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VŨ QUÔC PHÓNG

Department of Mathematics, Ohio University

Athens, Ohio 45701, U.S.A.

E-mail: qvu@oucsace.cs.ohiou.edu

1. Introduction. This paper is chiefly a survey of results obtained in recent years on

the asymptotic behaviour of semigroups of bounded linear operators on a Banach space.

From our general point of view, discrete families of operators {T n : n = 0, 1, . . .} on

a Banach space X (discrete one-parameter semigroups), one-parameter C0-semigroups

{T (t) : t ≥ 0} on X (strongly continuous one-parameter semigroups), are particular

cases of representations of topological abelian semigroups. Namely, given a topological

abelian semigroup S, a family of bounded linear operators {T (s) : s ∈ S} is called a

representation of S in B(X) if: (i) T (s+ t) = T (s)T (t); (ii) For every x ∈ X , s 7→ T (s)x

is a continuous mapping from S to X .

The central result which will be discussed in this article is a spectral criterion for

almost periodicity of semigroups, obtained by Lyubich and the author [40] for uni-

formly continuous representations of arbitrary topological abelian semigroups (thus in-

cluding the case of single bounded operators and several commuting bounded opera-

tors), and for C0-semigroups [41], and by Batty and the author [9] for arbitrary strongly

continuous representations of suitable locally compact abelian semigroups. An imme-

diate consequence of this result is a Stability Theorem, obtained, for single operators

and C0-semigroups, also by Arendt and Batty [1] independently. The proof in [1] uses

a Tauberian theorem for the Laplace–Stieltjes transforms and transfinite induction.

Methods of this type can also be used to prove the almost periodicity result for C0-

semigroups [8], but seem not suitable for commuting semigroups, and will not be discussed

in this article.

We also refer the reader to a recent survey article of Batty [6], where some develop-

ments are described which are not included here.
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2. The semigroup {T n : n ∈ Z+}. In this section, T is a bounded linear operator on

a (complex) Banach space X , T ∈ B(X). The spectrum, point spectrum, and resolvent

set of the operator T are denoted by σ(T ), Pσ(T ) and ̺(T ), respectively. If λ ∈ Pσ(T ),

we put Xλ = {x ∈ X : Tx = λx}. The operator T is called power-bounded if the discrete

semigroup {T n : n ∈ Z+} is bounded, i.e. supn∈Z+
‖T n‖ < ∞, and T is called strongly

stable if ‖T nx‖ → 0 as n → ∞, ∀x ∈ X . For a power-bounded operator T we denote by

Eσ(T ) the ergodic spectrum of T , i.e. Eσ(T ) is a subset of the unit circle, T, defined by

Eσ(T ) = {λ ∈ T : ∃x∗ ∈ X∗ : x∗ 6= 0, T ∗x∗ = λx∗, x∗|Xλ ≡ 0}.

1. Limit isometric semigroup. A central role in our methods of proofs is played by

the following construction, valid for power-bounded operators on Banach spaces. This

construction was used by Sklyar and Shirman [39] who obtained the result contained in

Corollary 3.8 for uniformly continuous semigroups, and by Lyubich and the author [31],

[40–41]. Similar construction for operators of the so-called class C1 (i.e. when ‖T nx‖ 6→ 0,

∀x ∈ X) was used by Beauzamy [10] and, in the case X is a Hilbert space, by Kérchy

[25], in connection with the problems of invariant subspaces. In this form, it is contained

in [42].

Proposition 2.1. Let T be a power-bounded operator on X. There exist another

Banach space E, a continuous linear operator Q : X → E, with dense range, and an

isometric operator V on E such that :

(i) QT = V Q;

(ii) σ(V ) ⊂ σ(T ), Pσ(T ) ∩ T ⊂ Pσ(V ), Pσ(V ∗) ⊂ Pσ(T ∗);

(iii) ‖Qx‖E = lim supn→∞ ‖T nx‖.

Moreover , such E and V are unique in the sense that if E′ is another Banach space

and V ′ : E′ → E′ is an isometric operator satisfying (i)–(iii), then there is an invertible

isometric operator U : E → E′ such that UV U−1 = V ′.

P r o o f. Introducing an equivalent norm |||x||| = supn≥0 ‖T
nx‖ in X , we can assume

that T is a contraction. Let l(x) be a semi-norm on X defined by l(x) ≡ limn→∞ ‖T nx‖,

x ∈ X , X̂ = X/ ker l. Further, let Q denote the natural homomorphism from X to X̂

and T̂ : X̂ → X̂ be defined by T̂ (Qx) = Q(Tx). The semi-norm l induces in the quotient

space X̂ a norm l̂ in a natural way, i.e. l̂(Qx) ≡ l(x). Clearly, T̂ is an isometry on the

normed space (X̂, l̂). Let E be the completion of X̂ and let V be the extension of T̂ to

the whole E by continuity. Then V is isometric, Q is a bounded linear operator from

X to E with dense range and (i) holds. The property (iii) holds by construction. To

show that (ii) holds, let A be a bounded linear operator on X which commutes with

T . Then A induces an operator Â on E by Â(Qx) = Q(Ax), which is bounded, since

|||A||| = sup{l̂(Ax) : l(x) = 1} ≤ sup{‖A‖l(x) : l(x) = 1} = ‖A‖. Hence, if λ ∈ ̺(T ), and

A = (λ − T )−1, then λ ∈ ̺(T̂ ) and Â = (λ − T̂ )−1. Thus, σ(U) ⊂ σ(T ). If Tx = λx,

|λ| = 1, then V (Qx) = λQx, Qx 6= 0, hence λ ∈ Pσ(V ). If V ∗φ = µφ, φ 6= 0, then

the functional ϕ ∈ X∗ defined by ϕ(x) ≡ φ(Qx) satisfies T ∗ϕ = λϕ, ϕ 6= 0. Thus,

Pσ(V ∗) ⊂ Pσ(T ∗).
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Finally, if E′ is another Banach space, Q′ : X → E′ is a corresponding map, and

V ′ : E′ → E′ is an isometry satisfying (i)–(iii), then the operator U : E → E′ defined by

U(Qx) = Q′x is an isometry (by (iii)) with dense domain and dense range. Therefore, U

is an invertible isometry, and UV (Qx) = U(QTx) = Q′Tx = V ′Q′x = V ′U(Qx), so that

UV = V ′U .

Proposition 2.1 gives the following characterization of strong stability of the discrete

semigroup {T n : n ∈ Z+} obtained in [44, Theor. 5.1]. (1)

Theorem 2.2. Let T be a power-bounded operator on X. Then the following are

equivalent :

(1) T is strongly stable;

(2) There do not exist {x∗
n}

0
n=−∞ ⊂ X∗, x∗

0 6= 0 such that supn≤0 ‖x
∗
n‖ < ∞ and

(T ∗)nx∗
−n = x∗

0, ∀n ≥ 0.

(3) There do not exist {x∗
n}

∞
n=−∞ ⊂ X∗, x∗

0 6= 0, such that

(2.1) sup
n∈Z

‖x∗
n‖ < ∞ and (T ∗)kx∗

n = x∗
k+n, ∀n ∈ Z, k ≥ 0;

P r o o f. (1)⇒(2). Let T be strongly stable and assume, on the contrary, that x∗
−n,

n = 0, 1, . . . , is a bounded sequence in X∗ such that (T ∗)nx∗
−n = x∗

0 6= 0. Then we

have, for every x ∈ X , 0 = limn→∞ |〈T nx, x∗
−n〉| = |〈x, (T ∗)nx∗

−n〉| = |〈x, x∗
0〉|, which is a

contradiction.

(2)⇒(3) is trivial.

(3)⇒(1). Assume that T is not strongly stable. Then the limit isometric operator V

constructed in Proposition 2.1 is nontrivial (i.e. E 6= 0). Let z∗0 be any nonzero element

in E∗. Define inductively, for each n = 1, 2, . . ., a functional z∗−n on V (E) by

〈V z, z∗−n〉 = 〈z, z∗−n+1〉.

Then |〈V z, z∗−n〉| ≤ ‖z∗−n+1‖E∗‖z‖E = ‖z∗−n+1‖E∗‖V z‖E, hence z∗−n is uniformly

bounded by ‖z∗0‖. By the Hahn–Banach Theorem, there exist norm-preserving exten-

sions of z∗−n to the whole E, which we denote by the same z∗−n. Clearly, (V ∗)kz∗−n =

z∗−n+k, ∀k, n ≥ 0. Let x∗
−n, n = 0, 1, . . . be corresponding elements of X∗ defined by

〈x, x∗
−n〉 = 〈Qx, z∗−n〉, and let x∗

n = (T ∗)nx∗
0, ∀n > 0. Then, as can be verified directly,

{x∗
n} is uniformly bounded in X∗ and satisfies condition (2.1).

2. Almost periodicity and stability. Recall that a discrete semigroup {T n : n ∈ Z+},

generated by a single operator T , is called almost periodic if the orbit {T nx : n ∈ Z+} is

relatively compact, ∀x ∈ X . If T is invertible, then the group {T n : n ∈ Z}, generated

by T , is called an almost periodic group if {T nx : n ∈ Z} is relatively compact, ∀x ∈ X .

If {T n : n ∈ Z} is an almost periodic group, then X = span{x ∈ X : ∃λ ∈ T : Tx = λx}.

If T is strongly stable, then {T n : n ∈ Z+} is also almost periodic. The following

theorem, usually known as the de Leeuw–Glicksberg Decomposition, gives a description

of the structure of almost periodic discrete semigroups (see [26], [30]).

(1) This result was proved in [44] under some additional condition (i) or (ii). That this addi-

tional condition is not necessary has also been observed independently (by a different argument)

by C. J. K. Batty, Z. Brzeźniak and D. Greenfield [7].
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Theorem 2.3. If a discrete semigroup {T n : n ∈ Z+} on X is almost periodic, then

X has the following decomposition into a direct topological sum:

X = Xb ∔Xs,

where Xs = {x ∈ X : limn→∞ ‖T nx‖ = 0}, and Xb = span{x ∈ X : ∃λ ∈ T : Tx = λx}.

Moreover , T |Xb is invertible and {(T |Xb)
n : n ∈ Z} is a bounded almost periodic group.

The projection P : X → Xb such that kerP = Xs is in the closure of {T n : n ∈ Z+}

in the strong operator topology. If , in addition, T is a contraction, then T |Xb is an

invertible isometry and ‖P‖ = 1 (if P 6= 0).

The subspaces Xb and Xs are called boundary and stable subspaces of T , respectively,

and the projection P is called the boundary projection [30]. In general, if {T n : n ∈ Z+}

is bounded, but not almost periodic, then we still can define the subspaces Xs and Xb

as in Theorem 2.3, and let Xap = span{y + z : y ∈ Xb, z ∈ Xs}. Then, as is easily seen,

{T n|Xap : n ∈ Z+} is an almost periodic semigroup. Therefore, applying Theorem 2.3 to

this semigroup we see that in fact Xap = Xb ∔Xs.

If, in the construction in the proof of Proposition 2.1, we take, instead of X/ ker l, the

quotient space X/Xap, with an appropriate norm, then we obtain the following proposi-

tion.

Proposition 2.4. Let T be a power-bounded operator on X. There exist another

Banach space F , a continuous linear operator R : X → F , with dense range, and an

isometric operator U on F such that :

(i) RT = UR;

(ii) σ(U) ⊂ σ(T ), Pσ(U) = ∅, Pσ(U∗) ⊂ Pσ(T ∗), Pσ(U∗) ∩ T ⊂ Eσ(T );

(iii) ‖Rx‖E = lim supn→∞ infy∈Xb
‖T n(x− y)‖.

Moreover , such F and U are unique in the sense that if F ′ is another Banach space

and U ′ : F ′ → F ′ is an isometric operator satisfying (i)–(iii), then there is an invertible

isometric operator W : F → F ′ such that WUW−1 = U ′.

The operator U can be called the limit isometric operator of T with continuous spec-

trum.

P r o o f. The proof of Proposition 2.4 is an adaptation of the proof of Proposition 2.1.

The modifications are that now we take the quotient space X̂ = X/Xap. Then T induces

an operator T̂ in X̂, which is an isometry in the norm in X̂ defined by

|||x̂||| = lim sup
n→∞

inf
y∈Xap

‖T nx− y‖.

Let F be the completion of X̂ with respect to the introduced norm, and let U be the

extension of T̂ from X̂ to F by continuity. Then the properties (i)–(iii) can be verified

as in the proof of Proposition 2.1.

The following theorem, which gives a spectral condition for almost periodicity of a

discrete semigroup {T n : n ∈ Z+}, can be proved by applying Proposition 2.4 and the

theory of discrete groups of isometric operators. One earlier result of this theory is the
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Gelfand Theorem, that if V is an isometry on X , and σ(V ) is a single point λ, then

V = λI (see [20], [23], [50]).

Theorem 2.5 ([40]). If T is a power-bounded operator on a Banach space X such that

σ(T )∩T is countable and Eσ(T )∩T is empty, then the discrete semigroup {T n : n ∈ Z+}

is almost periodic.

P r o o f. Assuming the contrary, we can construct the Banach space F 6= {0} and the

operator U as in Proposition 2.4. Then U , and hence U∗, is an isometric operator with a

countable spectrum. If λ is an isolated point of σ(U), then there is φ ∈ F ∗, φ 6= 0, such

that U∗φ = λφ. Let ϕ ∈ X∗ be defined as 〈x, ϕ〉 ≡ 〈Rx, φ〉. Then, as can easily be seen,

T ∗ϕ = λϕ, ϕ|Xλ = 0, so λ ∈ Eσ(T ), which is a contradiction.

R ema r k 2.6. It is well known that, for a power-bounded operator T and λ ∈ T,

λ 6∈ Eσ(T ) if and only if the semigroup {λ−nT n : n ∈ Z+} is ergodic, i.e. 1
n

∑n−1
k=0 λ

−kT k

converges to the projection Pλ (on the subspace Xλ = {x : Tx = λx}) (see e.g. [26],

[30]). In particular, 1
n

∑n+i−1
k=i λ−kT kx converges to Pλx, uniformly in i. Conversely, if

the means 1
n

∑n+i−1
k=i λ−kT kx converge for some i ∈ Z+, then they converge uniformly in

i, and, therefore, the restriction of {λ−nT n : n ∈ Z+} to span{T nx : n ∈ Z+} is ergodic.

Therefore, the condition Eσ(T )∩T = ∅ in Theorem 2.5 can be replaced by the following

equivalent condition: for each λ ∈ σ(T )∩T, the semigroup {λ−kT k : k ∈ Z+} is ergodic.

Theorem 2.5 implies the following corollary, which can also be proved directly by

applying the same argument and Proposition 2.1. This result was obtained in [40], [41],

and independently in [1].

Corollary 2.7. If T is a power-bounded operator on a Banach space X such that

σ(T )∩T is countable and Pσ(T ∗)∩T is empty, then T is strongly stable, i.e. ‖T nx‖ → 0

as n → ∞, ∀x ∈ X.

Rema r k 2.8. It is a well known theorem of Sz.-Nagy and Foiaş [34] that if T is a

completely non-unitary (c.n.u.) contraction on a Hilbert space and if m(σ(T ) ∩ T) = 0,

where m is the Lebesgue measure on T, then T is strongly stable. However, this result

does not apply to power-bounded operators, since power-bounded operators are not, in

general, similar to contractions [19], [21].

Let W (T) be the Wiener algebra, i.e. W (T) = {f(z) =
∑∞

n=−∞ anz
n : ‖f‖W ≡∑∞

n=−∞ |an| < ∞}. A function f ∈ W (T) is called a function of spectral synthesis w.r.t.

a closed subset ∆ of T if there is a sequence gn ∈ W (T) such that ‖gn − f‖W → 0 as

n → ∞ and gn vanishes on a neighborhood Un of ∆, for each n. The following theorem,

initially obtained by Katznelson and Tzafriri [24] as a consequence of a Tauberian theorem

for power series, can also be proved by applying Proposition 2.1 [42].

Theorem 2.9. If T is a power-bounded operator and if f(z) =
∑∞

n=0 anz
n ∈ W (T) is

a function of spectral synthesis with respect to σ(T ) ∩ T, then ‖T nf(T )‖ → 0 as n → 0.

P r o o f. First we make an observation that Theorem 2.9 follows from the following,

formally weaker, assertion: under the conditions of Theorem 2.9,

(∗) ‖T nf(T )x‖ → 0 as n → ∞, ∀x ∈ X.
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In fact, if (∗) is proved, then, in order to get the desired conclusion that ‖T nf(T )‖ → 0 as

n → ∞, it remains to apply (∗) to the operator T̃ : B(X) → B(X), defined by T̃ Y = TY

for all Y ∈ B(X). Now, to show that ‖T nf(T )x‖ → 0, one can assume that ‖T nx‖ 6→ 0,

and use the construction of Proposition 2.1. Since σ(V ) ⊂ σ(T ), it follows that f(V ) = 0,

that is, ‖T nf(T )x‖ → 0 as n → ∞, ∀x ∈ X .

Theorem 2.9 gives the following corollary.

Corollary 2.10. If T is power-bounded and σ(T )∩T ⊂ {1}, then ‖T n+1− T n‖ → 0

as n → ∞.

3. Behaviour of individual elements. It is sometime possible to make statements about

almost periodicity and stability of an individual element x in X , i.e. of a sequence {xn≡

T nx : n ∈ Z+}.

First, we observe that from Theorem 2.5 and Remark 2.6 the following statement

immediately follows.

Proposition 2.11 ([15]). If T is power-bounded , σ(T ) ∩ T is countable, and if x is a

vector in X such that the means

1

n

n−1∑

k=0

λ−kT kx

converge for all λ ∈ σ(T ) ∩ T, then {T nx : n ∈ Z+} is an asymptotically a.p. sequence.

In particular , if the above means converge to 0, for all λ ∈ σ(T )∩T, then ‖T nx‖ → 0 as

n → ∞.

Rema r k 2.12. At this point, the reader may observe some discrepancy in the ter-

minology. If T is invertible and {T n : n ∈ Z} is an almost periodic group, then the

sequence {xn = T nx : n ∈ Z} is almost periodic, i.e. the family {xn+k : n ∈ Z}k∈Z is

relatively compact in l∞(Z, X), the Banach space of bounded X-valued sequences. If the

semigroup {T n : n ∈ Z+} is almost periodic, then the sequence {xn ≡ T nx : n ∈ Z+} is

asymptotically almost periodic (i.e., there is an almost periodic sequence {yn : n ∈ Z}

such that ‖xn − yn‖ → 0 as n → ∞), but in general it is not almost periodic, i.e. it

may not be extendable to an almost periodic sequence {xn : n ∈ Z}. Therefore, a semi-

group {T n : n ∈ Z+} which is almost periodic in our definition would be more exactly

called asymptotically almost periodic. We preferred to follow the established terminology

because it is commonly accepted in the literature.

From Proposition 2.11, and by introducing a suitable norm in L ≡ span{x :

supn≥0 ‖T
nx‖ < ∞}, we can prove the following individual variants of Theorems 2.5,

2.9, in which T is not assumed to be power-bounded, or even to be bounded.

Theorem 2.13 ([15]). Let T be an arbitrary operator on X such that σ(T ) ∩ T is

countable. If x ∈
⋂
{D(T n) : n ≥ 0} is such that the sequence {T nx : n ∈ Z+} is

bounded , and if for every λ ∈ σ(T ) ∩ T the means

1

n

n−1+j∑

k=j

λkT kx
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converge uniformly in j ≥ 0, then {T nx : n ∈ Z+} is an asymptotically almost periodic

sequence. Moreover , if the above means converge to 0 for all λ ∈ σ(T )∩T, then ‖T nx‖ →

0 as n → ∞.

P r o o f. Let |||y||| be a new norm in L defined by

|||y||| = sup
n≥0

‖T nx‖,

and let L̃ be the completion of L in ||| · |||. It is easy to see that |||Ty||| ≤ |||y|||, ∀y ∈ L, i.e.

T is a contraction in L, which therefore can be extended by continuity to a contraction,

denoted by T̃ , on L. If A : X → X is a bounded operator commuting with T , then

AL ⊂ L, and |||Ay||| = supn≥0 ‖T
nAy‖ ≤ ‖A‖|||y|||, ∀y ∈ L, so that the restriction of A

to L is a bounded operator in ||| · |||, hence A can be extended by continuity to L̃. Thus,

if λ ∈ ̺(T ), then A ≡ (λ − T )−1 induces a bounded operator on L̃ which is the inverse

of λ − T̃ . Therefore, σ(T̃ ) ⊂ σ(T ). In particular, σ(T̃ ) ∩ T is countable. Since, by the

assumptions, the means

1

n

n−1+j∑

k=j

λ−kT kx

converge uniformly in j ≥ 0, to the same limit, say z (see Remark 2.6), and since Tz = λz,

we have z ∈ L̃ and

sup
j≥0

∥∥∥∥
1

n

n−1∑

k=0

λ−kT j+kx− T jz

∥∥∥∥ → 0 as n → ∞,

which implies that the means 1
n

∑n−1
k=0 λ

−kT̃ kx converge in the norm of L. Therefore, by

Proposition 2.11, {T̃ nx : n ∈ Z+} is an asymptotically almost periodic sequence in L,

which also implies that {T nx : n ∈ Z+} is an asymptotically almost periodic sequence

in X . If, in addition, the above means converge to 0 for all λ ∈ σ(T ) ∩ T, then, again

by Remark 2.6 and Proposition 2.11, |||T̃ nx||| → 0 as n → ∞, so that ‖T nx‖ → 0 as

n → ∞.

The Katznelson–Tzafriri Theorem also admits the following individual variant (in

both Theorem 2.14 and Corollary 2.15 below T need not be even bounded).

Theorem 2.14 ([15]). Let T be an arbitrary operator in X. If x ∈
⋂
{D(T n : n ≥ 0}

is such that the sequence {T nx : n ∈ Z+} is bounded , and if f =
∑∞

n=0 anλ
n ∈ W (T) is

a function of spectral synthesis with respect to σ(T ) ∩ T, then ‖T n(
∑∞

k=0 akT
kx)‖ → 0

as n → ∞.

P r o o f. Let L̃ and T̃ be as above. Then, by Theorem 2.10, |||T̃ n
∑∞

k=0 akT̃
kx||| → 0,

which implies the conclusion.

Corollary 2.15. Let T be an arbitrary operator in X such that σ(T )∩T ⊂ {1}. If x ∈⋂
{D(T n) : n ≥ 0} and the sequence {T nx : n ∈ Z+} is bounded , then ‖T n+1x−T nx‖ → 0

as n → ∞.

4. Strongly constrictive operators. An operator T on a (real or complex) Banach

space X is called strongly constrictive, if there is a compact set Ω ⊂ X such that
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dist(T nx,Ω) → 0 as n → ∞, ∀‖x‖ ≤ 1. Lasota, Li and Yorke [27] introduced this class

of operators in the important particular case of the Markov operators on L1-spaces, and

proved that the iterates {T nx : n ∈ Z+}, x ∈ X , are asymptotically periodic for every

strongly constrictive Markov operator on L1(µ). For arbitrary operators, C0-semigroups,

and representations of general semigroups, on arbitrary Banach spaces, this class was

introduced in [45], under the name compactifying operators (resp., semigroups , represen-

tations). However, it seems that that terminology did not survive, as the main results of

[45] remained unnoticed and were rediscovered by many subsequent authors (see e.g. [5],

[33]). Therefore, we shall adopt the terminology of strongly constrictive operators (resp.,

C0-semigroups, representations) in this article. The following result is contained in [45]

as a particular case of a more general result.

Theorem 2.16. A bounded operator T on X is strongly constrictive if and only if the

semigroup {T n : n ∈ Z+} is almost periodic and dimXb < ∞.

P r o o f. First observe that, if T is simultaneously strongly constrictive and isometric,

then the underlying Banach space must be finite dimensional. In fact, one can assume,

without loss of generality, that Ω coincides with the set of all ω-limit points of {T nx :

n ∈ Z+}, ‖x‖ ≤ 1. Then Ω is a compact set such that T (Ω) ⊂ Ω. It is well known that

isometries of compact metric spaces are surjective, so that dist(T nx,Ω) = dist(x,Ω),

∀x ∈ X , ‖x‖ ≤ 1. Thus, the unit ball of X is contained in Ω, which implies that

dimX < ∞.

Now a straightforward argument shows that if T is strongly constrictive, then {T n :

n ∈ Z+} is almost periodic. The restriction T |Xb also is strongly constrictive, and, in a

suitable equivalent norm, isometric, so dimXb < ∞.

If now we assume, in addition, that X is a real Banach space (2) ordered by a total

minihedral coneX+ ⊂ X (say, X is a real Banach lattice), and let T be a positive operator

on X , i.e. TX+ ⊂ X+, then Theorem 2.16 immediately gives the following result, which

is a generalization of the Lasota–Li–Yorke Theorem. Note that the proof given in [27] for

Markov operators in L1(µ) is very different (and more complicated) and does not seem

to be suitable for such generalizations.

Theorem 2.17. Let T be a positive strongly constrictive operator on a real Banach

space ordered by a total minihedral cone (in particular , on a real Banach lattice). Then

there exist {e1, . . . , en} in X+, {g1, . . . , gn} in X∗ such that 〈ei, gk〉 = δik, ∀i, k, and a

permutation σ of {1, . . . , n}, such that

(2.2) lim
k→∞

∥∥∥T k
(
x−

n∑

i=1

〈x, gi〉ei
)∥∥∥ = 0, ∀x ∈ X,

and

Tei = eσ(i), ∀i = 1, . . . , n.

(2) If X is a real Banach space and {Tn : n ∈ Z+} is almost periodic, then the de Leeuw–

Glicksberg Decomposition is considered for the complexification of T .
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P r o o f. By Theorem 2.16, the semigroup {T n : n ∈ Z+} is almost periodic with

finite-dimensional boundary subspace Xb. We can assume, without loss of generality,

that ‖T ‖ ≤ 1, so that T |Xb is isometric. Since T is positive, it follows that the boundary

projection P also is positive. In the boundary subspace Xb the cone X+
b = X+ ∩Xb =

PX+ is closed and total, and since X+ is a minihedral cone, PX+ also is a minihedral

cone in Xb. Since dimXb < ∞, PX+ is a solid cone. It is well known that a closed solid

minihedral cone in a finite-dimensional space is the coordinate cone, i.e. Xb is algebraic

and order isomorphic to R
n, where n = dimXb. Let Γ be the intersection of the extreme

rays of the cone X+
b with the unit sphere of Xb. Thus, Γ is a basis of Xb. Let {e1, . . . , en}

be elements of Γ . Let 〈x, gi〉 be the coordinates of the vector x ∈ Xb in the basis {ei}ni=1,

i.e. gi is a linear functional on Xb, and denote by the same letter gi an extension of

gi to the whole X such that gi|Xs ≡ 0, ∀i. Since T |Xb is simultaneously an isometry

and order isomorphism, it follows that TΓ = Γ . Therefore, there exists a permutation

σ : {1, . . . , n} → {1, . . . , n} such that Tei = eσ(i). It is easy to see that

〈
x−

n∑

i=1

〈x, gi〉ei, gj
〉
= 0, ∀j = 1, . . . , n,

which implies that x−
∑n

i=1〈x, gi〉ei ∈ Xs, i.e. (2.2) holds.

A sequence {xn : n ∈ Z+} in X is called asymptotically periodic if xn = yn + zn,

where yn is periodic, and ‖zn‖ → 0 as n → ∞. From Theorem 2.17 we have the following

corollary.

Corollary 2.18. Under the condition of Theorem 2.17 the sequence of iterates

{T nx}∞n=0 is asymptotically periodic.

3. C0-semigroups. In this section, we shall describe corresponding results for C0-

semigroups which are analogous to the results of the previous section. Throughout this

section, if not otherwise stated, T (t), t ≥ 0, is a bounded C0-semigroup on a Banach

space X , with generator A. T (t) is called a bounded semigroup if supt≥0 ‖T (t)‖ < ∞, and

a strongly stable semigroup if ‖T (t)x‖ → 0 as t → ∞, ∀x ∈ X . We use the same notations

for various notions of spectrum for the generator A. Thus, in particular, Eσ(A) is the

ergodic spectrum of A, i.e.

Eσ(A) = {λ ∈ iR : ∃x∗ ∈ D(A∗) : x∗ 6= 0, A∗x∗ = λx∗, x∗|Xλ(A) ≡ 0}.

1. The limit isometric semigroup. The following proposition is an analog of Proposi-

tion 2.1.

Proposition 3.1 ([42]). Assume that the semigroup {T (t) : t ∈ R+} is bounded. Then

there exist another Banach space E, a continuous linear operator Q : X → E, with dense

range, and an isometric C0-semigroup {V (t) : t ∈ R+} on E, with generator B, such

that :

(i) QT (t) = V (t)Q, ∀t ≥ 0;

(ii) σ(B) ⊂ σ(A), Pσ(A) ∩ iR ⊂ Pσ(B), Pσ(B∗) ⊂ Pσ(A∗);

(iii) ‖Qx‖E = lim supn→∞ ‖T (t)x‖.
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Moreover , such E and V (t) are unique in the sense that if E′ is another Banach space

and V ′(t) : E′ → E′ is an isometric C0-semigroup satisfying (i)–(iii), then there is an

invertible isometric operator U : E → E′ such that UV (t)U−1 = V ′(t), ∀t ≥ 0.

P r o o f. The proof is analogous to the proof of Proposition 2.1. Thus, introducing,

if necessary, the new equivalent norm |||x||| = supn≥0 ‖T (t)x‖ in X , we can assume

that T (t) are contractions, ∀t ∈ R+. Let l(x) be a semi-norm in X defined by l(x) ≡

limn→∞ ‖T (t)x‖, x ∈ X , X̂ = X/ ker l and let Q denote the natural homomorphism from

X to X̂. The semi-norm l induces in the quotient space X̂ a norm l̂ by l̂(Qx) ≡ l(x).

Let T̂ (t) : X̂ → X̂ be defined by T̂ (t)(Qx) = Q(T (t)x), t ≥ 0. Clearly, T̂ (t) is a strongly

continuous isometric semigroup on the normed space (X̂, l̂). Let E be the completion of X̂

and let V (t) be the extension of T̂ (t) to the whole E by continuity. Then V (t) is isometric,

Q is a bounded linear operator from X to E with dense range. All properties (i)–(iii) in

Proposition 3.1 can be shown in the same way as in the proof of Proposition 2.1, except

for the inclusion σ(B) ⊂ σ(A), which can be shown as follows: If Reλ > 0, then, since

T (t) is a bounded semigroup, RA(λ) ≡ (A − λ)−1 exists and equals −
T∞
0

e−λtT (t) dt.

Therefore, R̂A(λ)(Qx) = Q(RA(λ)x) = −
T∞
0

e−λtV (t)(Qx) dt = (B − λ)−1(Qx), so that

R̂A(λ) = RB(λ). Now, if µ ∈ ̺(A), then from the Hilbert identity RA(λ) − RA(µ) =

(λ− µ)RA(λ)RA(µ), it follows that R̂A(µ)[I + (λ− µ)R̂A(λ)] = R̂A(λ), or

R̂A(µ)[I + (λ− µ)RB(λ)] = RB(λ),

which implies R̂A(µ)(B − µ) = R̂A(µ)[I + (λ − µ)RB(λ)](B − λ) = I, and analogously

(B − µ)R̂A(µ) = I. Thus, µ ∈ ̺(B).

From Proposition 3.1 we also obtain the following characterization of strongly stable

C0-semigroups (cf. [44, Theorem 2.3]).

Theorem 3.2. If T (t) is a bounded C0-semigroup, then the following are equivalent.

(1) T is strongly stable;

(2) There does not exist a bounded function x∗(t) : (−∞, 0] → X∗ such that

T ∗(t)x∗(−t) = x∗
0, x

∗
0 6= 0;

(3) There does not exist a bounded function x∗(t) : R → X such that

(3.1) T ∗(s)x∗(t) = x∗(t+ s), ∀t ∈ R, ∀s ≥ 0.

P r o o f. (1)⇒(2). If T (t) is strongly stable and if, on the contrary, there exists a

bounded function x∗(t) : (−∞, 0] → X∗ such that T ∗(t)x∗(−t) = x∗
0 6= 0, ∀t ≥ 0, then,

for every x ∈ X , 0 = limt→∞ |〈T (t)x, x∗(−t)〉| = |〈x, T ∗(t)x∗(−t)〉| = |〈x, x∗
0〉|, which is a

contradiction.

(2)⇒(3) is trivial.

(3)⇒(1). If T (t) is not strongly stable, then the limit isometric semigroup V (t)

constructed in Proposition 3.1 is nontrivial (i.e. E 6= 0). For a nonzero element z∗0 in E∗,

one can find, by Theorem 2.2, a bounded sequence z∗(n), n = 0,±1,±2, . . . , in E∗ such

that V ∗(k)z∗(n) = z∗(k + n), ∀k ≥ 0, ∀n ∈ Z. For any τ ∈ (−n,−n+ 1), n = 1, 2, . . . ,

let τ = −n + 1 − s (0 < s < 1), and put z∗(τ) = V ∗(1 − s)z∗(−n), z∗(t) = V ∗(t)z∗0 ,

∀t ≥ 0. It is easy to see that V ∗(s)z∗(t) = z∗(s+ t), ∀s ≥ 0, ∀t ∈ R. Let x∗(t), t ∈ R+,
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be the corresponding elements of X∗ defined by 〈x, x∗(t)〉 = 〈Qx, z∗(t)〉. Then, as can be

verified directly, x∗(t) is uniformly bounded and satisfy condition (3.1).

A function x∗(t) satisfying (3.1) is called a complete trajectory of T ∗(t). It is easy to

see that every bounded complete trajectory x∗(t) is automatically weak∗ continuous. By

taking xφ(s) ≡ (φ ∗ x∗)(s) with a suitable function φ ∈ L1(R), we see that there exist

nonzero bounded uniformly weak∗ continuous complete trajectories. If T ∗(t) is strongly

continuous, then the trajectories are uniformly strongly continuous.

2. Almost periodicity and stability. Recall that {T (t) : t ∈ R+} is called an almost

periodic C0-semigroup if {T (t)x : t ∈ R+} is relatively compact, ∀x ∈ X . If {T (t) : t ∈ R}

is a group, then it is called an almost periodic group if {T (t)x : t ∈ R} is relatively

compact, ∀x ∈ X . If {T (t) : t ∈ R} is an almost periodic group, then X = span{x ∈

X : ∃λ ∈ R : T (t) = eiλtx, ∀t ∈ R}. If {T (t) : t ∈ R+} is a strongly stable semigroup

then, obviously, {T (t) : t ∈ R+} is almost periodic. These are two extreme cases of

almost periodic semigroups, as shown by the following theorem, known as the de Leeuw–

Glicksberg Decomposition for C0-semigroups (see [26], [30]).

Theorem 3.3. If the semigroup {T (t) : t ∈ R+} is almost periodic, then X = Xs∔Xb,

where Xs = {x ∈ X : limt→∞ ‖T (t)x‖ = 0}, Xb = span{x ∈ X : ∃λ ∈ R : T (t)x = eiλtx}.

Moreover , T (t)|Xb are invertible, ∀t ≥ 0, and generate an almost periodic group. The

projection P : X → Xb, kerP = Xs, belongs to the strong operator closure of {T (t) :

t ∈ R+}. If , in addition, T (t) is a contraction semigroup, then T (t)|Xb are invertible

isometries and P is an orthogonal projection.

As in the discrete case, Xb and Xs are called the boundary and stable subspaces ,

and P is called the boundary projection, respectively. For an arbitrary bounded, but not

necessarily almost periodic, semigroup {T (t) : t ∈ R+} we can define Xb and Xs as in

Theorem 3.3. They form a direct topological sum Xap = Xb ∔ Xs, and the restriction

{(T (t)|Xap) : t ∈ R+} can be extended to an almost periodic group.

Using this fact, and the same method as in the proof of Proposition 2.4, we can prove

the following variant of Proposition 3.1.

Proposition 3.4. Assume that the C0-semigroup {T (t) : t ∈ R+} is bounded. There

exist another Banach space F , a continuous linear operator R : X → F , with dense range,

and an isometric C0-semigroup {U(t) : t ∈ R+} on F , with generator C, such that :

(i) RT (t) = U(t)R, ∀t ≥ 0;

(ii) σ(C) ⊂ σ(A), Pσ(C) = ∅, Pσ(C∗) ⊂ Pσ(A∗), Pσ(C∗) ∩ iR ⊂ Eσ(A);

(iii) ‖Rx‖F = lim supt→∞ infy∈Xb
‖T (t)(x− y)‖.

Moreover , such F and U are unique in the sense that if F ′ is another Banach space

and U ′(t) : F ′ → F ′ is an isometric C0-semigroup satisfying (i)–(iii), then there is an

invertible isometric operator W : F → F ′ such that WU(t)W−1 = U ′(t), ∀t ≥ 0.

The semigroup {U(t) : t ∈ R+} can be called the limit isometric semigroup of T (t)

with continuous spectrum.

Proposition 3.4 enables us to prove the following Almost Periodicity Theorem which

was obtained in [41].
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Theorem 3.5. If the semigroup {T (t) : t ∈ R+} is bounded , σ(A) ∩ iR is countable

and Eσ(A) ∩ iR is empty, then {T (t) : t ∈ R+} is almost periodic.

P r o o f. The proof of Theorem 3.5 is analogous to that of Theorem 2.5. Assuming

that T (t) is not almost periodic, one can use the construction of Proposition 3.4 to

obtain an isometric semigroup U(t), with generator C, on F 6= {0}. As an intermediate

step, we need to show that U(t) is invertible for every t. This follows from the following

proposition.

Proposition 3.6. If {T (t) : t ∈ R+} is an isometric C0-semigroup, with generator

A, such that σ(A) ∩ iR is a proper subset of iR, then T (t) is invertible for every t ≥ 0,

so that T (t) extends to an isometric C0-group.

P r o o f. First we show that, if Reλ < 0, then

(3.2) ‖(λ−A)x‖ ≥ |Reλ| · ‖x‖, ∀x ∈ D(A).

In fact, for the function u(t) ≡ e−λtT (t)x, t ≥ 0, we have

u(t) = x+

t\
0

du(τ)

dτ
dτ = x+

t\
0

e−λτT (τ)(Ax− λx) dτ,

which implies

e−Reλt = ‖u(t)‖ ≤ ‖x‖+
e−Reλt − 1

−Reλ
‖Ax− λx‖,

and hence (3.2) holds.

From (3.2) it follows that all the points λ such that Reλ < 0, belong to the same

regular component of the operator A. Since there is a λ0 ∈ ̺(A) ∩ iR, it follows that

λ ∈ ̺(A), and ‖(λ−A)−1‖ ≤ 1/|Reλ|. Applying the Hille–Yosida Theorem, we see that

−A generates a contraction semigroup, say S(t), t ≥ 0. Since (d/dt)(S(t)T (t)) = 0, it

follows S(t)T (t) = T (t)S(t) = I, which completes the proof of Proposition 3.6.

Now we can continue the proof of Theorem 3.5. Since U(t) can be extended to an

isometric C0-group, σ(C) 6= ∅ and σ(C) ⊂ iR. By property (ii) of Proposition 3.4, σ(C)

is countable. Choose an isolated point λ ∈ σ(C). Then λ is an eigenvalue of C and C∗,

so, there is a functional φ ∈ F ∗, φ 6= 0, such that C∗φ = λφ. The functional ϕ ∈ X∗

defined by 〈x, ϕ〉 ≡ 〈Qx, φ〉 is nonzero and satisfies A∗ϕ = λϕ, ϕ|Xb ≡ 0, i.e. λ ∈ Eσ(A),

which is a contradiction.

R ema r k 3.7. Recall that the semigroup {T (t) : t ≥ 0} is called ergodic if

R−1
TR
0
T (t) dt converges strongly to P (as R → ∞), where P is the projection from

X onto X0 ≡ {x ∈ X : T (t)x = x, ∀t ≥ 0} = {x ∈ D(A) : Ax = 0}. It is known

that iλ 6∈ Eσ(A), λ ∈ R, if and only if {e−iλtT (t) : t ≥ 0} is ergodic. On the other

hand, if {T (t) : t ≥ 0} is bounded and R−1
TR
0
T (t)x dt converges, then R−1

TR+a

a
T (t)x dt

converges uniformly in a ≥ 0; hence the restriction {T (t) : t ≥ 0} to the subspace

span{T (t)x : t ≥ 0} is ergodic.

Theorem 3.5 implies the following corollary, which can also be proved directly by

applying the same argument and Proposition 3.1. This result was obtained independently
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by Arendt and Batty [1], with a completely different proof. Another proof has been

subsequently given by Esterle, Strouse and Zouakia [18].

Corollary 3.8. If {T (t) : t ∈ R+} is a bounded C0-semigroup such that σ(A) ∩ iR

is countable and Pσ(A∗) ∩ iR is empty, then T (t) is strongly stable.

From the cited Sz.-Nagy–Foiaş Theorem it follows, by applying a standard argument

involving the Cayley transform (see [34, Chapter 3]), that if T (t) is a c.n.u. contraction

semigroup, with generator A, on a Hilbert space and if m(σ(A) ∩ iR) = 0 (where m

is the Lebesgue measure on iR), then T (t) is strongly stable. However, the Sz.-Nagy–

Foiaş Theorem does not apply to bounded C0-semigroups since, in general, bounded C0-

semigroups are not similar to contractions semigroups. A corresponding counterexample

has been constructed by Packel [36] (see also [11]) by modifying the Foguel’s and Halmos’

examples. (See also remarks in Section 6).
Theorem 2.9 also has a corresponding one-parameter analog. Recall that a function

f ∈ L1(R) is said to be a function of spectral synthesis with respect to a closed subset

∆ of R if there is a sequence gn ∈ L1(R) such that ĝn vanishes in a neighborhood Un

of ∆ and ‖gn − f‖L1 → 0 as n → ∞. The following theorem was obtained in [42] and

independently with a completely different proof in [18].

Theorem 3.9. If {T (t) : t ∈ R+} is bounded and f ∈ L1(R+) is a function of spectral

synthesis with respect to (−iσ(A)) ∩ R, then ‖T (t)f̂(T )‖ → 0 as t → 0.

The proof of Theorem 3.9 is analogous to that of Theorem 2.9. Namely, one can

first prove by a similar argument, using Proposition 3.1 and the well known facts about

isometric C0-groups, that ‖T (t)f̂(T )x‖ → 0, ∀x ∈ X as t → ∞. But now the semigroup

T̃ (t) : B(X) → B(X), defined by T̃ (t)T = T (t)Y , Y ∈ B(X), is not, in general, strongly

continuous, so we need to restrict it to a suitable subspace L of B(X) consisting of those

Y for which t 7→ T (t)Y is continuous from R+ to B(X), and apply the strong convergence

version of Theorem 3.9 to the semigroup T̃ (t)|L. Theorem 3.9 gives the following corollary.

Corollary 3.10. If T is a bounded C0-semigroup and σ(T ) ∩ iR ⊂ {0}, then

‖[T (t+ s)− T (t)]RA(λ)‖ → 0, ∀s > 0, as t → ∞.

3. Behaviour of individual elements. From Theorem 3.5 and Remark 3.7 it also follows

that the following holds.

Proposition 3.11. If {T (t) : t ∈ R+} is a bounded C0-semigroup such that σ(A)∩ iR

is countable, and if x is a vector in X such that the means

1

R

R\
0

e−λtT (t)x dt

converge, ∀λ ∈ σ(A)∩ iR, then T (t)x is an asymptotically a.p. function. In particular , if

the above means converge to 0, for all λ ∈ σ(A) ∩ iR, then ‖T (t)x‖ → 0 as t → ∞.

P r o o f. To prove Proposition 3.11, it is enough to apply Theorem 3.5 to the restriction

of T (t) to span{T (t)x : t ≥ 0}.

R ema r k 3.12. We note also the difference in the terminology. If {T (t) : t ∈ R}

is an almost periodic group, then, for each x in X , the function x(t) ≡ T (t)x, t ∈ R,
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is almost periodic, i.e. the family of translates {xs(t) ≡ x(t + s), s ∈ R}, is relatively

compact in BC(R, X), the Banach space of bounded continuous X-valued functions on

R. If {T (t) : t ≥ 0} is an almost periodic semigroup and x ∈ X , then, the function

x(t) = T (t)x, t ∈ R+, is asymptotically almost periodic (i.e. there is an almost periodic

function y : R → X such that ‖x(t) − y(t)‖ → 0 as t → ∞), but it need not be almost

periodic (i.e. x(t) may not be extendable to an almost periodic function on R). Thus,

almost periodic semigroups would be more exactly called asymptotically almost periodic.

However, we preferred to follow the established terminology.

Proposition 3.11 allows us to prove individual variants of Theorems 3.5, 3.9 and

Corollaries 3.8, 3.10 for arbitrary (in general unbounded) C0-semigroups, as we did in

Section 2 for discrete semigroups.

Moreover, we can obtain even more general results applying to the case when A is

not assumed to be the generator of a C0-semigroup, and when the role of the individual

trajectory T (t)x is played by a bounded mild solution of the abstract differential equation

(3.3) x′(t) = Ax(t), t ≥ 0, x(0) = x.

This generalization is based on the following definition of the Hille–Yosida space (see [13]

for details).

Let A be a closed linear operator on X . A continuous function u : R+ → X is called a

mild solution of (3.3), if v′(t) = Av(t)+x, where v(t) ≡
Tt
0
u(s) ds. Assume that A satisfies

the uniqueness condition for the Cauchy problem, i.e., all the mild solutions of (3.3) which

are exponentially bounded (i.e. ‖u(t)‖ ≤ Meωt, for some M and ω) are unique. Denote

by Z0 the set of all x ∈ X for which (3.3) has a bounded uniformly continuous mild

solution u(t, x), t ≥ 0, and let ‖ · ‖Z0
be a norm in Z0 defined by

‖x‖Z0
≡ sup

t≥0
‖u(t, x)‖.

Then, as is known (see [13]), Z0 is a Banach space, there is a continuous embedding of

Z0 into X , the restriction A|Z0 generates a contraction C0-semigroup T (t) defined by

T (t)x ≡ u(t, x), t ≥ 0, and σ(A|Z0) ⊆ σ(A). Moreover, if B : X → X is a bounded linear

operator such that BA ⊆ AB, then B restricted to Z0 also is a bounded operator and

‖B‖Z0
≤ ‖B‖.

Theorem 3.13 (deLaubenfels and Vũ Quôc Phóng [14]). Let A be an arbitrary closed

linear operator on X. Suppose that A is such that mild solutions to the abstract Cauchy

problem (3.3) are unique, and that σ(A) ∩ iR is countable. Let u(t) ≡ u(t, x), t ≥ 0,

be a bounded , uniformly continuous mild solution of (3.3). Then u(t) is asymptotically

almost periodic if and only if for every λ ∈ σ(A) ∩ iR, the function t 7→ e−λtu(t) has

uniformly convergent means. If , in addition, the means converge to 0, ∀λ ∈ σ(A) ∩ iR,

then ‖u(t)‖ → 0 as t → ∞.

P r o o f. The proof consists in applying Proposition 3.11 to the semigroup T (t) on the

Hille–Yosida space, constructed as above. From the properties of the Hille–Yosida space

it follows that σ(A|Z0)∩ iR is countable. Since e−λtu(t) has uniformly convergent means

in the norm of X , it also follows that the means of this function converge in the norm of

Z0, so that all the conditions of Proposition 3.11 are fulfilled.
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Theorem 3.9 and Corollary 3.10 also admit the following individual variants (here û

denotes the Laplace transform of u, i.e. û(λ) =
T∞
0

e−λtu(t) dt, ∀λ, Reλ > 0).

Theorem 3.14 ([14]). Let A be as in Theorem 3.13 and u(t) ≡ u(t, x), t ≥ 0, be

a bounded , uniformly continuous mild solution of (3.3). If f ∈ L1(R+) is a function of

spectral synthesis with respect to (−iσ(A)) ∩R, then ‖
T∞
0

f(s)u(t+ s) ds‖ → 0 as t → 0.

Corollary 3.15. If σ(A) ∩ iR ⊂ {0}, and u(t) is a bounded , uniformly continuous

mild solution of (3.3), then ‖ût+s(λ) − ût(λ)‖ → 0 as t → ∞, ∀s ≥ 0, Reλ > 0.

4. Strongly constrictive C0-semigroups . A C0-semigroup T (t), t ≥ 0, on X is called

strongly constrictive if there is a compact set Ω ⊂ X such that dist(T (t)x,Ω) → 0 as

t → ∞, ∀‖x‖ ≤ 1. The following result, which is analogous to Theorem 2.16 (with almost

the same proof), is a characterization of strongly constrictive semigroups among almost

periodic semigroups.

Theorem 3.16. A bounded C0-semigroup T (t) on X is strongly constrictive if and

only if it is almost periodic and has finite dimensional boundary subspace.

Assume, in addition, that X is a real Banach space which is ordered by a total

minihedral cone X+ (in particular, X is a real Banach lattice), and that T (t) is a strongly

constrictive C0-semigroup of positive operators (positive semigroup) on X . Then all the

arguments in Section 2.4 can be applied to operators T (t). Thus, the boundary subspace

Xb is isomorphic to Rn, and T (t) acts on the basis e1, . . . , en as permutations, say σt,

t ≥ 0. The continuity condition of T (t) then implies that σt(i) = i for every t ≥ 0,

i = 1, . . . , n. Thus, the following theorem holds, which also gives an example of a situation

for continuous semigroups which can differ substantially from that of discrete semigroups.

Theorem 3.14. If X is a real Banach space ordered by a total minihedral cone (e.g.,

a real Banach lattice), and if T (t) is a positive strongly constrictive C0-semigroup on X ,

then T (t) converges strongly to a positive finite rank projection.

4. Representation of general semigroups. The results of Sections 2 and 3 can

be generalized in a suitable manner to representations of locally compact abelian semi-

groups. Such generalizations are non-trivial, and rely on the powerful Banach algebras

techniques. Because of the limited space, we restrict ourselves to a brief description of the

central results, which give spectral conditions for almost periodicity and strong stability

of representations.

1. General definitions . Let S be a topological abelian semigroup, and T be a strongly

continuous representation of S by bounded linear operators on X , i.e. T is a homomor-

phism of S into the semigroup of endomorphisms of X such that the mapping s 7→ T (s)x

is continuous from S to X , ∀x ∈ X . If s 7→ T (s) is continuous in the uniform operator

topology, then T is called a uniformly continuous representation. The representation T

is called bounded if sups∈S ‖T (s)‖ < ∞. Below we denote by S∗ the semigroup of semi-

unitary characters of S, i.e. S∗ consists of complex continuous homomorphisms ξ : S → C

such that |ξ(s)| ≤ 1, ∀s ∈ S (3), and we endow S∗ with the topology of pointwise con-

(3) Thus, semi-unitary characters are bounded one-dimensional representations of S.
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vergence. Furthermore, we let S∗
u ≡ {ξ ∈ S∗ : |ξ(s)| = 1, ∀s ∈ S}. A character ξ is

called an eigenvalue of T if there is a nonzero vector x ∈ X such that T (s)x = ξ(s)x,

∀s ∈ S; an approximate eigenvalue of T , if there is a net {xα}, ‖xα‖ = 1 in X such that

‖T (s)xα − ξ(s)xα‖ → 0 uniformly for s in each compact subset of S; an ω-approximate

eigenvalue of T , if there is a sequence {xn} in X such that ‖T (s)xn − ξ(s)xn‖ → 0 as

n → ∞, ∀s ∈ S. The set of all approximate eigenvalues (ω-approximate eigenvalues,

eigenvalues) of T is denoted by Spa(T ) (Spωa(T ), Spp(T )) and is called the approximate

point spectrum (resp., the ω-approximate point spectrum, the point spectrum) of the repre-

sentation T . If T is a representation, then T ∗ : s 7→ T ∗(s) ≡ (T (s))∗ is a weak∗ continuous

homomorphism of S to B(X∗), but is not, in general, a representation, as strong continu-

ity may fail. But we denote by Spp(T
∗) the set of eigenvalues of T ∗, i.e. characters ξ ∈ S∗

for which there is φ ∈ X∗, φ 6= 0, such that T ∗(s) = ξ(s)φ. Let Spe(T ) denote the set of

ξ ∈ S∗
u for which there is a nonzero functional φ ∈ X∗ such that T ∗(s)φ = ξ(s)φ, ∀s ∈ S,

and 〈x, φ〉 = 0 whenever T (s)x = ξ(s)x, ∀s ∈ S. The set Spe(T ) is called the ergodic

spectrum of T . Note that, by our definition, the ergodic spectrum always is contained in

S∗
u. If X is reflexive, then Spe(T ) is empty.

Since S is an abelian semigroup, we can regard S as being ordered by: s ≺ t if there is

u ∈ S such that s+u = t, and we can therefore speak about convergence through S. For a

bounded representation T of S, we put Xb = {x ∈ X : ∃ξ ∈ S∗
u : T (s)x = ξ(s)x, ∀s ∈ S},

Xs ≡ {x ∈ X : limS ‖T (s)x‖ = 0}. Clearly Xs and Xb are closed invariant subspaces

under T (s), s ∈ S. The representation T is called almost periodic if the set γ(x) ≡

{T (s)x : s ∈ S} is relatively compact for every x ∈ X . It is called asymptotically almost

periodic if the net {T (s)}s∈S is strongly asymptotically relatively compact, i.e. for each

net (tα) ⊂ S such that tα → ∞, there is a subnet (sβ) such that limβ T (sβ)x exists

for each x ∈ X . In particular, if limS ‖T (s)x‖ = 0, ∀x ∈ X , then T is called strongly

stable. This class of asymptotically almost periodic representations was introduced by

M. Yu. and Yu. I. Lyubich (see [30]). Note that every almost periodic representation

is asymptotically almost periodic, but the converse is not true, in general (see [30]).

For asymptotically almost periodic representations the following de Leeuw–Glicksberg

Decomposition Theorem holds.

Theorem 4.1 (M. Lyubich and Yu. Lyubich [30]). If T (s), s ∈ S, is an asymptotically

almost periodic representation, then X = Xs∔Xb. The restrictions T (s)|Xb are invertible

and {T (s), (T (s))−1 : s ∈ S} form a bounded almost periodic group (4). Moreover , if

T (s) is a contraction representation, i.e. ‖T (s)‖ ≤ 1, ∀s ∈ S, then T (s)|Xb generate an

isometric group, and the projection operator P : X → Xb, kerP = Xs, is orthogonal , i.e.

‖P‖ = 1 if P 6= 0.

2. Almost periodicity of uniformly continuous representations . Lyubich and the author

[40] obtained the following result which gives a spectral condition for asymptotic almost

periodicity of a uniformly continuous representation of an arbitrary topological abelian

semigroup.

(4) If G is a group or semigroup of operators then G is called almost periodic if the trivial

representation T : G→ B(X) (T (g) = g ∀g ∈ G) is almost periodic.
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Theorem 4.2. If T (s), s ∈ S, is a uniformly continuous representation such that

Spa(T ) ∩ S∗
u is countable and Spe(T ) is empty, then T is asymptotically almost periodic.

P r o o f. We sketch the main steps of the proof, referring the reader to the original

paper [40] for details.

We shall use the following facts which can be found in [30]:

(i) If T is a uniformly continuous representation of a topological abelian semigroup,

then Spa(T ) is nonempty.

This fundamental result, known as the Theorem on Nonemptieness of Spectrum, is

due to Lyubich [28].

(ii) If T (s), s ∈ S, is a uniformly continuous representation, and λ ∈ Aσ(T (t0)) (5)

for some t0 ∈ S, then there is ξ ∈ Spa(T ) such that ξ(t0) = λ.

This is the Extension Theorem, also due to Lyubich. Note that (ii) can be regarded as

a Spectral Mapping Theorem for uniformly continuous representations (if S = R+, T (t),

t ≥ 0, is a uniformly continuous one-parameter semigroup, with generator A, then (ii)

reduces to the well known Spectral Mapping Theorem: σ(etA) = etσ(A), ∀t ≥ 0).

(iii) If T (s) is a uniformly continuous representation, AT is the Banach algebra gener-

ated by T (s), s ∈ S, and ÂT is the Gelfand space (maximal ideal space) of AT , then ÂT

can be regarded as a compact subset of S∗, and is called the δ-spectrum of T , denoted

by Spδ(T ). If ξ ∈ Spδ(T ) ∩ S∗
u, then ξ ∈ Spa(T ).

(iv) If L ⊂ X is an invariant subspace of a bounded representation T , and T̂ is

the induced representation on X̂ = X/L, then Spa(T̂ ) ∩ S∗
u ⊂ Spa(T ). Indeed, if ξ ∈

Spa(T̂ ) ∩ S∗
u, then ξ ∈ Spδ(T̂ ) ∩ S∗

u ⊂ Spδ(T ) ∩ S∗
u ⊂ Spa(T ), by (iii).

First of all, note that we can assume, by introducing a suitable equivalent norm, that

‖T (s)‖ ≤ 1, ∀s ∈ S. Let L be spanned by Xs and Xb.

Then, by Theorem 4.1, L = Xs ∔Xb. Assuming that T is not asymptotically almost

periodic, we have L 6= X . In the quotient space X̂ = X/L (6= {0}), we can consider

the standard quotient topology and the induced operators T̂ (s) (T̂ (s)(x̂) ≡ (T (s)x)∧),

which is a uniformly continuous representation of S by bounded linear operators on X̂.

Together with it we can introduce a new norm l̂ in X̂ by

l̂(x̂) = lim
S

inf
y∈Xb

‖T (s)(x− y)‖.

The operators T̂ (s) are isometric in the norm l̂. Let E be the completion of (X̂, l̂) and

V (s) be extensions of T̂ (s) to the whole space E by continuity. Clearly, V (s) is a strongly

continuous representation of S, but, in general, V (s) is not uniformly continuous.

Consider the semigroup of isometries S ≡ {V (s) : s ∈ S}. It is a topological abelian

semigroup, and it defines a trivial representation Ṽ : S → B(E) by Ṽ (Y ) = Y , ∀Y ∈ S.

Therefore, one can define Spa(Ṽ ). If ξ̃ ∈ S∗, then ξ(s) ≡ ξ̃(V (s)), s ∈ S, is not, in general,

(5) Here Aσ(T ) denotes the approximate point spectrum of T , i.e. Aσ(T ) = {λ ∈ C :

∃xn, ‖xn‖ = 1 ∀n, such that limn→∞ ‖Txn − λxn‖ = 0}.
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a character on S, as the continuity property may fail. But we show that Spa(Ṽ ) ⊂ Spa(T̂ ),

i.e. if ξ̃ ∈ Spa(Ṽ ), then ξ(s) ≡ ξ̃(V (s) ∈ S∗ and ξ ∈ Spa(T̂ ).

Let ξ̃ ∈ Spa(Ṽ ) and {zα} be a net in E such that l̂(V (s)zα − ξ̃(V (s))zα) → 0. Since

X̂ is dense in E, one can assume that zα ≡ x̂α ∈ X̂, l̂(zα) = 1. Hence

lim
α

lim
t∈S

inf
y∈Xb

‖T (t)(T (s)xα − ξ(s)xα)− y‖ = 0, ∀s ∈ S,

therefore

lim
α

lim
t∈S

inf
y∈L

‖T (t)(T (s)xα − ξ(s)xα)− y‖ = 0, ∀s ∈ S,

i.e.

lim
α

lim
t∈S

‖T̂ (t)T̂ (s)zα − ξ(s)T̂ (t)zα‖ = 0, ∀s ∈ S.

Since ‖T̂ (t)zα‖ ≥ l̂(T̂ (t)zα) = l̂(zα) = 1, it follows that ξ(s) is continuous and ξ ∈ Spa(T̂ ).

From (iv) it follows that Spa(T̂ ) ∩ S∗
u is countable, hence Spa(Ṽ ) is countable. By

(ii) it follows that V (s) is invertible, ∀s ∈ S. Therefore, Spδ(Ṽ ) ⊂ S∗
u, hence, by (iii),

Spa(Ṽ ) = Spδ(Ṽ ).

Thus, the Gelfand space ÂT of the Banach algebra AT is countable. Since it is com-

pact, there is an isolated point ξ0 in ÂT . By Shilov’s Idempotent Theorem, there is a

projection P such that PV (s) = V (s)P , ∀s ∈ S, and Spδ(Ṽ |(PE)) = {ξ0}. By the

Gelfand Theorem, there exists a functional φ ∈ E∗ such that V (s)φ = ξ0(s)φ, φ 6= 0.

Define ϕ ∈ X∗ by 〈x, ϕ〉 = 〈x̂, φ〉, ∀x ∈ X . Then ϕ|L ≡ 0, T ∗(s)ϕ = ξ0(s)ϕ, ∀s ∈ S.

Since Spe(T ) is empty, it follows that there exists x ∈ X such that T (s)x = ξ0(s)x and

〈x, ϕ〉 6= 0, which is a contradiction.

From Theorem 4.2 we immediately get the following corollary.

Corollary 4.3. If T is a uniformly continuous representation of a topological Abelian

semigroup S such that Spa(T ) ∩ S∗
u is countable and Spp(T

∗) ∩ S∗
u is empty, then T is

strongly stable, i.e. limS ‖T (s)x‖ = 0, ∀x ∈ X.

Theorem 4.2 and Corollary 4.3, of course, contain as a particular case Theorem 2.5

and Corollary 2.7, as well as the corresponding results for n commuting power-bounded

operators and uniformly continuous one-parameter semigroups. Without additional as-

sumptions on the semigroup S the statement of Theorem 4.2 does not hold for strongly

continuous representations. Indeed, if it were true, it would imply as a corollary that ev-

ery strongly continuous isometric representation of a topological semigroup has nonempty

spectrum, but an example is contained in [30] such that S = G is a topological, not locally

compact, abelian group and T is a representation of S by unitary operators on a Hilbert

space with Sp(T ) = ∅. On the other hand, it is natural to expect that Theorem 4.2 can

be generalized to a wide class of strongly continuous representations of suitable locally

compact abelian semigroups which include Rn
+. This question has been solved by Batty

and the author [9] and is discussed below.

3. The case of strongly continuous representations. LetG be a locally compact abelian

group with the Haar measure m, S be a subsemigroup of G such that S is measurable

and S − S = G. We shall consider S as a measure space with the restriction of the
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Haar measure m, and put f̂(ξ) ≡
T
S
f(s)ξ(s) dm(s), ξ ∈ S∗, for a function f in L1(S).

We assume that the functions f̂(ξ), f ∈ L1(S), separate points of S∗ (for example, the

interior IntS of S is dense in S). Obviously, we can identify S∗
u with G∗, the dual group

of unitary characters of G. For a bounded, strongly continuous, representation T of

S we put f̂(T ) ≡
T
S
f(s)T (s) dm(s) and define, together with the point spectrum, the

approximate point spectrum, and the ω-approximate point spectrum as in Section 4.1,

also the spectrum Sp(T ) of T by

Sp(T ) = {ξ ∈ S∗ : |f̂(ξ)| ≤ ‖f̂(T )‖, ∀f ∈ L1(S)}.

If T is a representation of a locally compact abelian group (i.e. S = G), then Sp(T )

concides with the L-spectrum introduced by Lyubich, Matsaev and Fel’dman [29], or the

Arveson spectrum [3]. It is shown in [9, Proposition 2.2], that Spa(T ), Spωa(T ) and Spp(T )

are contained in Sp(T ). Moreover, Sp(T )∩S∗
u ⊂ Spa(T ). Therefore, in the formulation of

the main result in this section, Theorem 4.4, it does not matter at all whether we consider

the spectrum or the approximate point spectrum of T . The advantage of Sp(T ) is that it

can be identified with the Gelfand space of an associated Banach algebra, which allows

one to use further the powerful Banach algebras techniques.

Theorem 4.4. If T is a bounded representation of S such that Sp(T )∩S∗
u is countable

and Spe(T ) is empty, then T is asymptotically almost periodic.

P r o o f. We shall sketch the main steps in the proof, referring the reader to [9] for

more details. The proof uses some ideas and constructions some of which have already

been used in the proofs of Theorems 2.5, 3.5 and 4.2. We briefly describe these facts

below:

(a) (See [42]). If T is a bounded representation of S on X , then there is another

Banach space E, a continuous linear operator Q : X → E with a dense range, and

a representation V of S by isometric operators on E such that: (i) QT (s) = V (s)Q,

∀s ∈ S; (ii) Sp(V ) ⊂ Sp(T ), Spp(T ) ∩ S∗
u ⊂ Spp(V ), Spp(V

∗) ⊂ Spp(T
∗); (iii) ‖Qx‖E =

lim supS ‖T (s)x‖, ∀x ∈ X . This contruction is trivial (i.e. E = {0}) if, and only if, T is

strongly stable.

(b) If T is a bounded representation of S on X , then there is another Banach space F ,

a continuous linear operator R : X → F with a dense range, and a representation U of S

by isometric operators on F such that: (i) RT (s) = U(s)R, ∀s ∈ S; (ii) Sp(U) ⊂ Sp(T ),

Spp(U) = ∅, Spp(U
∗) ∩ S∗

u ⊂ Spe(T ); (iii) ‖Rx‖F = lim supS infy∈Xb
‖T (s)(x − y)‖,

∀x ∈ X . This contruction is trivial (i.e. F = {0}) if, and only if, T asymptotically

almost periodic.

(c) (See [9]). If AT is the Banach algebra generated by f̂(T ), f ∈ L1(S), then there

is a natural bijective correspondence between Sp(T ) and ÂT , the Gelfand space of AT .

This correspondence is given by φ(f̂(T )) = f̂(ξ), ξ ∈ Sp(T ), φ ∈ ÂT , f ∈ L1(S). In the

sequel, we shall identify ξ with φ. In this identification, the Shilov boundary ΓT of AT

is a subset of Spa(T ). This latter fact was proved in [9] by using Żelazko’s Theorem [49].

Since AT does not in general contain a unit, we shall write ÃT for AT +C×I, the Banach

algebra obtained from AT by joining the unit.
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(d) (See [29], [30], [3]). If T is a representation of G by invertible isometries on X ,

then Sp(T ) 6= ∅. Moreover, if f ∈ L1(S) is such that f̂ vanishes on a neighborhood of

Sp(T ) then f̂(T ) = 0.

(e) If T is a representation of S by isometries on X , then Sp(T ) is nonempty. This

result on nonemptieness of spectrum of strongly continuous isometric representations can

be deduced from (d) and a Banach algebra construction of Arens [2], or from (d) and a

result of Douglas [16] (see [6], [9]).

Now let us outline the proof. Assuming the contrary, there is a Banach space F and

a representation U of S by isometric operators on F which satisfy the properties (i)–(iii)

in (b). By (e), Sp(U) 6= ∅. By (c), we can identify Sp(U) with ÂU , so the algebra AU

is not radical, hence ΓU is nonempty. Since ΓU ⊂ Sp(U) ∩ S∗
u, it is a nonempty closed

countable set so there exists an isolated element ξ0 in ΓU , ξ0 ∈ S∗
u. By [48], ξ0 also is

isolated in ÂU .

Now we can use Shilov’s Idempotent Theorem as in the last step in the proof of

Theorem 4.2. By this theorem, there exists a projection P in ÃU , such that (P ÃU )
∧ =

{ξ0}. Again by the Gelfand Theorem, there is a functional φ ∈ F ∗, φ 6= 0, such that

U∗(s)φ = ξ0(s)φ, hence Spe(T ) 6= ∅ (by (b)(ii)), which is a contradiction.

From Theorem 4.4, and from the de Leeuw–Glicksberg Decomposition (Theorem 4.1),

we obtain the following corollary which can also be directly proved by applying the same

argument (using the construction (a) instead of (b)).

Theorem 4.5. If T is a bounded representation of S such that Sp(T )∩S∗
u is countable

and Spp(T
∗) ∩ S∗

u is empty, then T is strongly stable.

Using the same method, one can also prove the following generalization of Theorems

2.9 and 3.9. This generalization was obtained in [42] for uniformly continuous represen-

tations and in [9] for strongly continuous representations.

Theorem 4.6. If T is a bounded representation of S on X and f ∈ L1(S) is a function

of spectral synthesis with respect to the set Sp(T ) ∩ S∗
u, then limS ‖f̂(T )T (s)‖ = 0.

5. Stability and invariant subspaces. Corollary 2.7 offered a partial answer to a

general stability problem that can be formulated as follows: Find a spectral type condition

that implies that the semigroup {T n : n ∈ Z+} is strongly stable. Though it is not to be

expected that a single spectral condition for strong stability exists for all operators, there

are classes of operators in which this problem may be solved.

The stability problem is closely related to the following well known invariant subspace

problem which is still unsolved (see e.g. [10], [25]): given a power-bounded operator T on a

Banach space X such that {T n : n ∈ Z+} is not strongly stable, does T have a nontrivial

invariant subspace? Corollary 2.7 implies that if σ(T )∩T is countable and {T n : n ∈ Z+}

is not strongly stable, then T ∗ has an eigenvector so that T ∗, and hence T , has a nontrivial

invariant subspace.

From Theorem 2.2 it follows that if the semigroup {T n : n ∈ Z+} is not strongly

stable, then there is a bounded sequence {x∗
n : n ∈ Z} such that
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(5.1) (T ∗)nx∗
k = x∗

n+k, ∀n ∈ Z+, k ∈ Z.

Condition (5.1) means that the semi-orbit {x∗
n ≡ (T ∗)nx∗

0 : n ∈ Z+} can be extended to

a complete orbit {x∗
n : n ∈ Z}.

For a bounded sequence y ≡ {yn : n ∈ Z} in a Banach space Y , we can define the

Carleman transform ỹ(λ) by

ỹ(λ) =

{∑∞

k=1 λ
k−1yk if |λ| < 1,

−
∑0

k=−∞ λk−1yk if |λ| > 1,

and define Sp(y), the spectrum of y, as the set of points λ ∈ T such that ỹ does not have

an analytic continuation into a neighborhood of λ.

We define the local spectrum, denoted by Sp(x∗
0), of the vector x

∗
0 as the spectrum of

the sequence {x∗
n : n ∈ Z} satisfying (5.1) (if such a sequence exists). This definition is

correct if it is independent of the extensions of {x∗
n = (T ∗)nx∗

0 : n ∈ Z+} for negative n

such that (5.1) holds, in particular, if such an extension is unique. It is easy to see that

this is the case if one of the following conditions holds: (i) T has a dense range (since in

this case the extension is unique); (ii) T 6⊂ σ(T ) (since in this case the spectrum always

is a proper subset of T, and by general properties of analytic functions); or (iii) T ∗ has

the single-valued extension property defined below.

Since we are interested in the existence of invariant subspaces, we can always assume

that the range of T is dense, so that there is no ambiguity in the definition of Sp(x∗
0).

One can show that Sp(x∗
0) is nonempty, Sp(x∗

0) ⊂ σ(T ∗) ∩ T, and that for every closed

nonempty subset Λ ⊂ Sp(x∗
0) there is y∗ ∈ X∗, y∗ 6= 0, such that Sp(y∗) ⊂ Λ (cf.

[44, Propositions 3.4–3.7, Section 5]). Choosing a suitable z∗0 from E∗ (see the proof of

Theorem 2.2 and [44, Remark 3.6]), we can achieve that Λ ≡ Sp(x∗
0) is a proper subset

of σ(T ∗) ∩ T. Let M∗(Λ) ⊂ X∗ be a linear manifold defined by M∗(Λ) = {x∗ ∈ X∗ :

there is a bounded sequence {x∗
n : n ∈ Z} ⊂ X∗, x∗ = x∗

0 such that (5.1) holds and

Sp(x∗) ⊂ Λ}. Clearly, M∗(Λ) is invariant under T ∗; moreover, it is hyperinvariant, i.e.

it is invariant under every operator which commutes with T ∗, but the main difficulty in

proving the existence of a nontrivial invariant subspace for T ∗ consists in showing that

M∗(Λ) is closed.

At this point, one can see a connection with the local spectral theory (see e.g. [12],

[17]). Assume that T ∗ has the single-valued extension property (SVEP), i.e., for every x∗∈

X∗, if f(λ) and g(λ) areX∗-valued analytic functions with domainsD(f), D(g) such that

D(f)∩D(g) ⊃ ̺(T ∗) and (λ−T ∗)f(λ) = x∗, ∀λ ∈ D(f), (λ−T ∗)g(λ) = x∗, ∀λ ∈ D(g),

then f(λ) = g(λ), ∀λ ∈ D(f) ∩ D(g). Then one can define (another, different from the

one just defined above) local spectrum of x∗, denoted by σ(x∗), as the complement to

the maximal domain of the analytic functions f such that (λ−T ∗)f(λ) = x∗, ∀λ ∈ D(f).

For a closed subset F ⊂ C, let X∗(F ) ≡ {x∗ ∈ X∗ : σ(x∗) ⊂ F}. Then X∗(F ) is

hyperinvariant under T ∗, but, in general, it is neither a nontrivial, nor a closed subspace.

The operator T ∗ is said to have property (k) if it has the SVEP and if X∗(F ) is closed

for every closed subset F (see e.g. [17]). It is easy to see that if x∗ ∈ M∗(Λ), then

Sp(x∗) = σ(x∗). Choosing a suitable closed subset F ⊂ C and a suitable x∗ in X∗ such
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that Sp(x∗) ∩ F is empty, we obtain a nontrivial invariant subspace X∗(F ). Therefore,

the following proposition holds.

Proposition 5.1. Assume that T is a power-bounded operator on X such that T ∗ has

property (k). If T is not strongly stable, then either T is a scalar , or there is a closed

subset F ⊂ T such that X∗(F ) is a nontrivial hyperinvariant subspace of T ∗.

An operator T on a Hilbert space is called hyponormal if T ∗T − TT ∗ ≥ 0, and

cohyponormal if T ∗ is hyponormal. Since it is known that every hyponormal operator T

has property (k) [37], and that hyponormal operators whose spectrum is contained in T

are unitary, Proposition 5.1 immediately implies the following corollary which was first

obtained by Putnam [38] by a different method.

Corollary 5.2. If T is a cohyponormal contraction such that {T n : n ∈ Z+} is

not strongly stable, then either T is a scalar , or there is a closed subset F ⊂ T such that

X(F ) is a nontrivial hyperinvariant subspace forT ∗. In particular , if T is a cohyponormal

c.n.u. contraction, then {T n : n ∈ Z+} is strongly stable.

6. Some problems. Below we formulate some open problems some of which can

be regarded as steps toward a better understanding of the stability and the invariant

subspace problems.

The following problems 1–3 are formulated for single operators, but analogous prob-

lems are open also for one-parameter semigroups and for (general) representations.

Problem 1. A contraction T on a Banach space X is called completely nonisometric

(c.n.i), if there is no invariant subspace M ⊂ X of T such that T |M is isometric.

Let T be a contraction on X such that T ∗ is c.n.i. and m(σ(T )∩T)=0. Is {T n : n ∈

Z+} strongly stable?

A partial question is: if T ∗ is c.n.i. and σ(T ) ∩ T is a Helson set, is {T n : n ∈ Z+}

strongly stable? A related question is: assuming that T is power-bounded, {T n : n ∈ Z+}

is not strongly stable and σ(T )∩T is a null set or a Helson set, does T have a nontrivial

invariant subspace?

Problem 2. Let H be a Hilbert space and T be a power-bounded operator on H such

that m(σ(T ) ∩ T) = 0. Assume that there does not exist an invariant subspace K ⊂ H

such that TK = K, T |K is invertible and (T |K)−1 is power-bounded. Is {T n : n ∈ Z+}

strongly stable? A related question is: assume that T is power-bounded, {T n : n ∈ Z+} is

not strongly stable and σ(T )∩T is a null set, does T have a nontrivial invariant subspace?

The positive solution to Problem 2 would be an extension of the Sz.-Nagy–Foiaş

Theorem to power-bounded operators (cf. Remark 2.8).

Problem 3. Let T be a power-bounded operator in H such that T commutes with a

compact operator K with ker(K) = {0}. Is T similar to a contraction?

By considering T ∗ instead of T , one can replace the condition ker(K) = {0} by

ran(K) = H . Then the semigroup {T n : n ∈ Z+} is almost periodic, so Problem

3 is reduced to the particular case when T is strongly stable. Note also that if T is

power-bounded (on a Banach space X) and commutes with a compact operator with
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ran(K) = X , and if Pσ(T ) ∩ T is empty, then T is strongly stable, since it is almost pe-

riodic with zero boundary subspace [46]. Therefore, the stability problem is easily solved

(by de Leeuw–Glicksberg Decomposition) in the class of operators commuting with a

compact operator, a fact which says that commuting with a compact operator is a strong

property.

It is known that if T is compact and power-bounded, then T is similar to a contraction

(see [35]). If r(T ) < 1, where r(T ) is the spectral radius of T , then T also is similar to

a contraction (Rota’s Theorem, see e.g. [22]). A synthesis of these two facts was given

in [47] where it was shown that if a power-bounded operator T is a sum of a compact

operator and an operator with spectral radius < 1, then T is similar to a contraction. On

the other hand, the analog of Rota’s Theorem does not hold for C0-semigroups: Chernoff

[11] has given an example of exponentially stable C0-semigroup which is not similar to

a contraction semigroup. Moreover, McIntosh and Yagi [32] and Baillon and Clément

[4] contain implicitly examples of exponentially stable analytic semigroups which are not

similar to contraction semigroups (since they do not have H∞-functional calculus) (6).

This is another evidence of the well known fact that the theory of C0-semigroups is not

“isomorphic” to the theory of single operators. The generators in Chernoff’s, Baillon–

Clément’s and McIntosh–Yagi’s examples must be unbounded: it is also shown in [47]

that if T (t) is a bounded C0-semigroup such that the generator A is bounded, and if

T (t0) (for some t0 > 0) is a sum of a compact operator and an operator with spectral

radius less than 1, then T (t) is similar to a contraction semigroup. It remains an open

question, however, whether every bounded compact or eventually compact C0-semigroup

(with unbounded generator) is similar to a contraction semigroup. In particular, is every

nilponent C0-semigroup similar to a contraction semigroup?

Now let S be a suitable subsemigroup of a locally compact abelian group G and T be

a representation of S on L(X). Theorem 4.5 suggests the following generalization of the

Sz.-Nagy–Foiaş Theorem.

Problem 4. Assume that {T (s) : s ∈ S} is a c.n.u. contraction representation, and

m(Sp(T ) ∩ S∗
u) = 0, where m is the Haar measure on G∗. Is T strongly stable?

The simplest unsolved partial case of Problem 4 is the case of several commuting

contractions, which can be formulated as follows: Let {T1, . . . , Tm} be a finite family

of commuting contractions on a Hilbert space H which is completely nonunitary (i.e.

there is no common reducing subspace K 6= {0} on which Ti are unitary, ∀i). Let

σ(T1, . . . , Tm) be the joint spectrum of T1, . . . , Tm. Assume thatm(σ(T1, . . . , Tm)∩Tm) =

0, where m is the normalized Lebesgue measure on Tm. Is {T1, . . . , Tm} jointly stable,

i.e. limk→∞ ‖T k
1 . . . T k

mx‖ = 0, ∀x ∈ H?

Problem 5. Let {T (s) : s ∈ S} be a bounded representation of S on H such that

T (s0) is compact and ker(T (s0)) = {0} for some s0 ∈ S. Is T similar to a contraction

representation?

(6) The papers [4] and [32] and their connection with the similarity problem were brought

to the author’s attention by R. deLaubenfels.
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