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Abstract. Firstly, we give extensions of results of Gelfand, Esterle and Katznelson–Tzafriri

on power-bounded operators. Secondly, some results and questions relating to power-bounded

elements in the unitization of a commutative radical Banach algebra are discussed.

1. Introduction. In what follows, A is a complex Banach algebra with an identity

element, ∆ is the closed unit disc in the complex plane, and Γ is the boundary of ∆. For

any element x of A, let Spx be the spectrum of x in A and let r(x) be the spectral radius

of x. We say that an element x of A is power-bounded if and only if supn≥1 ‖x
n‖ < ∞. If

x is an invertible element of A, then x is called doubly power-bounded if and only if both

x and x−1 are power-bounded. The well-known spectral radius formula implies that, if

x is power-bounded, then r(x) ≤ 1; also, if x is doubly power-bounded, then Spx ⊆ Γ.

A further simple consequence of the formula is that xn → 0 as n → ∞ if and only if

r(x) < 1. In 1986, Katznelson and Tzafriri [8] proved the following generalization of this

elementary fact. (In fact in [8], the result is in an equivalent formulation in the language

of operators. For our purposes, it is more natural to set results in the context of Banach

algebras.)

Theorem 1 (Katznelson and Tzafriri). Let the element x ∈ A be power-bounded.

Then xn(x− 1) → 0 as n → ∞ if and only if Spx ⊆ int∆ ∪ {1}.

Rema r k. The “only if” implication is trivial, and the other implication is trivial in

case 1 6∈ Spx, since we would then have that r(x) < 1.

In fact the non-trivial implication had already been proved by Esterle (1981) [4] for

the case in which Spx = {1}.

1991 Mathematics Subject Classification: Primary 47A10, 47A35, 47D03; Secondary 30B30,

30D15.

The paper is in final form and no version of it will be published elsewhere.

[9]



10 G. R. ALLAN

Theorem 2 (Esterle). Let the element x ∈ A be power-bounded with Spx = {1}. Then

xn(x− 1) → 0 as n → ∞.

However, very much earlier, there was a partly analogous result of Gelfand (1941) [5].

Theorem 3 (Gelfand). Let x ∈ A have Spx = {1} and suppose that x is doubly

power-bounded. Then x = 1.

Rema r k. This result of Gelfand is omitted from several well-known texts on the

theory of Banach algebras. (It appears in Bourbaki’s Théories Spectrales as an exercise!)

The result is in the monograph of Hille–Phillips [7]. In fact Hille has the following

strengthening of the result:

Theorem 3a (Hille). Let x ∈ A have Spx = {1} and suppose that ‖xn‖ = o(|n|) as

n → ±∞. Then x = 1.

In view of Hille’s result, it is natural to ask whether Theorems 1 and 2 can be similarly

strengthened. It is, perhaps, of interest to note first the very simple fact that the condition

‖xn‖ = o(n) is a necessary condition for xn(x− 1) → 0. For, in the latter case, we must

also have
1

n
(xn+1 − x) =

1

n

n
∑

k=1

xk(x− 1) → 0 as n → ∞,

so that ‖xn‖ = o(n). However, in ([2], Theorem 4.2), an example is given in which Spx ⊆

int ∆∪{1}, ‖xn‖ = o(n), but xn(x−1) 6→ 0, showing that such an extension of Theorem

1 is not possible. It is understood that Atzmon has an example (not yet seen by the

author) in which Spx = {1}; this would show that there was no comparable extension of

Theorem 2, either.

In [8], Theorem 1 (and various generalizations) were proved by methods of elementary

harmonic analysis. Other proofs have been given: for example, in 1987, Allan, O’Farrell

and Ransford [1] used complex-variable methods as a substitute for the harmonic anal-

ysis. In 1989, Allan and Ransford [2] showed that Theorem 1 (and its generalizations)

may be deduced directly from Theorem 3; their method was greatly influenced by Es-

terle’s proof of Theorem 2. There are also various generalizations in which one consid-

ers lim supn→∞ ‖f(x)xn‖, for suitable functions f , and in which it is not required that

Spx∩Γ = {1}. Even when f does not vanish on Spx∩Γ, it is possible to give estimates

for lim supn→∞ ‖f(x)xn‖ (see e.g. [2]).

In the next section, we shall discuss some different types of extension.

2. Algebras with a seminorm. We shall give generalizations of Theorems 1 and 3

in which the boundedness assumptions (and the conclusions) are in terms of an auxiliary

linear-space seminorm on the algebra. Of course, the extension to Theorem 1 includes a

similar extension to Theorem 2 as a special case.

Firstly, we recall some complex analysis. Let X be a complex Banach space and let

f : C → X be an X-valued entire function. We say that f is of exponential type if and

only if there are constants C,A > 0 such that ‖f(z)‖ ≤ CeA|z| for all complex z. The

type of f is the infimum of the constants A for which such an equality holds (but where
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the constant C may depend on A). In particular, we say that f has zero (or minimal)

exponential type if and only if, for every ε > 0 there is a constant C > 0 such that

‖f(z)‖ ≤ Ceε|z| for all z. We need the following classical result:

Lemma. Any entire function of minimal exponential type that is bounded on the in-

tegers is constant on C.

P r o o f. See e.g. [3], Theorem (10.2.11).

Of course, the classical result is for complex-valued functions; the extension to vector-

valued functions is routine functional analysis.

Now let A be a complex Banach algebra, let b ∈ A and define f(z) = ezb for all

z. Then it is very clear that f is an entire A-valued function of exponential type, since

obviously ‖f(z)‖ ≤ e‖b‖ |z|. However, it easily seen that in fact we have the stronger fact

that the type of f is precisely r(b). In particular, if r(b) = 0, then f is a function of

minimal exponential type.

First we give the extended form of Gelfand’s result.

Theorem 4. Let A be a complex , unital Banach algebra and let p be a continuous

seminorm on A. Let x ∈ A with Spx = {1} and suppose that supn∈Z
p(xn) < ∞. Then

p(x− 1) = 0.

P r o o f. By elementary functional calculus, we can write x = eb, for some b ∈ A with

Sp b = {0}. Let f(z) = ezb (z ∈ C). By the above discussion, f is an entire A-valued

function of minimal exponential type. Now let ϕ be any p-continuous linear functional

on A and set F (z) = ϕ(f(z)) (z ∈ C). Then ϕ is also ‖ · ‖-continuous, so that F is a

complex-valued entire function of minimal exponential type.

If n ∈ Z, then, for some constant K,

|F (n)| ≤ Kp(enb) = Kp(xn) ≤ K sup
n

p(xn) < ∞.

By the Lemma, F is constant; in particular, 0 = ϕ(f(1)− f(0)) = ϕ(x− 1), for every p-

continuous linear functional ϕ. By the Hahn–Banach theorem, it follows that p(x−1) = 0.

Application 1. Let X be a Banach space, let T ∈ L(X) be such that Sp(T ) = {1}.

Suppose that, for some x ∈ X , the set {T nx : n ∈ Z} is bounded. Then Tx = x. This

follows just by applying Theorem 4, with A = L(X) and p(S) = ‖Sx‖ for S ∈ A.

We shall now prove an analogous extension to the Katznelson–Tzafriri result. We need

the following tauberian lemma from [8].

Lemma. Let (an) be a bounded sequence of complex numbers and let f(z)=
∑

n≥0 anz
n

(|z| < 1). Suppose that every point of Γ\{1} is a regular point for f . Then an+1−an → 0

as n → ∞.

In fact we need to apply the Lemma when (an) is a sequence in a complex normed

space. As in [8], this extension comes from very standard methods of functional analysis,

together with the observation that the convergence asserted in the Lemma is uniform

over certain normal families of functions.
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Theorem 5. Let A be a complex , unital Banach algebra and let p be a continuous

seminorm on A. Let x ∈ A with Sp x ⊂ int∆∪ {1} and suppose that supn≥1 p(x
n) < ∞.

Then p(xn+1 − xn) → 0 as n → ∞.

P r o o f. Let X = A/p−1(0) and let π : A → X be the quotient mapping. Then p

is constant on each coset of p−1(0) and we may therefore define the norm p̃ on X by

p̃(π(a)) = p(a), for all a ∈ A.

Now the function R(z) = (1 − zx)−1 is well-defined and analytic on an open neigh-

bourhood of ∆\{1}. Moreover, since for |z| sufficiently small we have R(z) =
∑

n≥0 x
nzn,

with norm-convergence, the series, being the Taylor series of R about 0, must converge

on the whole of int∆.

Hence, the function f(z) = (π ◦ R)(z) =
∑

n≥0 π(x
n)zn is an analytic X-valued

function on int∆, and every point of Γ\{1} is a regular point for f . Since p̃(π(xn)) =

p(xn), the Taylor coefficients of f are bounded in the normed space (X ; p̃). It follows

from the Lemma that p(xn+1 − xn) = p̃(π(xn+1)− π(xn)) → 0.

Application 2. By using the same seminorm as in Application 1, we can deduce the

following: let T ∈ L(X) with SpT ⊂ int∆∪{1}. Let x ∈ X and suppose that {T nx}n≥1

is bounded. Then T n(I − T )x → 0 as n → ∞.

R ema r k. Although it is the case that Theorem 3 may be very easily deduced from

Theorem 1, and also (as in [2]) Theorem 1 may be deduced from Theorem 3, for the more

general Theorems 4 and 5, there does not seem to be any obvious way to deduce either

from the other.

Theorem 6. Let A be a complex , unital Banach algebra and let x ∈ A with Spx ⊂

int∆∪{1}. Then, for all ε>0 there are integers k≥0, N≥1 and elements a0, a1, . . . , aN
of A (which may all be taken to be polynomials in x) such that

(i)
∑N

i=0 ‖ai‖ < ε,

(ii) xk(x− 1) =
∑N

i=0 aix
i.

P r o o f. Without loss of generality, we may take A = A(x), the closed unital sub-

algebra of A generated by x, since the given conditions on Spx will apply also to the

spectrum relative to this subalgebra.

Next, for all y ∈ A, define

p(y) = inf
{

N
∑

i=0

‖ai‖ : N ≥ 1, a0, . . . , aN ∈ A such that xky =

N
∑

i=0

aix
i (some k)

}

.

Firstly, given y ∈ A, we may take a0 = y and ai = 0 for i ≥ 1. So p is well-defined and

p(y) ≤ ‖a0‖ = ‖y‖. Also it is simple to see that p is a (sub-multiplicative) seminorm on A

and that p(xy) = p(y) for all y ∈ A. In particular, therefore, p is a continuous seminorm

on A for which the sequence (p(xk)) is bounded (since p(xk) = p(1) for all k ≥ 1). From

Theorem 5, we deduce that p(xk(x− 1)) → 0 as k → ∞.

Now let ε > 0 and choose k1 such that p(xk1(x − 1)) < ε. By the definition of p

there are finitely many elements a0, . . . , aN of A such that both
∑N

i=0 ‖ai‖ < ε and

xk(x− 1) =
∑N

i=0 aix
i, for some k ≥ k1.
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To see that each of the ai may be taken as a polynomial in x, note that, since we

initially reduced to the case where A = A(x), we may, for each i = 0, . . . , N , choose a

polynomial, say qi so that ‖ai − qi(x)‖ is so small that both
∑N

i=0 ‖qi(x)‖ < ε and also

‖xk(x− 1)−
∑N

i=0 qi(x)x
i‖ < ε. Then take p0(x) = q0(x)+xk(x− 1)−

∑N
i=0 qi(x)x

i and

pi(x) = qi(x) for i ≥ 1 and we have xk(x − 1) =
∑N

i=0 pi(x)x
i and

∑N
i=0 ‖pi(x)‖ < 2ε,

which is obviously good enough.

As an application, we give a proof of a generalization of Theorem 1, proved by Allan

and Ransford in [2].

Corollary. Let A be a unital Banach algebra, let x ∈ A with Spx ⊂ int∆ ∪ {1}.

Suppose that ‖xn‖ ≤ µ(n), for all n ≥ 0, where (µ(n)) is a sequence of positive numbers

such that µ(n+ 1)/µ(n) → 1 as n → ∞. Then

µ(n)−1‖xn+1 − xn‖ → 0

as n → ∞.

P r o o f. Let ε > 0; by Theorem 6, there are integers k, N and elements a0, . . . ,

aN ∈ A such that

xk(x− 1) =

N
∑

i=0

aix
i, and

N
∑

i=0

‖ai‖ < ε.

Choose p > max(k,N) such that, for all n > p,

(1 + ε)−1/N < µ(n+ 1)/µ(n) < (1 + ε)1/N .

Then, whenever n > N + p and |k − n| ≤ N , we have µ(k)/µ(n) ≤ 1 + ε.

But, for all n > N + p, xn(x− 1) =
∑N

i=0 aix
n−k+i, so that

‖xn(x− 1)‖ ≤
N
∑

i=0

‖ai‖ ‖x
n−k+i‖ ≤

N
∑

i=0

‖ai‖µ(n− k + i)

≤

N
∑

i=0

‖ai‖µ(n)(1 + ε) ≤ ε(1 + ε)µ(n),

and the result follows.

3. Some remarks on commutative radical Banach algebras. Let R be a non-

zero, commutative radical Banach algebra, and let A = R+, the standard unitization of

R. An element x ∈ R will be called quasi-power-bounded (or qpb) if and only if 1+ x is a

power-bounded element of A. Of course, x = 0 is always qpb; any other qpb element of

R will be called a non-trivial qpb element. As an immediate application of Theorem 2:

Theorem 7. With R as above, let x be a (non-trivial) qpb element of R. Then:

(i) x(1 + x)n → 0 as n → ∞;

(ii) let en = 1− (1 + x)n (n ≥ 1); then (en) is a bounded approximate identity in the

closed ideal Rx of R.
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P r o o f. (i) Since R is radical, SpA(1 + x) = 1. Hence, since 1 + x is power-bounded,

Theorem 2 gives that

x(1 + x)n = (1 + x)n+1 − (1 + x)n → 0,

as n → ∞.

(ii) Let en = 1 − (1 + x)n for n ≥ 1. Then (en)n≥1 is a bounded sequence in R.

Moreover, for every r ∈ R,

rxen = rx − rx(1 + x)n → rx,

as n → ∞, by (i).

Since (en) is bounded, it then follows that yen → y (n → ∞) for every y ∈ Rx. But

also, since again x(1 + x)n → 0, i.e. ‖x +
∑n

k=1

(

n
k

)

xk+1‖ → 0, then x ∈ Rx, so also

en ∈ Rx, and (en) is a bounded approximate identity in Rx.

In view of the last result, it is natural to ask whether every non-zero, commutative

radical Banach algebra with a bounded approximate identity contains some non-zero qpb

element. We do not know the answer to this question.

Moreover, we do not even know the answer for what is possibly the simplest example,

namely the Volterra algebra V = L1[0, 1], with the usual convolution multiplication. In

connection with this algebra, let u be the element u(t)=1 (0≤ t≤1). To avoid confusion,

write δ for the identity element of the unitization of V (since we may identify δ with a

unit point mass at 0). Then we have the estimates (with indices denoting convolution

powers),
‖(δ − u)n‖1 = O(n1/4), ‖u(δ − u)n‖1 = O(n−1/4),

as n → ∞. These estimates, which are the best possible estimates using just powers of n,

are derived from classical asymptotic properties of Laguerre polynomials. We note that

u(δ−u)n → 0, even though u is not qpb. The first of these estimates has also been noted

by T. Pytlik [9].

We shall conclude by looking at some related Banach algebras. Suppose that we let

Vc = Vc[0, 1] be the algebra of all continuous complex-valued functions on [0, 1], again

with convolution product, and with the uniform norm ‖ · ‖∞. Then Vc is a so-called

uniformly radical Banach algebra, i.e. ‖xn‖1/n → 0 uniformly on the unit sphere of Vc.

It is obvious that every closed subalgebra of a uniformly radical Banach algebra is itself

uniformly radical; it is a simple remark that a (non-zero) uniformly radical algebra can

not contain a bounded approximate identity. Hence, by Theorem 7, Vc has no non-trivial

qpb element.

Let ‖ · ‖p (p ≥ 1) be the usual Lp-norm on Vc, and let Vp be the completion of Vc in

this norm. Thus, as a Banach space, for 1 ≤ p < ∞, Vp is the usual Lp[0, 1]; it easy to

see that each Vp is a commutative radical Banach algebra for the convolution product.

In fact V∞ = Vc and V1 = V , the standard Volterra algebra. It is standard that, for

1 ≤ p ≤ q ≤ ∞, then Vq ⊆ Vp and ‖f‖p ≤ ‖f‖q for all f ∈ Vq. Evidently the same

inequalities hold for the unitizations of these algebras, so that if some Vq contained a

non-trivial qpb element, the same element would be qpb in Vp for 1 ≤ p ≤ q. We have

just seen that V∞ = Vc has no non-trivial qpb element. We shall now show that this

holds for every p > 1.
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Theorem 8. For every 1 < p ≤ ∞, Vp has no non-trivial qpb element.

P r o o f. We just have to consider the case 1 < p < ∞. But then Vp is a dual space,

and multiplication in Vp is separately continuous for the weak-∗ topology. Suppose that

x is a qpb element of Vp. Then the sequence en = δ − (δ + x)n, which by Theorem 7

is a bounded approximate identity for Vpx, has a weak-∗ cluster point, say y. Using the

separate weak-∗ continuity of multiplication, it follows that xy = x. Since Vp is a radical

algebra, δ − y is invertible in the unitization of Vp and it follows that x = 0.

There is, however, one other good norm to take on Vc—or even on V1. We define

‖ · ‖op to be the norm as a convolution operator on the Hilbert space H = L2[0, 1]. Thus,

explicitly, for f ∈ V1 we define

‖f‖op = sup{‖f ∗ g‖2 : g ∈ V2, ‖g‖2 ≤ 1}.

It is standard that ‖f‖op ≤ ‖f‖1 for every f ∈ V1. We let Vop be the completion of V1 in

‖ · ‖op. It is clear that Vop may also be described as the norm-closed subalgebra of L(H)

generated by the Volterra integration operator U , where

U(f)(x) = (u ∗ f)(x) =

x\
0

f(t) dt,

and here u is, as before, the function u(t) ≡ 1. We shall see that the element −u is

a qpb element of Vop, whereas, as we saw above, for the larger ‖ · ‖1, we merely had

‖(δ − u)n‖1 = O(n1/4).

Theorem 9. The function −u is qpb in Vop.

P r o o f. We have to show that, with the above notation, I − U is a power-bounded

element of L(H).

It is a familiar fact (see e.g. Halmos [6], Problem 150) that ‖(I + U)−1‖ = 1, so that

(I +U)−1 is certainly power-bounded. (In fact this already shows that δ− (δ+ u)−1 is a

non-trivial qpb element of Vop.)

The link with I−U comes from an ingenious remark (made to the author by T. V. Pe-

dersen) that I − U and (I + U)−1 are similar, as elements of L(H).

In fact, recalling that H = L2[0, 1], we define S ∈ L(H) by

(Sf)(t) = et f(t) (f ∈ H).

Then

(S−1US)f(x) = e−x

x\
0

etf(t) dt =

x\
0

e−(x−t)f(t) dt

=

∞
∑

n=0

x\
0

(−1)n(x− t)n

n!
f(t) dt =

∞
∑

n=1

(−1)n−1(un ∗ f)(x)

= f(x)− (I + U)−1f(x),

i.e. (I + U)−1 = S−1(I − U)S, which completes the proof.
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