauchy problem

du

dt
= Au(t),

u|t=0 = y,

where A is a closed linear operator with domain D(A) and range R(A) both contained in

a Banach space Y is effectively studied by finding a semigroup E(t) : Y → Y of bounded

linear operators with A its infinitesimal generator. Characterizations of the generators of

semigroups in terms of properties of their resolvents are well-known (see e.g. [HP57]).

In this paper we study implicit Cauchy problems of the form

(1)

d

dt
[Bu(t)] = Au(t),

lim
t→0+

Bu(t) = y ∈ Y,

where A and B are unbounded linear operators with a common domain D contained in

a Banach space X and R(A) as well as R(B) in a Banach space Y .

In many applications the operator B is not closable so that there is no way in which

the “time derivative” or the limit at t = 0+ can commute with B. For that reason it seems

to be appropriate to study (1) as it stands. Our approach to the problem is intuitively
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to represent the solution of (1) in the form u(t) = S(t)y with the “solution operator”

S(t) defined on the space Y and range in X. At the same time we consider v(t) = BS(t)

to be emanating from y ∈ Y and represented as v(t) = E(t)y with the operator E(t)

defined on Y and range in Y . The evolution of the system is decribed by thinking of

each v(t) as an initial state for u at later times. This notion is described symbolically by

u(t + s) = S(s)v(t), which lies at the core of empathy theory. The paper is concerned

with the development of a theory of a “double family” 〈S(t), E(t)〉 of evolution operators

which is consistent with problems of the form (1). This approach was introduced in a

restricted way in [SS89] and studied for a special case in [CS94]. A brief outline of the

theory is also given in [S95].

In the study of semigroups the notion of infinitesimal operator/generator and the

observation that, under certain conditions, the Laplace transform of the semigroup is the

resolvent of the infinitesimal generator is crucial. In the abstract study of (1) the notion

of infinitesimal generator is bound to involve the operator B and gives rise to difficulties

with the kernel of B [Sau82, SS87]. Thus it is expedient to develop the theory entirely

with the aid of the Laplace transform which will be an important tool in this study.

It should be noted that implicit Cauchy problems such as (1) are treated in [CaSh76],

but from a different perspective. In [Fav79] the problem is studied with the aid of the

Laplace transform under the assumption that the operator A is injective. In that paper

the notion of integrated semigroup, introduced formally in [Are87], appears implicitly. In

[AF93] the theory of integrated semigroups is employed to study special implicit equations

of the form (1). For the case B = I, the identity, integrated semigroups may be viewed

as special cases of regularized semigroups [daP66] or C-semigroups [DP87] which, under

restricted circumstances, may be viewed as a special case of the theory presented here

[CS94]. A comprehensive survey of C-semigroups and integrated semigroups is presented

in [DeL94]. It should be noted that the notion of empathy is related to the notion of

existence and uniqueness family employed in [DeL91] (see also [DeL94, Chap. XVI).

In Section 2 the notion of empathy is defined and the properties of the operators E(t)

and S(t) are obtained under general conditions. This investigation is continued in Section

3 where additional results are obtained when boundedness conditions are imposed on the

resolvents. In Section 4 we use the Post–Widder inversion theorem to obtain additional

information on the structure of empathies. In particular, it is shown that the operators

E(t) map Y into a fixed closed linear subspace YE which plays a central role in the theory.

In Section 5 we define the notion of generator of an empathy which is an operator pair

〈A,B 〉 relating directly to the Cauchy problem (1). In Section 6 we obtain a uniqueness

result for the representation u(t) = S(t)y of solutions of (1). The remaining sections

are devoted to the characterization of the generators of uniformly bounded empathies.

It turns out that the characterization is in general only possible if the space Y has the

Radon–Nikodým property (see [DU77] for an extensive treatment of this property).

2. Empathy theory. Let X and Y be Banach spaces and let E = {E(t) : Y → Y |
t > 0} and S = {S(t) : Y → X | t > 0} be two families of bounded linear operators. We

shall assume that for every y ∈ Y and λ > 0 the Laplace transforms
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R(λ)y =

∞\

0

e−λtE(t)y dt, P (λ)y =

∞\

0

e−λtS(t)y dt

exist as Lebesgue integrals in the sense that e−λ·E(·)y ∈ L1(0,∞;Y ) and e−λ·S(·)y ∈
L1(0,∞;X). The double family 〈S, E 〉 is called an empathy if the following conditions

hold:

S(t+ s) = S(t)E(s) for arbitrary s, t > 0,(2)

For some ξ > 0, P (ξ) is invertible.(3)

Note that the behaviour of S(t)y and E(t)y at t = 0 is not specified and that no bound-

edness conditions are imposed on the linear operators R(λ) and P (λ). We shall refer to

(2) as the empathy relation.

Proposition 2.1. If 〈S, E 〉 is an empathy then E is a semigroup.

P r o o f. From (2) it is clear that S(t+ r + s)y = S(t)E(r + s)y = S(t)E(r)E(s)y for

positive r, s and t. Taking the Laplace transform with respect to t yields P (ξ)[E(r +

s)y − E(r)E(s)y] = 0 and the result follows from (3).

Theorem 2.2. The norms ‖E(t)‖ and ‖S(t)‖ are locally uniformly bounded in (0,∞)

and the families E and S are strongly continuous on (0,∞).

P r o o f. Since E is a semigroup and t→ E(t)y is measurable, the statement regarding

E(t) is well-known [Miy51; HP57]. The strong continuity of S now follows from the

empathy relation and the boundedness of S(t). The local boundedness of ‖S(t)‖ follows

from the uniform boundedness principle.

We collect a number of important identities in the following result.

Lemma 2.3. For arbitrary positive λ, µ and t we have

R(λ)E(t) = E(t)R(λ)(4)

P (λ)E(t) = S(t)R(λ)(5)

R(λ)−R(µ) = (µ− λ)R(λ)R(µ) = (µ− λ)R(µ)R(λ)(6)

P (λ)− P (µ) = (µ− λ)P (λ)R(µ) = (µ− λ)P (µ)R(λ).(7)

P r o o f. The identities (4) and (5) follow from E(t)E(s) = E(s)E(t) and S(t)E(s) =

S(s)E(t) after taking the Laplace transform with respect to s. The identity (6) fol-

lows from the semigroup property and (7) follows from the empathy relation (2), taking

Laplace transforms with respect to s and t. Since there are a number of different ways

of deriving the last two identities, we shall indicate an effective method for deriving (7):

(µ− λ)P (λ)R(µ) = (µ− λ)

∞\

0

e−λtS(t)

∞\

0

e−µsE(s)y ds dt

=

∞\

0

d

dt
e(µ−λ)t

∞\

0

e−µ(s+t)S(s+ t)y ds dt.

The change of variable s → r = s+ t and subsequent change of the order of integration

give
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(µ− λ)P (λ)R(µ)y =

∞\

0

r\

0

d

dt
e(µ−λ)te−µrS(r)y dr dt

=

∞\

0

(e(µ−λ)r − 1)e−µrS(r)y dr = P (λ)y − P (µ)y.

We note that the proof of (7) does not rely on the invertibility condition (3). The proof

of (6) is based on the semigroup property which has been derived from (2) and (3).

It is well-known that the pseudo-resolvent property (6) implies that for λ and µ

arbitrary KerR(λ) = KerR(µ) =: NE . For P (λ) we have a more intricate property

which is derived from (7):

Lemma 2.4. If (2) holds then NE ∩ KerP (λ) = NE ∩ KerP (µ) for every positive λ

and µ.

P r o o f. If y ∈ NE ∩ KerP (µ) then, by (7) we have P (λ)y = (µ − λ)P (λ)R(µ)y = 0

and hence y ∈ KerP (λ).

Corollary 2.5. If (2) and (3) hold then P (λ) is invertible for every λ > 0.

P r o o f. Suppose that P (λ)y=0. By (7) we have P (ξ)y=(λ−ξ)P (ξ)R(λ)y. It follows

from (3) that y = (λ− ξ)R(λ)y and hence R(ξ)y = (λ− ξ)R(ξ)R(λ)y. Comparison with

(6) shows that R(λ)y = 0. Hence y ∈ NE ∩KerP (λ) = NE ∩KerP (ξ) = {0}.
The pseudo-resolvent equation (6) implies that R(λ)[Y ] = R(µ)[Y ] =: DE ⊂ Y for

every λ, µ > 0. Likewise, (7) implies that P (λ)[Y ] = P (µ)[Y ] =: D ⊂ X. From (4) and

(5) we obtain

Lemma 2.6. E(t)[DE ] ⊂ DE and S(t)[DE ] ⊂ D for any t > 0.

The “domains” D and DE play an important role in the behaviour of S(t) and E(t)

at t = 0. We prepare for this in the following result:

Lemma 2.7. Let y = R(λ)yλ ∈ DE where yλ ∈ Y . Then

E(t)y = eλt
[
y −

t\

0

e−λsE(s)yλ ds
]
,(8)

S(t)y = eλt
[
P (λ)yλ −

t\

0

e−λsS(s)yλ ds
]
.(9)

P r o o f. We shall prove (9) in some detail. The proof of (8) is similar.

S(t)y = S(t)R(λ)yλ = S(t)

∞\

0

e−λsE(s)yλ ds = eλt
∞\

0

e−λ(t+s)S(t+ s)yλ ds.

The substitution s→ r = t+ s gives

S(t)y = eλt
∞\

t

e−λrS(r)yλ dr = eλt
[
P (λ)yλ −

t\

0

e−λrS(r)y dr
]
.

Theorem 2.8. The following statements hold :

(a) For every y ∈ DE , limt→0+E(t)y = y.
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(b) There exists a linear operator C0 : DE → D such that limt→0+ S(t)y = C0y for

every y ∈ DE.

(c) The operators R(λ) are invertible for every λ > 0.

(d) C0 = P (λ)R−1(λ) is invertible and R(C0) = D.

P r o o f. Statement (a) is a direct consequence of (8) and (b) follows from (9). In

fact, C0y = P (λ)yλ where y = R(λ)yλ. Suppose that y ∈ DE has the representations

y = R(λ)yλ = R(λ)zλ. Then C0y = P (λ)yλ = P (λ)zλ. From the invertibility of P (λ)

we see that yλ = zλ and (c) is proved. The final statement follows after a moment of

reflection.

R e m a r k 2.9. The invertibility of the R(λ) implies that DE is trivial if and only if

Y is trivial. Similarly the domain D cannot be trivial unless Y is trivial.

The behaviour of S(t) and E(t) at t = 0 may also be expressed as an asymptotic

property of their Laplace transforms.

Theorem 2.10. For any y ∈ DE ,

lim
λ→∞

λR(λ)y = y, lim
λ→∞

λP (λ)y = C0y.

P r o o f. Let y = R(µ)yµ. We apply (7) to yµ to obtain λP (λ)y = C0y+P (λ)[µy−yµ].

From the dominated convergence theorem it is seen that limλ→∞ P (λ)z = 0 for every

z ∈ Y and the result for λP (λ)y follows. The statement about λR(λ)y follows similarly

from (6).

3.Bounded resolvents. All the results of the previous section were obtained without

assuming boundedness of the operators R(λ) or P (λ). In this section it will be shown

that under such additional assumptions stronger results are possible. For this purpose we

introduce some subspaces of Y .

Let YE be the closure of DE in Y and set DE,1 = R(λ)[YE ], DE,2 = R(λ)[DE ]. From

(6) it is seen that the last two subspaces are independent of the choice of λ. We also

define the space of attractors of E by Att(E) = {y ∈ Y | limt→0+E(t)y exists.}
From Theorems 2.8 and 2.10 we see that DE,2 ⊂ DE,1 ⊂ DE ⊂ YE and the inclusions

are dense. Moreover, DE ⊂ Att(E ). In order to be able to say more about Att(E ), we

need the following result:

Lemma 3.1. Let 〈S, E 〉 be an empathy. For any y ∈ Y and t > 0 it is true thatTt
0
e−λsE(s)y ds ∈ DE and

Tt
0
e−λsS(s)y ds ∈ D. Furthermore,

(10) E(t)y = eλt
[
y −R−1(λ)

t\

0

e−λsE(s)y ds
]

= eλt
[
y − P−1(λ)

t\

0

e−λsS(s)y ds
]
.

P r o o f. From the empathy relation S(s)E(t)y = S(t+ s)y we obtain

P (λ)E(t)y =

∞\

0

e−λsS(t+ s)y ds = eλt
∞\

t

e−λsS(s)y ds = eλt
[
P (λ)y −

t\

0

e−λsS(s)y ds
]
.
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In the same way, starting from the semigroup property, we can prove that

R(λ)E(t)y = eλt
[
R(λ)y −

t\

0

e−λsE(s)y ds
]
.

The final conclusion is reached after a little thought on the two identities.

Theorem 3.2. If P (λ) or R(λ) is bounded for some λ > 0 then Att(E) ⊂ YE , and the

inclusion is dense. Furthermore, if y ∈ Att(E), then limt→0+E(t)y = y.

P r o o f. Suppose that P (λ) is bounded. Then P−1(λ) is closed. If y ∈ Att(E), we see

from (10) that limt→0+ P
−1(λ)

Tt
0
e−λsS(s)y ds exists. Since the integral tends to zero,

it follows that limt→0+E(t)y = y. It remains to be proved that y ∈ YE and this is

done by observing that µR(µ)y =
T∞
0
e−tE(t/µ)y dt. A straightforward application of

the dominated convergence theorem shows that limµ→∞ µR(µ)y = y, which implies that

y ∈ YE . The case where R(λ) is bounded is treated in exactly the same way.

R e m a r k 3.3. Theorem 3.2 holds for semigroups which are unrelated to a family

S of evolution operators but regarded as if “in empathy with themselves”. This means

that the Laplace transforms R(λ)y are assumed to exist and that R(ξ) is assumed to be

invertible for some ξ > 0.

From Theorem 2.10 we obtain directly

Theorem 3.4. Assume that the operators P (λ) are bounded for every λ > 0 and

‖λP (λ)‖ = O(1) as λ→∞. Then the operator C0 is bounded and for its extension C to

YE it is true that Cy = limλ→∞ λP (λ)y.

Theorem 3.5. Under the hypotheses of Theorem 3.4 the operator C is invertible if

and only if C−10 is closeable.

P r o o f. If C is invertible, its inverse is closed and therefore C−10 , being the restriction

of a closed operator, is closable. Conversely, assume that C−10 is closable and suppose

that Cy = 0. Let {yn} ⊂ DE be such that yn → y. Then xn := Cyn = C0yn → 0 and

yn = C−10 xn → y and hence y = 0.

4. The Post–Widder inversion theorem. Let g : t ∈ (0,∞) → g(t) ∈ Z be a

function with values in some Banach space Z, and suppose that the Laplace transform

f(λ) exists for any λ > 0. Then it is well-known that f ∈ C∞(0,∞) and f (k)(λ) =

(−1)k
T∞
0
tke−λtg(t) dt (see [HP57, p. 216]). The Widder operators Lk,tf are defined by

Lk,tf =
(−1)k

k!

(
k

t

)k+1

f (k)
(
k

t

)
, t > 0, k = 1, 2, . . .

The Post–Widder inversion theorem states that for t in the Lebesgue set of g,

limk→∞ ‖Lk,tf −g(t)‖ = 0 and the convergence is uniform on any compact subinterval of

an interval on which g is continuous [HP57, Theorem 6.3.5, p. 224; Wid46, Theorem 6a,

p. 288; Theorem 5a, p. 285].
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If we apply this method of approximation to the empathy 〈S, E 〉 we obtain the fol-

lowing expressions:

Lk,tR(·)y =

[
k

t
R

(
k

t

)]k+1

y, Lk,tP (·)y =

[
k

t
P

(
k

t

)][
k

t
R

(
k

t

)]k
y,

for y ∈ Y . We have made use of (6) and (7) to derive the expressions R(k)(λ)y =

(−1)kk!Rk+1(λ)y and P (k)(λ)y = (−1)kk!P (λ)Rk(λ)y. Because of the strong continuity

of E and S (Theorem 2.2) the Post–Widder theorem has the following form:

Theorem 4.1. Let 〈S, E 〉 be an empathy , then for every t > 0 and every y ∈ Y ,

E(t)y = lim
k→∞

Lk,tR(·)y, S(t)y = lim
k→∞

Lk,tP (·)y.

The convergence is uniform on compact subintervals of (0,∞).

Since Lk,tR(·)y ∈ DE and Lk,tP (·)y ∈ D we have

Corollary 4.2. Let XS be the closure of D in X. Then E(t)[Y ] ⊂ YE and S(t)[Y ] ⊂
XS for every t > 0.

Theorem 4.3. Assume that the operators P (λ) are bounded and ‖λP (λ)‖ = O(1) as

λ→∞. Then S(t) = CE(t).

P r o o f. By Theorem 2.8 (d) we have CR(λ)y = C0R(λ)y = P (λ)y for any y ∈ Y .

Since C is bounded we see by virtue of Corollary 4.2 that
T∞
0
e−λtCE(t)y dt = CR(λ)y =T∞

0
e−λtS(t)y dt for every λ > 0. The result follows from the uniqueness of the Laplace

transform [Wid46, Theorem 6.3, p. 63].

R e m a r k 4.4. If we restrict S and E to YE the restriction 〈S1, E1 〉 is an empathy

with X and Y replaced by XS and YE respectively, D replaced by D1 = P (λ)[YE ] and

DE replaced by DE,1.

5. The generator of an empathy. Let us define the operator B : D→ DE as B =

C−10 = R(λ)P−1(λ). By Theorem 2.8 this definition is possible and the representation is

independent of λ. Set Aλ = [λR(λ)− I]P−1(λ) : D→ Y .

Proposition 5.1. Aλ = Aµ =: A, and P (λ) = (λB −A)−1 for arbitrary λ, µ > 0 .

P r o o f. Inversion of (7) gives P−1(µ) − P−1(λ) = (µ − λ)R(µ)P−1(λ) = (µ −
λ)R(λ)P−1(λ) = (µ − λ)B. Therefore, Aλ − Aµ = λB − P−1(λ) − [µB − P−1(µ)] =

(λ− µ)B − [P−1(λ)− P−1(µ)] = 0.

The operator pair 〈A,B 〉 is called the generator of the empathy 〈S, E 〉. From the

uniqueness of the Laplace transform it is clear that the assignment 〈S, E〉 → 〈A,B 〉 is

bi-unique.

From Theorem 2.8 we see that R(λ) is the resolvent of some operator AE : DE → YE ,

i.e. R(λ) = (λI − AE)−1. The operator AE is called the generator of the semigroup E .

Making use of the fact that AE = λI −R−1(λ) it is easily seen that AE = AB−1 = AC0.

Next we investigate the relationship between the generator 〈A,B 〉 and the Cauchy

problem (1).
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Theorem 5.2. Let 〈A,B 〉 be the generator of the empathy 〈S, E 〉. For given y ∈ DE

the function u : t→ u(t) = S(t)y is a solution of the Cauchy problem (1). Moreover ,

d

dt
[BS(t)y] = AS(t)y = BS(t)AC0y.

P r o o f. From Lemma 2.6 we see that u(t) ∈ D. It follows from Theorem 2.8(d), (4)

and (5) that v(t) := Bu(t) = BS(t)y = E(t)y. Since E is strongly continuous on (0,∞)

we infer from (8) that v(t) is differentiable on (0,∞). Indeed,

dv

dt
= λE(t)y − E(t)R−1(λ)y = E(t)[λy −R−1(λ)y] = [λI −R−1(λ)]E(t)y

= E(t)AEy = AEE(t)y = BS(t)AB−1y = AB−1BS(t)y = AS(t)y.

The initial condition is satisfied by virtue of Theorem 2.8(a).

It is instructive to compare the generator AE of E with its infinitesimal opera-

tor/generator A0 which is defined in the usual way: Let Ahy = h−1[E(h)y − y]. Then

y ∈ Y is in D(A0) if limh→0+Ahy =: A0y exists. We immediately see that D(A0) ⊂
Att(E). Indeed, if y ∈ D(A0) then limh→0+E(h)y = y. Let D1

E = R(λ)[Att(E)] ⊂ DE .

Theorem 5.3. Suppose that R(λ) is bounded for some λ > 0. Then D1
E ⊂ D(A0) ⊂

DE and A0 = AE in D(A0). In addition A0 is closable.

P r o o f. Let y ∈ D(A0). From (10) we see that

(11) Ahy = h−1[eλh − 1]y − eλhR−1(λ)h−1
h\

0

e−λsE(s)y ds.

Since the limits of the first two terms in (11) exist, it follows that

lim
h→0+

R−1(λ)h−1
h\

0

e−λsE(s)y ds

exists. Also since y ∈ Att(E) we have limh→0+ h
−1

Th
0
e−λsE(s)y ds = y and hence the

closedness of R−1(λ) implies that y ∈ DE and A0y = λy −R−1(λ)y = AEy.

Let y ∈ D1
E be represented as y = R(λ)yλ with yλ ∈ Att(E). From (8) we obtain

(12) Ahy = h−1[eλh − 1]y − eλhh−1
h\

0

e−λsE(s)yλ ds.

The terms on the right hand side of (12) are both convergent as h → 0 and it follows

that y ∈ D(A0).

Finally, since AE = λI −R−1(λ) is closed, it follows that A0 is closable.

A number of results obtained so far required that either R(λ) or P (λ) be bounded for

some λ > 0. These assumptions imply boundedness of the resolvents R(µ) and P (µ) and

the closedness of the generator 〈A,B 〉 of the underlying empathy.

Theorem 5.4. If for some λ > 0 both P (λ) and R(λ) are bounded , then P (µ) and R(µ)

are bounded for every µ > 0. Moreover , the operator 〈A,B 〉 : x ∈ D→ 〈Ax,Bx〉 ∈ Y ×Y
is closed.
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P r o o f. As seen in the proof of Theorem 5.3, AE is closed. Therefore R−1(µ) =

µI − AE is closed and hence R(µ) is bounded according to the closed graph theorem.

From (7) we see that P (µ) = P (λ)+(λ−µ)P (λ)R(µ) is bounded. Since µB−A is closed

for at least two values of µ it is easily proved that the operator 〈A,B 〉 is closed.

6. Uniqueness. In the previous section we have shown that if 〈A,B 〉 is the generator

of an empathy 〈S, E 〉 and y ∈ DE , then u(t) = S(t)y is a solution of (1). In this section

we shall describe a class of functions LSE which is such that any solution of (1) which is

in this class, has the representation u(t) = S(t)y. If u : t ∈ (0,∞)→ u(t) is a function for

which the Laplace transform exists we shall write û(λ) =
T∞
0
e−λtu(t) dt. Suppose that

u : t → u(t) ∈ D ⊂ X so that the representation u(t) = P (λ)vλ(t) is valid. We say that

u is of class LSE if for some λ > 0, vλ has a Laplace transform in Y .

Lemma 6.1. If u is of class LSE , the Laplace transforms of u and R(λ)vλ exist.

Moreover , û(µ) ∈ D, ̂R(λ)vλ(µ) ∈ DE and

(13) û(µ) = P (λ)v̂λ(µ); ̂R(λ)vλ(µ) = R(λ)v̂λ(µ).

P r o o f. Since the operators S(t) are bounded

P (λ)v̂λ(µ) =

∞\

0

e−λtS(t)

∞\

0

e−µsvλ(s) ds dt =

∞\

0

e−λt
∞\

0

e−µsS(t)vλ(s) ds dt.

An application of Fubini’s theorem shows that the right hand side equals ̂P (λ)vλ(µ) =

û(µ). A similar calculation on R(λ)v̂λ(µ) concludes the proof.

R e m a r k 6.2. From (7) we see that vµ(t)− vλ(t) = (µ− λ)R(λ)vλ(t), which shows

that the definition of class LSE is independent of the choice of λ.

Lemma 6.3. Let y ∈ DE. Then u : t→ S(t)y is of class LSE.

P r o o f. By (5), u(t) = S(t)R(λ)yλ = P (λ)E(t)yλ, if y = R(λ)yλ. Thus vλ = E(t)yλ
and the proof is complete.

Lemma 6.4. Let 〈A,B 〉 be the generator of an empathy. If u is of class LSE then the

Laplace transforms of Au and Bu exist. In particular , Âu = Aû and B̂u = Bû.

P r o o f. Bu(t) = R(λ)P−1(λ)u(t) = R(λ)vλ(t) and Au(t) = λR(λ)vλ(t)− vλ(t). The

result follows from Lemma 6.1.

Theorem 6.5. Let 〈A,B 〉 be the generator of the empathy 〈S, E 〉. If u is of class LSE
and solves the Cauchy problem (1) with y ∈ DE then u(t) = S(t)y.

P r o o f. Let w(t) = S(t)y. Then ŵ(µ) = P (µ)y. Since u is of class LSE , the Laplace

transform of Au exists and therefore the Laplace transform of the derivative of Bu exists.

Taking the Laplace transform in (1) is therefore justified and from Lemma 6.4 we obtain

µBû(µ)− y = Aû(µ). Thus û(µ) = P (µ)y = ŵ(µ) for arbitrary µ. By the uniqueness of

the Laplace transform, u(t) = w(t).

R e m a r k 6.6. Note that the uniqueness theorem was obtained without assumptions

on the boundedness of P (λ) or R(λ).
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R e m a r k 6.7. If the semigroup E is of class (C0) the uniqueness is unconditional, for

if we set v(t) = Bu(t), then

dv

dt
= Au(t) = AB−1v(t) = AEv(t) = A0v(t).

In this case it is well-known that v(t) = E(t)y = BS(t)y and hence u(t) = S(t)y. If E
is not of class (C0), the argument that v(t) = E(t)y does not extend since the norms

‖E(t)‖ need not be bounded on intervals of the form (0, a].

7. Uniformly bounded empathies. The empathy 〈S, E 〉 is called uniformly

bounded if there exist positive constants M ′ and N ′ such that ‖S(t)‖ ≤M ′ and ‖E(t)‖ ≤
N ′ for every t > 0.

Theorem 7.1. The empathy 〈S, E 〉 is uniformly bounded if and only if the resolvent

operators P (λ) and R(λ) are bounded and there exist positive constants M and N such

that for any λ > 0 and any k = 1, 2, . . . ,

(14) ‖λP (λ)‖ ≤M and ‖λkRk(λ)‖ ≤ N.
P r o o f. Suppose the empathy is uniformly bounded. The boundedness of the resolvent

operators are obtained directly and the first of the inequalities (14) come from the same

effort. The second inequality follows from the identity

Rk+1(λ)y =
1

k!

∞\

0

e−λttkE(t)y dt,

which is obtained with the aid of the convolution theorem for Laplace transforms.

Suppose, conversely, that the resolvent operators are bounded and (14) holds. We

then conclude for the Widder operators Lk,t that

‖Lk,tR(·)y‖ ≤ N‖y‖ and ‖Lk,tP (·)y‖ ≤MN‖y‖.
It follows from Theorem 4.1 that ‖S(t)‖ ≤MN and ‖E(t)‖ ≤ N for any t > 0.

Theorem 7.2. If 〈S, E 〉 is uniformly bounded then the semigroup E1 is of class (C0)

with generator AE,1 = AC1 where C1 is the restriction of C to D1 = R(λ)[YE ].

P r o o f. Because of the uniform boundedness, Att(E) is closed and therefore YE =

Att(E) (Theorem 3.2). Hence E1 is of class (C0). The rest is evident.

8. Generation of uniformly bounded empathies. We now turn to the more

profound question of constructing from a given pair 〈A,B 〉 of linear operators an empathy

〈S, E 〉 having 〈A,B 〉 as its generator.

Let X and Y be Banach spaces and A and B linear operators with a common domain

D ⊂ X and values in Y . We shall assume that λB − A is invertible for every λ > 0.

Let the inverse be denoted by P (λ) : Y → D. We set R(λ) = BP (λ). A straightforward

calculation shows that

(14) P (λ)− P (µ) = (µ− λ)P (λ)BP (µ) = (µ− λ)P (λ)R(µ) = (µ− λ)P (µ)R(λ)

and it follows that

(15) R(λ)−R(µ) = (µ− λ)R(λ)R(µ) = (µ− λ)R(µ)R(λ).
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We define the domain DE := B[D] = R(λ)[Y ] and the subspace YE ⊂ Y as the closure

of DE in Y .

Theorem 8.1. If limλ→∞ P (λ)z = 0 for every z ∈ Y then B is invertible and

B−1y = limλ→∞ λP (λ)y for every y ∈ DE. Conversely , if B−1 exists and B−1y =

limλ→∞ λP (λ)y then limλ→∞ P (λ)z = 0 for every z ∈ R(A). In either case R(µ) is

invertible for any µ > 0.

P r o o f. The proof of the first statement is contained in the proof of Theorem 2.10

based on the identity

(16) λP (λ)y = P (λ)[µy − yµ] + P (µ)yµ

where R(µ)yµ = y ∈ DE . The same argument also yields the invertibility of R(µ).

To prove the second statement, we note that under the hypotheses, R(µ) is invertible

for arbitrary µ and B−1 = P (µ)R−1(µ). Moreover, R−1(µ) = µI − AB−1. Hence yµ =

R−1(µ)y = µy−AB−1y and (16) may be rewritten in the form λP (λ)y = P (λ)AB−1y+

B−1y. This concludes the proof.

Theorem 8.2. Suppose the space Y has the Radon–Nikodým property. The operator

pair 〈A,B 〉 is the generator of a uniformly bounded empathy 〈S, E 〉 if and only if the

operators P (λ) and R(λ) are bounded for every λ > 0 and there exist positive numbers

M and N such that for every λ > 0 and k = 1, 2, . . . ,

(17) ‖λP (λ)‖ ≤M and ‖λkRk(λ)‖ ≤ N.

P r o o f. The necessity part is contained in Theorem 7.1. Suppose that (17) holds. By

Theorem 8.1 the operator B is invertible. Since ‖λP (λ)‖ ≤M , it follows that there exists

a bounded linear operator C : YE → X with ‖C‖ ≤ M such that B−1 is the restriction

of C to DE . We shall use the following notation: DE,1 := R(λ)[YE ]; D1 := B−1[DE,1];

〈A1, B1 〉 the restriction of 〈A,B 〉 to D1; R1(λ) and P1(λ) the restrictions of R(λ) and

P (λ) to YE respectively.

By the Hille–Yosida Theorem and Theorem 7.1 there exists a semigroup E1 of class

(C0) on YE such that R1(λ)y is the Laplace transform of E1(·)y for every y ∈ YE . The

generator of E1 is A1B
−1
1 which is also the infinitesimal generator. If we define the family

S1 = {S1(t) = CE1(t) | t > 0} it is easy to see that 〈S1, E1 〉 is an empathy with generator

〈A1, B1 〉.
From (15) and (17) we see that the function λ → R(λ)y is infinitely differentiable

so that the Widder operators Lk,tR(·)y are defined and bounded. In fact, by (17),

‖Lk,tR(·)y‖ ≤ N‖y‖ for any y ∈ Y . Since Y has the Radon–Nikodým property, Widder’s

inversion theorem [Wid46, Theorem 16a, p. 315; Theorem 16b, p. 316] holds for func-

tions with values in Y [Are87] and there exists a family E = {E(t) | t > 0} such that

‖E(t)‖ ≤ N and

(18) R(λ)y =

∞\

0

e−λtE(t)y dt.

We proceed to prove that E is a semigroup and an extension of E1. Firstly, since

R1(λ)y = R(λ)y for y ∈ YE , it follows from (18), the strong continuity of E1 and the
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uniqueness of the Laplace transform, that E(t)y = E1(t)y for y ∈ YE . Secondly, we can

use (15), noting that R(µ)R(λ) = R1(µ)R(λ), to reverse the calculation leading to (6)

and obtain for any fixed y ∈ Y ,
∞\

0

e−λtE1(t)

∞\

0

e−µsE(s)y ds dt =

∞\

0

e−λt
∞\

0

e−µsE(t+ s)y ds dt,

which is valid for all λ, µ > 0. From the uniqueness of the Laplace transform and the

strong continuity of E1, it follows that for all t > 0,

(19) E1(t)

∞\

0

e−µsE(s)y ds =

∞\

0

e−µsE(t+ s)y ds

for arbitrary µ > 0. By the Post–Widder inversion theorem, E(s)y ∈ YE for s in the

Lebesgue set of E(·)y. Hence the operator E1(t) may be interchanged with the integral

in (19) and we obtain

(20) E(t+ s)y = E1(t)E(s)y for all t > 0 and s 6∈ Ny
where Ny ⊂ (0,∞) is of measure zero. Suppose that s 6∈ Ny. Then, by (20) we obtain

E(t+ r+ s)y = E1(t+ r)E(s)y = E1(t)E1(r)E(s)y = E1(t)E(r+ s)y for arbitrary r > 0

and it follows that r + s 6∈ Ny. But then Ny is empty so that E is indeed a semigroup

and E(t)y ∈ YE for any t > 0 and y ∈ Y .

Next we define the family S = {S(t) = CE(t)|t > 0} of linear operators from Y to

X. Evidently 〈S, E 〉 is an empathy and ‖S(t)‖ ≤ MN so that it is uniformly bounded.

Also,
∞\

0

e−λtS(t)y dt = CR(λ)y = B−1R(λ)y = P (λ)y.

Therefore 〈A,B 〉 is the generator of 〈S, E 〉.

R e m a r k 8.3. That E is a semigroup is proved in [Are87, Theorem 6.2] by making

use of the notion of integrated semigroups. The proof above leans on the Post–Widder

inversion theorem.

R e m a r k 8.4. If DE is dense in Y , the extension procedure is unnecessary and in

that case the Radon–Nikodým property is not required. This is the case if Y is reflexive,

for then the uniform boundedness of ‖λR(λ)‖ implies that DE is dense in Y .

9. An application. As a simple application of Theorem 8.2 we consider logitudinal

vibrations in an elastic bar which in its reference configuration has length l and linear

density ρ = ρ(x), 0 ≤ x ≤ l. The equations of motion may be written as

(21) ρ(x)vt(x, t) = fx(x, t), σft(x, t) = vx(x, t),

where v denotes the velocity, f the internal force and σ > 0 the reciprocal of Hooke’s

constant. The variable x ∈ [0, l] denotes position in the reference configuration and t ≥ 0

time. This particular form of the wave equation was suggested in [Fri58, p. 338]. The

boundary condition at x = 0 is simply v(0+, t) = 0. At the other edge we assume that a

particle of mass m is attached so that the boundary condition becomes
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(22) m
d

dt
γ0v = −γ0f.

with γ0v = v(l−, t). For the sake of not becoming too technical we shall assume that ρ is

positive and continuous on [0, l] so that there exists r > 0 such that ρ(x) ≥ r for every

x ∈ [0, l].

The system of equations (21), (22) may be written in the form (11) in the following

way: Let X = L2(0, l) × L2(0, l) with the inner product defined as (〈f1, g1 〉, 〈f2, g2 〉) =

(f1, f2) + (g1, g2) where ( , ) denotes the usual inner product. The domain D ⊂ X is

defined as D = {〈f, g 〉 | f, g ∈ H1(0, l) and f(0+) = 0}. The space Y is chosen as

Y = L2(0, l)×L2(0, l)×R where R denotes the reals. The elements of Y will be written

in the form 〈ρa, σb,mc〉 =: 〈〈a, b, c〉〉 with a, b ∈ L2(0, l) and c ∈ R. The inner product in

Y is defined as

[〈〈a1, b1, c1 〉〉, 〈〈a2, b2, c2 〉〉] = (ρa1, a2) + σ(b1, b2) +mc1c2.

The associated norm will be denoted by [[ ]]. The linear operators A and B are defined as

A〈v, f 〉 = 〈fx, vx,−γ0f 〉, B〈v, f 〉 = 〈ρv, σf,mγ0v 〉 = 〈〈v, f, γ0v 〉〉,
for 〈v, f 〉 ∈ D. To be able to apply Theorem 8.2 we have to study the equation

(23) (λB −A)〈v, f 〉 = 〈〈a, b, c〉〉 ∈ Y.
for λ > 0, which is the same as the following boundary condition problem for a system

of ordinary differential equations:

(24)

λρv − fx = ρa,

λσf − vx = σb,

λmγ0v + γ0f = mc,

v|x=0 = 0.

Existence and uniqueness for (24) may be proved in a number of ways which we shall not

describe here. We proceed to study the linear operator P (λ) : 〈〈a, b, c〉〉 → 〈v, f 〉. To this

end we notice that (23) may be written in the form

(25) λ〈〈v, f, γ0v 〉〉 − 〈〈fx/ρ, vx/σ,−γ0f/m〉〉 = 〈〈a, b, c〉〉.
Taking the scalar product in (25) with 〈〈v, f, γ0v 〉〉 yields

λ[[〈〈v, f, γ0v 〉〉]]2 − (fx, v)− (vx, f) + γ0f.γ0v = [〈〈a, b, c〉〉, 〈〈v, f, γ0v 〉〉].
Integration by parts of (vx, f) gives cancellations which lead to

λ[[〈〈v, f, γ0v 〉〉]]2 = [〈〈a, b, c〉〉, 〈〈v, f, γ0v 〉〉] ≤ [[〈〈a, b, c〉〉]].[[〈〈v, f, γ0v 〉〉]]
so that

λ[[〈〈v, f, γ0v 〉〉]] ≤ [[〈〈a, b, c〉〉]].

We therefore have

λM−1‖〈v, f 〉‖ ≤ λ[r‖v‖2 + σ‖f‖2]1/2 ≤ [[〈〈a, b, c〉〉]]
where M−2 = min{r, σ}. Hence P (λ) is bounded and ‖P (λ)‖ ≤ M/λ. If we set R(λ) =

BP (λ) we see that R(λ)〈〈a, b, c〉〉 = B〈v, f 〉 = 〈〈v, f, γ0v 〉〉 and it follows that R(λ) is

bounded and [[R(λ)]] ≤ 1/λ. The conditions of Theorem 8.2 are therefore satisfied since
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Y is reflexive. Hence it follows from Theorem 5.2 that the equations (21), (22) under the

given boundary conditions are uniquely solvable for any initial state 〈〈a, b, c〉〉 ∈ B[D].
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