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Abstract. The intersection of the Gerschgorin regions over the unitary similarity orbit of
a given matrix is studied. It reduces to the spectrum in some cases: for instance, if the matrix
satisfies a quadratic equation, and also for matrices having “large” singular values or diagonal
entries. This leads to a number of open questions.

1. Motivation and the background. The unitary operators on finite-dimensional

Hilbert spaces are distinguished among all linear operators by a number of remarkable

properties. In particular, the unitary similarity orbit U(A) of a given operator A, that is,

the set of operators of the form U∗AU , where U is unitary, can shed light on the operator

A as well as on the structure of the group U of all unitary operators.

There are signs indicating the richness of the unitary group U . For instance, the Schur

triangularization theorem [I. Schur 1909] guarantees the existence of a triangular matrix

form (with respect to a given orthonormal basis) of a suitable member of U(A); the

diagonal of this matrix gives the spectrum of A. The idea can be traced back to some

earlier sources cited already by Schur, and even to Cauchy and Jacobi; for the history see

e.g. [E. T. Browne 1958], [T. Hawkins 1975], [C. C. MacDuffee 1946], [L. Mirsky 1955],

[H. W. Turnbull and A. C. Aitken 1932]. The standard simple proof has now a permanent

place in textbooks (cf. [R. A. Horn and C. R. Johnson 1985], [V. V. Prasolov 1994]).

Also the singular values of A can be seen within the unitary similarity orbit U(A):

there is a unitary U such that the rows of (the matrix representation with respect to an

orthonormal basis of) U∗AU are orthogonal, and their Euclidean norms are the singular

values of A (see [E. T. Browne 1928]).

Every operator is a linear combination of four unitaries [A. G. Robertson 1974]. The

whole algebra of operators is algebraically generated by two unitaries [C. Davis 1955],
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and is the linear span of U(A) in the case where A is non-scalar with non-zero trace (see

[B.-S. Tam 1986] and the references therein).

On the other hand, the closed connected group U seems to be distributed very eco-

nomically on the unit sphere S of all operators having norm one. It is not difficult to see

that the set U has no interior points with respect to S, and that it does not cut the sphere

S too much: the complement S \U remains connected. For each operator A ∈ S we have

dist(A,U) ≤ 1, with equality if and only if A is non-invertible. No three distinct points of

a unitary similarity orbit can lie on a real line [R. C. Thompson 1987]; this is also a con-

sequence of the strict convexity of the Frobenius norm (and has an infinite-dimensional

analogue [B. Aupetit, E. Makai, Jr. and J. Zemánek 1996]). An arbitrary neighbourhood

of the identity contains two unitaries that generate a countable dense subsemigroup of U
[H. Auerbach 1933].

The celebrated theorem of S. Gerschgorin [1931] says that the spectrum σ(A) of an

operator A on an n-dimensional space is contained in the Gerschgorin region G(A), the

union of the Gerschgorin discs

Gi(A) :=
{
λ ∈ C : |aii − λ| ≤

∑
j 6=i

|aij |
}

(i = 1, 2, . . . , n),

for each matrix representation (aij) of A.

By considering the Jordan form of A, one can show that

σ(A) =
⋂
T

G(T−1AT ),

where the intersection is taken over all invertible operators T (cf. [R. A. Horn and C.

R. Johnson 1985, Problem 6.1.2]). In other words, the spectrum of an operator A is equal

to the intersection of the Gerschgorin regions of A considered with respect to all matrix

representations of A. Thus, the Gerschgorin estimate is sharp in a natural way.

The following examples demonstrate the non-triviality of the estimate even for a single

matrix.

Example 1. If

A =

(
1 1
1 1

)
,

then the spectrum σ(A) = {0, 2} lies on the boundary of the Gerschgorin region G(A) =

D(1; 1).

Example 2. If

A =

(
−1 5
1 1

)
,

then the spectrum σ(A) = {−
√

6,
√

6} is contained in the first Gerschgorin disc G1(A),

but has no point in the smaller disc G2(A) ⊂ G1(A).

The phenomenon pointed out in Example 2 cannot occur if the matrix A = (aij) is

normal . In that case, each of the Gerschgorin discs of A must contain an eigenvalue of
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A; actually, even each of the smaller discs{
λ ∈ C : |aii − λ| ≤

(∑
j 6=i

|aij |2
)1/2}

⊂ Gi(A) (i = 1, 2, . . . , n)

must contain an eigenvalue of the normal matrix A (see [V. Pták et J. Zemánek 1976,

Théorème 2], [B. Aupetit 1991, Corollary 6.2.4], another proof is given in [A. Smok-

tunowicz 1996]). However, it is not true that the union of these smaller discs covers the

spectrum, even for a self-adjoint matrix A, as the following example shows.

Example 3. Let

A =

 0 1 1
1 0 1
1 1 0

 .

It is easy to verify that (A + 1)2(A − 2) = 0, hence σ(A) = {−1, 2}. The eigenvalue 2

is on the boundary of the Gerschgorin region G(A) = D(0; 2), but outside the smaller

disc D(0;
√

2). So the Gerschgorin theorem cannot be improved in this way, even for

self-adjoint matrices. This leads to the following question.

Question 1. Suppose that ν(·) is a norm on Cn−1 for which a Gerschgorin type

theorem holds: For each A ∈Mn(C), the spectrum of A is contained in the union of the

discs

{λ ∈ C : |aii − λ| ≤ ν(i-th row of A, without aii)} (i = 1, 2, . . . , n).

Does it follow that ν(·) majorizes the l1-norm on Cn−1?

Let us return to the sharpness with respect to similarity. The set of all invertible

operators is too large compared to the compact set U . In the present paper we intend to

study the set

Z(A) :=
⋂
U

G(U∗AU),

where the intersection is taken over all unitary operators U , and the Gerschgorin regions

are considered with respect to an orthonormal basis. Clearly Z(A) = σ(A) for each

normal operator A.

We shall show that Z(A) = σ(A) for each operator A satisfying a quadratic equation

(and thus, in particular, for each projection, see Sections 2 and 3). The result applies to

operators having “large” singular values or diagonal entries (see Section 4). However, the

set Z(A) may not reduce to the spectrum of A in general, which leads to a number of

interesting questions (Section 5).

It will be convenient to identify the operator A with its matrix representation (aij)

with respect to an orthonormal basis {e1, e2, . . . , en}. Thus, aij = 〈Aej , ei〉. In other

words, the matrix 
〈Ae1, e1〉 〈Ae2, e1〉 . . . 〈Aen, e1〉
〈Ae1, e2〉 〈Ae2, e2〉 . . . 〈Aen, e2〉

. . .
〈Ae1, en〉 〈Ae2, en〉 . . . 〈Aen, en〉


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represents the operator U∗AU with respect to the standard basis {(1, 0, . . . , 0),

(0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}, where the columns of the unitary matrix U are the Cn-

coordinates of the vectors e1, e2, . . . , en.

It is interesting to note that every operator A other than a multiple of the identity

can have the above matrix representation with all entries different from zero for a suit-

able orthonormal basis [H. Radjavi and P. Rosenthal 1970, Theorem 2] and, moreover,

maxi,j |〈Aej , ei〉| is not constant over the family of all orthonormal bases [J. Dazord 1991,

Théorème 3].

The numerical range W (A) can be described, in our setting, as the set of complex

numbers obtained at each (fixed) diagonal position, in all the above representations. On

the other hand, the set of values occurring at each (fixed) off-diagonal position is clearly

a closed disc centred at zero; the radius of this disc is equal to the distance

dist(A,CI) = inf
λ∈C
‖A− λI‖ = max

‖x‖=1
(‖Ax‖2 − |〈Ax, x〉|)1/2,

see [W. V. Parker 1948], [S. Prasanna 1981], [E. L. Stolov 1979]. For the Frobenius

norm the corresponding distance can be expressed in terms of the trace [S. L. Lee 1996,

Lemma 2.1], and this seems to be related to the estimate∣∣∣∣λ− 1

n
trA

∣∣∣∣ ≤
√
n− 1

n

(
trA∗A− 1

n
|trA|2

)
(λ ∈ σ(A))

obtained in [Y. Gu 1994].

Thus, in our problem, the centres of the Gerschgorin discs are restricted to the numer-

ical range W (A), and the radii cannot exceed (n−1) dist(A,CI). Moreover, the Frobenius

norm is constant on U(A), being equal to (trA∗A)1/2. By [N.-K. Tsing 1983, Corollary 1],

the farthest possible distance between two of the Gerschgorin centres, of a matrix in U(A),

is diamW (A). There are also bounds in terms of the singular values (see [R. A. Horn and

C. R. Johnson 1991, pages 168, 188] and Section 4).

Concerning the size of the Gerschgorin region, there is the formula ([G. Dahl-

quist 1958], [S. M. Lozinskĭı 1958])

max ReG(A) = lim
t→0+

t−1(|I + tA| − 1),

where |A| = maxi
∑
j |aij |. It resembles the formula [G. Lumer 1961]

max ReW (A) = lim
t→0+

t−1(‖I + tA‖ − 1),

where ‖ · ‖ is the operator norm.

It is also known [S. Gerschgorin 1931] that if k of the Gerschgorin discs form a con-

nected set, disjoint from the remaining n − k discs, then this set contains precisely k

eigenvalues (counted with multiplicities) of the given matrix. Moreover, if an eigenvalue

has m linearly independent eigenvectors, then this eigenvalue lies in at least m of the

Gerschgorin discs [P. Stein 1952].

For us, the most intriguing situation happens when an eigenvalue appears on the

boundary of the Gerschgorin region. If the given matrix is irreducible (that is, its permu-

tation similarities are never block-triangular, see also [P. Lascaux et R. Théodor 1993]
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or [R. S. Varga 1962] for other equivalent definitions), then such an eigenvalue must be

a common boundary point of all the Gerschgorin circles [O. Taussky 1948]. The latter

property has the purely geometric consequence that the convex hull of the Gerschgorin

centres (and thus, in particular, the arithmetic mean of the eigenvalues) is contained in

the Gerschgorin region. It also implies restrictions on the coordinates of the correspond-

ing eigenvector (cf. [R. A. Horn and C. R. Johnson 1985, Theorem 6.2.8]).

The Gerschgorin theorem had arisen from a number of sources, some of them are

hardly available now. A historical account can be found e.g. in [E. Bodewig 1956], [E.

T. Browne 1939], [A. S. Householder 1964], [E. H. Luchnis and M. A. McLoughlin 1996],

[M. Marcus and H. Minc 1964], [W. V. Parker 1951], [M. Parodi 1959], and [O. Taussky

1949, 1962]. A conceptual proof embracing various localization results is discussed in [F.

L. Bauer and C. T. Fike 1960] and [A. S. Householder 1964]. The analytic aspects are

highlighted in [B. Aupetit 1991], [R. A. Brualdi and S. Mellendorf 1994], and [M. Newman

1980]. The connections with the numerical range are described in [K. E. Gustafson and

D. K. M. Rao 1997] and [R. A. Horn and C. R. Johnson 1991]; see also [J. Dazord

1994] and [N. Nirschl and H. Schneider 1964]. For applications to the localization of

the zeros of polynomials, see especially [H. E. Bell 1965]; it is interesting to compare this

approach with the corresponding arguments based on the Rouché theorem in [N. Obreškov

1963] (see also [M. Marden 1966] and [M. Parodi 1959]). Needless to say, variants of the

Gerschgorin theorem were also studied (see [R. A. Horn and C. R. Johnson 1985]).

Yet another kind of sharpness of the Gerschgorin estimate has been investigated in a

series of papers initiated by [R. S. Varga 1965]. Also, there have been attempts to extend

the Gerschgorin theorem to infinite-dimensional operators.

2. The two-dimensional case. To our surprise, the Gerschgorin theorem is sharp

within the unitary similarity orbit of each A ∈M2(C).

Theorem 1. Let A ∈M2(C). Then⋂
U

G(U∗AU) = σ(A),

where the intersection is taken over all unitary matrices U in M2(C).

P r o o f. By the Schur triangularization theorem, and after a suitable translation,

rotation, and a further similarity by a diagonal unitary matrix, we may assume that

A =

(
β 2c
0 −β

)
,

where β ≥ 0 and c > 0. We shall consider the three possible cases β = 0, 0 < β < c,

β ≥ c, separately.

C a s e β = 0. Consider the unitary matrix

U =
1√
2

(
ω ω
1 −1

)
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with ω ∈ C, |ω| = 1. Then

U∗AU =

(
cω∗ −cω∗
cω∗ −cω∗

)
and the corresponding Gerschgorin discs touch each other at the origin, having centres

at the points ±cω∗. It is clear that the intersection of these regions, taken over all ω as

above, yields {0}, the spectrum of A. (Notice that the Gerschgorin centres lie, in this

case, on the boundary of the numerical range W (A) = D(0; c), an illustration of the result

of Tsing mentioned in Section 1.)

C a s e 0 < β < c. The unitary matrices considered in the preceding case yield

U∗AU =

(
cω∗ β − cω∗

β + cω∗ −cω∗
)
.

Now, the two Gerschgorin discs are again centred at ±cω∗, and their radii are equal to

the distance from the corresponding centre to the eigenvalue β. Thus, β is a common

boundary point of the two discs (cf. [O. Taussky 1948]). The intersection of all these

regions, taken over ω ∈ C with |ω| = 1, is the closed disc D(0;β) centred at 0, with

radius β. Indeed, let |p| > β. Let S1S2 be the diameter of the disc D(0; c) perpendicular

to the line connecting p with β. Then the point p is avoided by the region consisting of

the Gerschgorin discs centred at S1 and S2, since β is their common boundary point.

It remains to reduce the disc D(0;β) to the two-point set {±β}, by using further

unitary similarities. To this end, consider the unitary matrices

(1) U =

(
cosα sinα
− sinα cosα

)
with α ∈

[
− π

4 , 0
]
. Writing t := sin 2α ≤ 0, we get

(2) U∗AU =

(
β
√

1− t2 − ct βt+ c
√

1− t2 + c

βt+ c
√

1− t2 − c, ct− β
√

1− t2

)
:=

(
S1(t) r1(t)
r2(t) S2(t)

)
,

where t ∈ [−1, 0]. Observe that

(3) S1(t) > 0, r1(t) > 0, while S2(t) < 0, r2(t) ≤ 0.

Thus, the inequality

(4) S2(t)− r2(t) < S1(t)− r1(t)

would guarantee that the corresponding Gerschgorin discs are disjoint and, consequently,

that the set Z(A) certainly avoids the points z ∈ C with Re z strictly between the two

sides of (4). Inequality (4) is equivalent to

(c2 + β2)t2 + 2c2t+ c2 − β2 < 0,

and this holds precisely when

(5) t ∈
(
− 1,

β2 − c2

β2 + c2

)
.

For t = −1, the Gerschgorin discs are centred at ±c, and they touch each other at the

eigenvalue β. For t = (β2 − c2)/(β2 + c2), the Gerschgorin discs are again centred at

±c, but touching each other at the eigenvalue −β. For t from the open interval (5), the
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Gerschgorin pair is moving continuously, from the first situation just described to the

second, consisting of two disjoint discs all the time. This shows that each point of the set

D(0;β)\{±β} will be avoided by some pair, for a suitable t from (5). Thus Z(A) = σ(A).

C a s e β ≥ c. Consider the unitary matrix

V =
1√

β2 + c2

(
c β
−β c

)
whose first column is the eigenvector of A corresponding to the eigenvalue −β, and the

second column is chosen so that V be unitary. Then

V ∗AV =

(
−β 2c
0 β

)
.

Consider the intersection of the Gerschgorin regions G(A) and G(V ∗AV ). If β > 2c, it

already reduces to {±β} = σ(A). In the remaining case c ≤ β ≤ 2c, this intersection

consists of the points {±β} and a lens L (which reduces to {0} if β = 2c, and is biggest

if β = c). The family of matrices (2) satisfies (3) and (4), this time, for

(6) t ∈
(
− 2βc

β2 + c2
, 0

)
.

Thus, each point of the set L \ {±β} is omitted by the Gerschgorin region of (2), for a

suitable t from (6). The proof is complete.

It should be pointed out that the essential calculations behind the proof of Theorem

1 rely on the classical trigonometric formulas that are, by the way, consequences of the

geometric fact(
cosβ sinβ
− sinβ cosβ

)(
cosα sinα
− sinα cosα

)
=

(
cos(α+ β) sin(α+ β)
− sin(α+ β) cos(α+ β)

)
,

a property of the unitary group! See, for instance, [V. Schranitzky 1996] or [K. Skurzyński

1996]. The unitary group of M2(C) is described in [R. L. Causey 1958].

3.Quadratic operators. Let A be a linear operator on a (non-zero) finite-dimension-

al Hilbert space X. If the space decomposes into an orthogonal direct sum of A-invariant

subspaces of dimension at most two, then we have Z(A) = σ(A), by applying Theorem 1

on the summands. We shall show that each operator satisfying a quadratic equation has

this property.

Theorem 2. Suppose that (A − α)(A − β) = 0 on X, where α, β ∈ C. Then the

operators A and A∗ have a common invariant subspace of dimension 1 or 2.

P r o o f. We note that also (A∗ − α∗)(A∗ − β∗) = 0, and the two factors commute.

Since

X = im(A− β)⊕ (im(A− β))⊥,

where im(A− β) ⊂ ker(A− α) and (im(A− β))⊥ = ker(A∗ − β∗), it follows that

(7) X = ker(A− α) + ker(A∗ − β∗).
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If there is a non-zero vector x belonging to both the summands in (7), we have Ax = αx

and A∗x = β∗x, so that x spans a one-dimensional common invariant subspace for A

and A∗.

It remains to consider the case where

ker(A− α) ∩ ker(A∗ − β∗) = 0.

In view of (7), one of these kernels must be non-zero, say ker(A∗ − β∗) 6= 0. Since

im(A∗−α∗) ⊂ ker(A∗−β∗), it is clear that ker(A∗−β∗) is invariant under the self-adjoint

operator (A∗ − α∗)(A− α). Consequently, ker(A∗ − β∗) contains a non-zero eigenvector

of (A∗ −α∗)(A−α) or, equivalently, ker(A∗ − β∗) has a subspace N of dimension 1 that

is invariant under the operator (A∗ − α∗)(A− α). Let

M = N + (A− α)N.

Then M is invariant under A− β, because (A− β)(A− α)N = 0, and

(A− β)N = ((A− α) + (α− β))N ⊂ (A− α)N +N = M.

Hence AM = ((A− β) + β)M ⊂ (A− β)M + βM ⊂M +M = M .

Moreover, M is also invariant under A∗− β∗, because (A∗− β∗)N = 0 (recall that N

is a subspace of ker(A∗ − β∗)), and

(A∗ − β∗)(A− α)N = ((A∗ − α∗) + (α∗ − β∗))(A− α)N

⊂ (A∗ − α∗)(A− α)N + (α∗ − β∗)(A− α)N

⊂ N + (A− α)N = M

(recall that N is invariant under (A∗ − α∗)(A− α)). Thus, also A∗M ⊂M .

Hence M is invariant under both A and A∗, and, of course, 1 ≤ dimM ≤ 2.

R e m a r k. Theorem 2 has been mentioned only recently in [H. Shapiro 1991, p. 159],

it can also be derived from [T. J. Laffey 1981]. The simple proof given here is a slight

modification of Solution 163 in [P. R. Halmos 1995]. Yet another simple proof can be

found in [G. R. Allan and J. Zemánek, to appear], giving the same conclusion for every

pair of quadratic operators (not just for a quadratic operator and its adjoint), even on a

vector space as soon as the difference of the two operators has an eigenvector (which is

automatically satisfied in the finite-dimensional case).

A common invariant subspace M , of an operator A and its adjoint A∗, is called

a reducing subspace of A. Equivalently, M is a reducing subspace of A if and only if

AM ⊂ M and AM⊥ ⊂ M⊥. Consequently, the orthogonal complement of a reducing

subspace is again a reducing subspace for the operator. Thus we get

Corollary 1. Let A be a quadratic operator on a finite-dimensional Hilbert space.

Then the space is an orthogonal direct sum of A-reducing subspaces of dimension at most

two. In other words, the matrix of A is unitarily similar to a block diagonal matrix with

blocks of size at most two. In particular , Z(A) = σ(A).

It is well known that a rank one operator satisfies a quadratic equation (cf. [P. R. Hal-

mos 1995, p. 239]). Thus we get

Corollary 2. If rankA = 1, then Z(A) = σ(A).
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We shall see, in Section 5, that the preceding conclusion may fail for operators of

rank two. On the other hand, a projection, of any rank and not necessarily orthogonal,

satisfies a quadratic equation, and thus, rather surprisingly, we obtain

Corollary 3. If P 2 = P , then Z(P ) = σ(P ).

It seems worth noticing that the point here is the degree two of the minimal poly-

nomial, not the angle between the range and kernel, nor their dimensions. By the way,

quadratic operators are quite important in numerical analysis [N. Gastinel 1960].

T. J. Laffey has observed that if A2 is normal, then Z(A) = σ(A), by applying

Corollary 1 to the algebra generated by A and A∗.

4. The Marcus–Sandy and Dazord inequalities. Let ‖A‖1 := tr((A∗A)1/2) de-

note the trace norm, that is, the sum of the singular values of an n by n matrix A. Let

w(A) := max |W (A)| be the numerical radius, and let

(8) ‖A‖diag := max
{( n∑

i=1

|bii|2
)1/2

: B = (bij) ∈ U(A)
}

(≤ ‖A‖1).

The remarkable inequality found in [M. Marcus and M. Sandy 1985]

(9) ‖A‖1 ≤ nw(A)

has been interestingly complemented in [J. Dazord 1995a]

(10) ‖A‖1 ≤ n1/2‖A‖diag ≤ nw(A).

Moreover, it turns out [J. Dazord 1995a] that

n1/2‖A‖diag = nw(A) if and only if ‖A‖1 = nw(A).

This happens (cf. [M. Marcus and M. Sandy 1985], [J. Dazord 1995a]) if and only if

A/w(A) is unitarily similar to the direct sum of a diagonal unitary matrix and complex

unit multiples of 2 by 2 matrices of the form(
1 d
−d −1

)
,

where 0 < d ≤ 1. Consequently, Theorem 1 applies here:

Corollary 4. If ‖A‖1 = nw(A) or , equivalently , ‖A‖diag = n1/2w(A), then Z(A) =

σ(A).

In this case, the matrix B = (bij) realizing the maximum in (8) satisfies

|bii| = n−1/2‖A‖diag = n−1‖A‖1 = w(A) (i = 1, 2, . . . , n),

which is also proved in [J. Dazord 1995a] together with the following converse: If a

matrix A = (aij) satisfies |aii| = w(A) for i = 1, 2, . . . , n, then equality holds in (9). If

only |aii| = n−1/2‖A‖diag (i = 1, 2, . . . , n) is assumed, then equality holds in the first

inequality in (10) [J. Dazord 1995b] .

These extremal properties imply geometric restrictions on the operators. For instance,

if ‖A‖1 = n1/2‖A‖diag and A 6= 0, then rankA ≥ n/2 [J. Dazord 1995b]. Thus, a projec-

tion P of rank less than n/2 cannot satisfy the assumptions of Corollary 4, though we

have Z(P ) = σ(P ) by Corollary 3.
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Related results can also be found in [J. Dazord 1996], [R. Gabriel 1979], [L. László

1991, 1996, 1997].

5. Further examples and questions

Example 4. Let

A =

 0 1 0
0 0 1
0 0 0


in the standard basis of C3. Then Z(A) is a disc of positive radius, hence Z(A) % σ(A).

P r o o f. Let ω be a complex unit, and let D = diag{1, ω, ω2}. Then D is unitary,

and it is easy to check that D∗AD = ωA (cf. [T. Yoshino 1993, p. 132]). It follows that

Z(A) = ωZ(A) for each complex unit ω, hence Z(A) is a disc centred at zero. We shall

show that the radius of this disc is strictly positive.

Let r(U) denote the radius of the largest disc, centred at zero, that is contained in

G(U∗AU). Since r(U) depends continuously on U , which varies over the compact set U ,

it is enough to show that r(U) > 0 for each U ∈ U . This is obvious if the Gerschgorin

centres of U∗AU are not collinear, since trU∗AU = trA = 0 so that zero must be an

interior point of G(U∗AU) in this case.

It remains to show that the three Gerschgorin discs of a C ∈ U(A) cannot touch each

other at zero. Suppose it is the case, and let a ≥ b ≥ c be the moduli of the Gerschgorin

centres of C. Then each of these non-negative numbers is equal to the sum of the moduli

of the two off-diagonal entries in the corresponding row, hence

a2

b2

c2

 ≥ the sum of the squares of the moduli of the off-diagonal entries in the cor-

responding row of C.

Moreover, the constancy of the trace and of the Frobenius norm on U(A) yields

a = b+ c,

and

(11) a2 + b2 + c2 ≥ 1.

We shall show that c = 0, by finding successive upper estimates tending to zero. This

will mean that the row corresponding to c consists of zeros. Consequently, the principal

2 by 2 submatrix B of C, formed by deleting the row and column corresponding to c,

satisfies σ(B) = 0, and hence B2 = 0. The Gerschgorin theorem applied to B implies

that the two Gerschgorin discs of B touch each other at zero (cf. [O. Taussky 1948,

Theorem 2]), hence the column of C corresponding to c consists of zeros as well (otherwise

zero would be in the interior of G(C)). Thus, C2 = 0, which is impossible because A2 6= 0.

Since the diagonal entries of C belong to the numerical range W (A) = {λ ∈ C : |λ| ≤√
2/2} (cf. [T. Yoshino 1993, p. 134]), we have

2c ≤ b+ c = a ≤
√

2/2,



THE GERSCHGORIN DISCS UNDER UNITARY SIMILARITY 437

hence

c2 ≤ 1/8.

It follows from (11) that

b2 ≥ 1− a2 − c2 ≥ 1− 1

2
− 1

8
=

3

8
,

hence b ≥
√

3/8.

Next, c = a− b yields the better estimate

c ≤
√

1/2−
√

3/8 = (
√

8−
√

6)/4 (<
√

1/8).

This estimate can be improved further by iterating the preceding argument. Write

c2 ≤ (
√

8−
√

6)2

16
=

7− 4
√

3

8
=

1

2
− x0

8
,

where

x0 := 4
√

3− 3.

Let

xn+1 := 4
√
xn − xn = 4− (2−

√
xn)2 (n = 0, 1, 2, . . .).

Then 0 < xn < xn+1 < 4 and, by induction,

(12) c2 ≤ 1

2
− xn

8

for all n. The limit x := limxn satisfies x = 4
√
x− x, hence x = 4. Thus, (12) tends to

c2 ≤ 0. This completes the proof.

It is possible to show that Z(A) $W (A) in Example 4.

Question 2. For which matrices A do we have Z(A) ⊂ W (A)? Does this inclusion

possibly hold in general? Could [J. G. Stampfli and J. P. Williams 1968, Theorem 4] be

used here?

Question 3. Is it at least true that max |Z(A)| ≤ ‖A‖?

Example 5. The matrix

A =

 0 1 1
0 1 0
0 0 −1


has no pair of orthogonal eigenvectors, yet the eigenvalues ±1 are isolated points even

of the single Gerschgorin regions G(V ∗AV ) or G(W ∗AW ), respectively, with the unitary

matrices

V =
1√
2

 i 1 0
0 0 i

√
2

1 i 0

 and W =
1√
2

 1 1 0
1 −1 0
0 0

√
2

 .

Moreover, the unitary matrix

U =
1√
3

 1 −1 1

−1 (
√

3− 1)/2 (
√

3 + 1)/2

1 (
√

3 + 1)/2 (
√

3− 1)/2


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yields

(13) U∗AU =

 0 0 0

− 1√
3
− 2√

3
− 1√

3

− 1√
3

1√
3

2√
3


so that the eigenvalue 0 is certainly a boundary point of the set Z(A); actually we do

not know whether 0 is an isolated point of Z(A).

Example 6. Replacing 1/
√

3 in the off-diagonal entries in the second and third rows

of (13) by a positive number slightly less than 1/
√

3 (and retaining the signs as in (13)),

we get a matrix B whose all eigenvalues will be isolated points of the corresponding set

Z(B), yet it is not clear whether Z(B) reduces to σ(B).

The examples of this section lead to the following questions.

Question 4. Does Z(A) depend continuously on A? The answer is “yes” in the

two-dimensional case, by Theorem 1 and the continuity of the spectrum.

Question 5. Is it true that each connected component of the set Z(A) must contain

an eigenvalue of A?

Question 6. Characterize the operators A for which Z(A) = σ(A). More generally ,

characterize the eigenvalues of A that are isolated (or boundary) points of the set Z(A).

Question 7. Is the property Z(A) = σ(A) related to the proportion of the (suitable)

norms of A+A∗ and A−A∗?

6.Conclusion. The Gerschgorin theorem is a rare instance of elegance and usefulness.

We have tried to convey our belief that it could also contribute towards understanding

the mystery of the unitary group. Our survey has been based on the dissertation [A. Za-

lewska-Mitura 1997].
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Paris 197, 1385–1386.

B. Aupetit [1991], A Primer on Spectral Theory , Springer, New York.



THE GERSCHGORIN DISCS UNDER UNITARY SIMILARITY 439
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tation de matrices, C. R. Acad. Sci. Paris 250, 1960–1961.
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