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Introduction. In this note I give an elementary survey on Monge-Ampère equations
from the view point of contact geometry. The main sources are Goursat [Gou], Matsuda
[Ma5], Morimoto [Mo1], some recent topics that I have talked on several occasions ([Mo3]
etc.), and Ishikawa and Morimoto [I-M].

The Monge-Ampère equations, even if limited to the equations in two independent
variables, are very rich in concrete examples arising from Analysis, Geometry, and
Physics. On the other hand, the Monge-Ampère equations are stable under contact trans-
formation and can be well described in contact geometry.

One of the main purposes of this survey is to bring into relief various geometric
problems through geometrization of the Monge-Ampère equations.

Contents.
1. Formulation on contact manifolds
2. Characteristic systems of Monge-Ampère equations
3. Monge’s method of integration
4. Classification of Monge-Ampère equations
5. Global solutions, singularities

1. Monge-Ampère exterior differential systems. Let us first recall the notion
of an exterior differential system. Let M be a differential manifold and let A denote
the sheaf of germs of differential forms on M . An exterior differential system on M is a
subsheaf Σ of A such that

(1) Each stalk Σx, x ∈M , is an ideal of Ax,
(2) Σ is closed under exterior differentiation, i.e., dΣ ⊂ Σ,
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(3) Σ is locally finitely generated.

An integral manifold of the exterior differential system Σ is an immersed submanifold
ι : N →M such that ι∗φ = 0 for any section φ of Σ.

For detailed treatises on exterior differential systems refer to Cartan [Ca2], Kuranishi
[Ku], Bryant et.al [B-C-3G] etc.

Now consider a contact manifold (M,D) of dimension 2n+1. By definition, a contact
structure D is a subbundle of the tangent bundle TM of M of codimension 1 defined
locally by a 1-form ω satisfying ω ∧ (dω)n 6= 0 everywhere. Such a 1-form ω is called a
contact form of the contact structure D.

Definition. An exterior differential system Σ on a contact manifold (M,D) is called
a Monge-Ampère exterior differential system (or simply M-A system) if Σ is locally gen-
erated by a contact form ω of D and an n-form θ.

By a solution of a M-A system Σ we mean an integral manifold of Σ of dimension n.
Note that an integral manifold of Σ is a fortiori an integral manifold of D, namely an
isotropic submanifold, and a Legendre submanifold if the dimension takes the maximum
value n. Hence a solution of a M-A system is, in particular, a Legendre submanifold.

To justify our terminology, let us see that a solution of a M-A system turns out to be
a solution of a so-called Monge-Ampère equation when expressed in terms of a suitable
canonical coordinate system.

Let Σ be a M-A system on a contact manifoldM of dimension 2n+1 and let ι : S →M

be a Legendre submanifold. Take a point a ∈ S. By Darboux’s theorem there is a local
coordinate system (called a canonical coordinate system) x1, x2, . . . , xn, z, p1, . . . , pn of
M around ι(a) such that the contact structure is locally defined by the 1-form ω =
dz −

∑n
i=1 pidx

i. Moreover we can choose a canonical coordinate system so that ι∗dx1,
. . . , ι∗dxn are linearly independent at a. Then the image ι(V ) may be expressed in a
neighbourhood V of a as a graph:{

z = φ(x1, . . . , xn)

pj = ψj(x1, . . . , xn)

Since S is a Legendre submanifold we have

ψj =
∂φ

∂xj
, j = 1, . . . , n.

Let θ be an n-form which, together with ω, generates the M-A system Σ. Write it down
in the canonical coordinates as

(1.1) θ ≡
∑

i1<...<il, j1<...<jn−l

F
j1...jn−l

i1...il
dxi1 ∧ · · · ∧ dxil ∧ dpj1 ∧ · · · ∧ dpjn−l

(modω).

Then ι|V : V →M is a solution of Σ if and only if

(1.2)
∑

F
j1...jn−l

i1...il
(x1, . . . , xn, φ,

∂φ

∂x1
, . . . ,

∂φ

∂xn
)∆i1...il

j1...jn−l
(φ) = 0,
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where ∆i1...il
j1...jn−l

(φ) denotes the minor of the Hessian matrix of φ given by

∆i1...il
j1...jn−l

(φ) = sgn

(
1, 2, . . . , l, l + 1, . . . , n

i1, . . . , il, k1, . . . , kn−l

)
det


∂2φ

∂xj1∂xk1
· · · ∂2φ

∂xj1∂xkn−l

· · · · · · · · ·
∂2φ

∂xjn−l∂xk1
· · · ∂2φ

∂xjn−l∂xkn−l


with {1, 2, . . . , n} = {i1, . . . , il, k1, . . . , kn−l} and k1 < . . . < kn−l.

A second order nonlinear partial differential equation for one unknown function φ

with n independent variables of the form (1.2) is known as Monge-Ampère equation. In
particular, when n = 2, it has the following form familiar in the classical literature (see
e.g., [Gou]):

Hr + 2Ks+ Lt+M +N(rt− s2) = 0,

where p = ∂φ
∂x , q = ∂φ

∂y , r = ∂2φ
∂x2 , s = ∂2φ

∂x∂y , t = ∂2φ
∂y2 and H,K, . . . , N are functions of

x, y, z, p, q.
Thus a Monge-Ampère equation may be considered as a coordinate representation of

a more intrinsic object of a Monge-Ampère exterior differential system.

Example 1. Consider R5(x, y, z, p, q) as a contact manifold equipped with a contact
form

ω = dz − p dx− q dy.

Let Σ be a M-A system generated by the following 2-form (and ω):

θ = dp ∧ dq.

If a solution of Σ is represented in the form

z = φ(x, y), p = ψ1(x, y), q = ψ2(x, y),

then the function φ is a solution of the Monge-Ampère equation

rt− s2 = 0.

If we introduce new coordinates (x̄, ȳ, z̄, p̄, q̄) defined by
x = p̄, p = −x̄
y = ȳ, q = q̄

z = z̄ − p̄x̄,

then we have

ω = dz̄ − p̄ dx̄− q̄ dȳ

θ = −dx̄ ∧ dq̄.

Hence if a solution of Σ is represented in the form

z̄ = φ̄(x̄, ȳ), p̄ = ψ̄1(x̄, ȳ), q̄ = ψ̄2(x̄, ȳ),

the function φ̄ satisfies the Monge-Ampère equation

t̄ = 0.
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Example 2. With the same notation as above, consider a M-A system generated by

θ = dp ∧ dx.

Then the solutions with independent variables x, y satisfy the Monge-Ampère equation
s = 0.

If we introduce another local coordinate system defined by

x = z̄, y = x̄, z = ȳ, p =
1
q̄
, q =

p̄

q̄
,

then we have

ω = −p(dz̄ − p̄ dx̄− q̄ dȳ), θ = − 1
q̄2

(p̄ dq̄ ∧ dx̄+ q̄ dq̄ ∧ dȳ).

Thus the solutions with independent variables x̄, ȳ satisfy

q̄s̄− p̄t̄ = 0.

Let (M,D) and (M ′, D′) be contact manifolds. A diffeomorphism f : M → M ′

is called a contact transformation if f∗D = D′. Let Σ,Σ′ be M-A systems on M,M ′

respectively, we say that Σ and Σ′ are contact equivalent (or equivalent, or isomorphic)
if there exists a contact transformation f such that f∗Σ′ = Σ. The notion of “locally
contact equivalent” is defined in the obvious manner.

Let a Monge-Ampère equation of the form (1.2) be given. Associating to it a M-A
system on the standard contact manifold R2n+1 generated by the n-form θ given by
(1.1), we also say that two Monge-Ampère equations are contact equivalent if so are the
associated M-A systems.

The above examples show that the M-A equations rt − s2 = 0 and t = 0 are locally
contact equivalent, and so are s = 0 and qs− pt = 0.

2. Characteristic systems. For further geometrization of the Monge-Ampère equa-
tions, we will introduce the characteristic systems of a M-A system. It is for the M-A
systems on 5-dimensional complex contact manifolds that the characteristic systems are
well defined and have nice geometric properties. For this reason from now on we will work
on 5-dimensional complex contact manifolds unless otherwise stated. However, most of
the following discussion will remain valid also in the real category under some additional
assumptions.

In general, given an exterior differential system Σ on a manifold M , a subspace L of
the tangent space TxM at x ∈M is called an integral element of Σ at x if for any germ
of differential form α ∈ Σx, the restriction of α to L vanishes.

Now let Σ be a M-A system on a contact manifold M of dimension 5 generated by ω
and θ, where ω is a contact form of the contact manifold and θ is a 2-form.

For a non-zero vector v ∈ TxM , it is clear that the line L(v) generated by v is an
integral element of Σ if and only if 〈v, ω〉 = 0, that is, v ∈ Dx.

Now supposing that we have chosen a 1-dimensional integral element L(v) with v ∈
Dx, we are looking for a 2-dimensional integral element containing it.
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For v′ ∈ TxM the plane L(v, v′) is an integral element of Σ if and only if
〈v′, ω〉 = 0

〈v ∧ v′, θ〉 = 0

〈v ∧ v′, dω〉 = 0,

in other words, v′ is a solution of the linear equation (polar equation)
ω = 0

vcdω = 0

vcθ = 0,

where the left hook c denotes the interior product. The rank of this equation is 3 or 2,
according to which we call v regular or singular, respectively. If v is regular there exists
a unique 2-dimensional integral element containing v. If v is singular the 2-dimensional
integral elements containing v form a 1-dimensional manifold.

This being remarked, now we define the characteristic variety V(Σ) of Σ as the union
of the 1-dimensional singular integral elements:

V(Σ)x = {v ∈ Dx ; vcθ ≡ 0 (modω, vcdω)}

V(Σ) =
⋃

x∈M

V(Σ)x .

Then we have

Proposition 2.1. For each x ∈M , there are following three cases to distinguish:

i) There exist 2-dimensional subspaces Ex, Fx of Dx such that

V(Σ)x = Ex ∪ Fx, Dx = Ex ⊕ Fx.

Moreover , Ex and Fx are perpendicular with respect to dω, i.e., dω(v, v′) = 0 for v ∈
Ex, v

′ ∈ Fx.
ii) There exists a 2-dimensional subspace Ex of Dx such that V(Σ) = Ex and Ex is

isotropic, i.e., dω(v, v′) = 0 for v, v′ ∈ Ex.
iii) V(Σ)x = Dx.

P r o o f. We denote by Ω and Θ respectively the restrictions of dω and θ to Dx. If
Θ+λΩ = 0 for some λ ∈ C, then we have the case iii), where the Monge-Ampère equation
degenerates to be trivial at x.

If Θ 6≡ 0 (modΩ), let λ1, λ2 be the roots of the quadratic equation for λ: (Θ+λΩ)2 = 0.
Then Θ + λiΩ is decomposable and we can write:

Θ + λ1Ω = α1 ∧ α2

Θ + λ2Ω = β1 ∧ β2

with α1, α2, β1, β2 ∈ D∗
x. Let Ex and Fx be the null space of {α1, α2} and {β1, β2},

respectively. Then we see immediately that V(Σ)x = Ex ∪ Fx.
If λ1 6= λ2, the formula

(λ1 − λ2)Ω = α1 ∧ α2 − β1 ∧ β2
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shows that Ex and Fx are perpendicular. Moreover since Ω ∧ Ω 6= 0, α1, α2, β1, β2 are
linearly independent and hence Dx = Ex ⊕ Fx.

If λ1 = λ2 then Ex = Fx. Moreover since the equation (α1 ∧ α2 + µΩ)2 = 0 has only
one solution µ = 0, we have Ω ∧ α1 ∧ α2 = 0. Then by Cartan’s lemma we have

Ω = α1 ∧ γ1 + α2 ∧ γ2

for some γ1, γ2 ∈ D∗
x, which shows that Ex is isotropic.

R e m a r k. In the real category V(Σ) does not necessarily decompose into two sub-
spaces. If n is greater than 2 the characteristic variety is in general much more compli-
cated.

We have thus associated to a M-A system Σ the characteristic variety V(Σ) which,
under some generic condition, decomposes into vector bundles:

V(Σ) = E ∪ F
with E,F subbundles of D of rank 2 satisfying E⊥ = F .

Conversely, given a subbundle E of D of rank 2, it is immediate to see that there
exists a unique M-A system Σ such that V(Σ) = E ∪ E⊥.

Each bundle E or F is called the characteristic system associated with Σ.

Example 3 (cf. Example 1). Let Σ be the M-A system on R5 defined by θ = dp∧ dq.
Clearly one of the characteristic systems, say E, is given by

ω = dp = dq = 0.

Since dp ∧ dq ∧ dω = 0, we see that E⊥ = E. Therefore the other characteristic system
coincides with E.

Example 4. Let Σ be the M-A system on R5 defined by

θ = dq ∧ dy + f dx ∧ dy,
where f is a function on R5. Since

θ = (dq + f dx) ∧ dy ≡ −dp ∧ dx+ f dx ∧ dy (mod dω) = dx ∧ (dp+ f dy),

the characteristic systems E, F are given by

E : ω = dq + f dx = dy = 0

F : ω = dx = dp+ f dy = 0.

3. Monge’s method of integration. By the method of Hamilton-Jacobi one can
solve any first order partial differential equation for one unknown function by integrating
an ordinary differential equation, a Hamiltonian vector field. From around the turn of
the 18th century much efforts have been paid to solve higher order partial differential
equations only by integrating ordinary differential equations. In particular, Monge and
Darboux therein found interesting methods. It is to a certain class of Monge-Ampère
equations that the Monge’s method applies. (For a classical exposition see [Gou].) We
remark also that some improvement of this method was given by M. Matsuda [Ma1,2]. In
this section we will give an exposition of Monge’s method in our formulation of contact
geometry to make clear its geometric essence.
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Let Σ be a M-A system on a 5-dimensional contact manifold M . Let V(Σ) be the
characteristic variety. According to Proposition 2.1, we write V(Σ)x = Ex ∪Fx. To study
the solutions of Σ the following observation is fundamental:

Proposition 3.1. A 2-dimensional submanifold ι : S → M is a solution of Σ if and
only if the following conditions are satisfied :

(1) ι∗TxS ⊂ Dι(x) for all x ∈ S.
(2) ι∗TxS ∩ Eι(x) 6= 0 for all x ∈ S.
(3) ι∗TxS ∩ Fι(x) 6= 0 for all x ∈ S.

Let us remark that conditions (2) and (3) above are equivalent under condition (1).

P r o o f. We use the same notation as in the preceding section. Let θ, ω be local
generators of Σ. If Eι(x) is defined by

ωι(x) = α1 = α2 = 0

with α1, α2 ∈ T ∗
xM , then

θι(x) ≡ α1 ∧ α2 (modωι(x), dωι(x)).

It follows from this that a Legendre subspace L ⊂ Dι(x) is an integral element of Σ if and
only if L ∩ Eι(x) 6= 0.

Now we are going to consider a Cauchy problem for Σ. Let c : I → M be a one-
dimensional integral curve, that is, c∗ω = 0 or c∗TtI ⊂ Dc(t) for all t ∈ I. We say the
curve c is non-characteristic if

c∗TtI ∩ V(Σ)c(t) = 0 for all t ∈ I.

Given a non-characteristic curve c, we want to find a solution of Σ by extending the
initial curve c.

In view of Proposition 3.1, every solution is generated by two families of characteristic
curves (integral curves of E or F ). It is, therefore, natural to expect that the surface
generated by the integral curves starting from the initial curve c of characteristic vector
field (i.e., a section of V(Σ)) would be a solution.

More precisely, let X be an everywhere non-zero characteristic vector field, say, X ∈
Γ(E). Let u(t, s) be a family of integral curves of X defined by

u(t, 0) = c(t), t ∈ I
∂u

∂s
(t, s) = Xu(t,s).

Then the map u(t, s) gives an immersion u : U →M , where U is some neighbourhood of
I × {0} in I × R.

It is clear that u satisfies condition (2) of Proposition 3.1. However, it does not neces-
sarily satisfy the condition (1) and is not a Legendre submanifold. The following propo-
sition gives a sufficient condition for u to be a solution of Σ (cf. [Ga2], [Ma1]).

Proposition 3.2. The notation being as above, if X satisfies the following two con-
ditions then u : U →M is a solution of Σ:

(1) 〈dω, dc
dt ∧Xc(t)〉 = 0, t ∈ I,
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(2) L2
Xω ≡ 0 (modω,LXω).

P r o o f. Denote by us the local 1-parameter transformation group generated by X.
Since the tangent space u∗T(s,t)U is spanned by {X(u(t,s), (us)∗ dc

dt (t)}, it suffices to prove

(*)

{
〈(us)∗c′(t), ω〉 = 0

〈(us)∗c′(t) ∧Xu(t,s), dω〉 = 0.

By assumption (2), we can write

L2
Xω = aω + bLXω

with some functions a, b on M . For a fixed t ∈ I, we define functions y1(s), y2(s) by{
y1(s) = 〈(us)∗ω, c′(t)〉
y2(s) = 〈(us)∗LXω, c

′(t)〉.

Then y1, y2 satisfy the following ordinary differential equations:
dy1
ds

= y2

dy2
ds

= ay1 + by2.

But y1(0) = y2(0) = 0 by assumption (1). It then follows from the uniqueness of solution
that y1 = y2 = 0, which proves (*).

A non-zero vector field X ∈ Γ(E) is called an integral characteristic vector field of
E if condition (2) of Proposition 3.2 is satisfied, and further it is called adapted to the
initial curve c if condition (1) is satisfied.

Now let us consider how to find an adapted integrable characteristic vector field. We
assume the characteristic variety decomposes into vector bundles: V(Σ) = E ∪F , so that
E⊥ = F .

Now suppose that there exists a first integral h of F , that is, Y h = 0 for any Y ∈ Γ(F ).
Let Xh be the vector field defined by

(3.1)

{
〈Xh, ω〉 = 0

LXh
ω ≡ dh (modω).

Then we see firstly that Xh ∈ Γ(E), because dω(Xh, Y ) = 〈dh, Y 〉 = 0 for all Y ∈ Γ(F ).
Secondly we see that Xh is integrable, because

L2
Xh
ω = LXh

(dh+ λω) ≡ LXh
(dh) (modω,LXω)

= d(Xh · h) = d(Xh ∧Xh, dω) = 0.

Thus a first integral h of F gives rise to an integral characteristic vector field Xh of E.
Next suppose that there exist two independent first integrals h1, h2 of F . We assume

moreover (dh1)x, (dh2)x, ωx are independent everywhere. (Since any contact form cannot
be written as ω = λ1h1 + λ2h2, this condition is satisfied for generic points.)

Then for any non-characteristic integral curve c of Σ, we can locally find an integral
characteristic vector field Xh adapted to c as follows: For t0 ∈ I, one of 〈dhi,

dc
dt (t0)〉 (i =

1, 2) is not zero (otherwise c∗Tt0)I ⊂ Fc(t0)). Hence there exists a local function h(h1, h2)
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such that h(c(t)) = 0 and {dh, ω} are independent. Then, since h is constant on the curve
c we have

〈c′(t) ∧ (Xh)c(t), dω〉 = 〈c′(t), dh〉 = 0,

which shows that Xh is adapted to c. By integrating Xh, we obtain a solution u : U →M

of Σ with initial curve c.
It should be noted that h ≡ 0 on any solution S of Σ with initial curve c. In fact,

since F defines on S a one-dimensional foliation transversal to c and h = 0 on c and h

is constant along the foliation, h must be identically zero on S. This implies that any
solution with initial curve c is also a solution of the first order partial differential equation
h = 0. (Recall that a function on a contact manifold may be regarded as a first order
PDE.)

It also immediately follows that a solution of Σ with initial curve c is unique as a
germ of submanifold.

Summarizing the above discussion, we have

Theorem 3.3. If one of the characteristic systems of a M-A system admits inde-
pendent two first integrals, then any non-characteristic integral curve can be extended
to a solution of the M-A system. This solution is locally unique and can be obtained by
integrating an adapted integrable characteristic vector field.

This is the integrating method of Monge. The function (or the first order PDE) h is
called intermediate integral .

4. Classification. In this section we treat the problem of classifying the M-A systems
vis-à-vis the local contact equivalence. Since there are infinitely many different classes
and the complete classification is far from expected, here we will be content to give an
outline of the classification for a rough grasp of the variety of M-A systems and add some
indication for more detailed classification.

First of all note that two M-A systems Σ and Σ′ on contact manifolds M and M ′

respectively are contact equivalent by a contact transformation φ : M → M ′ if and
only if φ∗V(Σ) = V(Σ′), which is, in turn, equivalent to saying that φ∗E = E′ (or
φ∗E = F ′ ) when the characteristic varieties are decomposed into vector bundles: V(Σ) =
E∪F, V(Σ′) = E′∪F ′. Thus the classification of the M-A systems generically reduces to
classifying the pairs (D,E), where D is a contact structure of rank 4 and E is a subbundle
of rank 2 of D.

Here we recall the work of É. Cartan [Ca1], in which he investigated the classification
of the Pfaff equations

ω1 = ω2 = ω3 = 0

on a five-dimensional space, in other words, the subbundles of rank 2 of the tangent
bundle of a five-dimensional manifold.

According to N. Tanaka [Ta], given a subbundle E of the tangent bundle TM of
a manifold M , we define the derived systems of E as follows: Define inductively the
subsheaves Ek(k = 1, 2, . . .) of the sheaf TM of the germs of vector fields on M by setting
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E1 = E, the sheaf of the germs of sections of E and

Ek+1 = Ek + [E1, Ek].

Then in a neighbourhood of a generic point all Ek are vector bundles, that is, there exist
subbundles Ek such that Ek = Ek (k = 1, 2, . . . ).

Now in the case dimM = 5 and rankE = 2, if the derived systems are all vector
bundles, there are the following five cases to distinguish:

(0) rankE2 = 2
(1) rankE2 = rankE3 = 3
(2) rankE2 = 3, rankE3 = rankE4 = 4
(3) rankE2 = 3, rankE3 = 4, rankE4 = 5
(4) rankE2 = 3, rankE3 = 5.

For a M-A system Σ with characteristic variety V(Σ) = E ∪ F , we say that Σ is
hyperbolic if Ex 6= Fx for all x, and parabolic if E = F .

Furthermore we say that a hyperbolic M-A system Σ is in the class Hij if E is of type
(i) and F of type (j) in the list above. Since there is no canonical way to distinguish E

and F we may assume i ≤ j. We say that a parabolic M-A system Σ is in the class Pj if
E is of type (j).

It should be noted that the classes Hij and Pj are invariant under contact equivalence.

Proposition 4.1. If one of the characteristic systems of a M-A system is completely
integrable then the two characteristic systems coincide. Moreover such M-A systems are
all locally contact equivalent.

P r o o f. Let Σ be a M-A system and assume that one of the characteristic systems,
say E, is completely integrable. For u, v ∈ Ex, take a local sections X,Y of E such that
Xx = u, Yx = v. Then we have

dω(u, v) = dω(X,Y )x = [Xω(X)− Y ω(X)− ω([X,Y ])]x
= −ω([X,Y ])x = 0,

which shows that Ex is isotropic and therefore E⊥
x = Ex. Hence the two characteristic

systems coincide.
To prove the last half of the assertion, we first note that if E is completely integrable

then we have locally a fibring π : M → X with the fibres being leaves of E and therefore
Legendre submanifolds of M . Then our assertion follows from the fact that Legendre
fibrings are all locally contact equivalent, and this fact can be shown as follows: Let
π : M → X be a Legendre fibring with M being (2n+ 1)-dimensional manifold equipped
with a contact structure D, so that X is n + 1-dimensional and each fibre is Legendre
submanifold. Let Gr(X,n) → X be the Grassmann bundle whose fibre at x ∈ X consists
of all n-dimensional subspaces of TxX. Then there is a canonical map f : M → Gr(X,n)
defined by f(p) = (π(p), π∗Dp) for p ∈M . It is easy to see that Gr(X,n) has a canonical
contact structure and that f is a fibre preserving contact immersion. It then follows that
two Legendre fibrings of same dimension are locally contact equivalent.



MONGE-AMPÈRE EQUATIONS VIEWED FROM CONTACT GEOMETRY 115

An example is fulfilled by a Monge-Ampère equation rt− s2 = 0. The corresponding
M-A system is generated by a 2-form dp∧dq. One of its characteristic system is given by

ω = dp = dq = 0,

which is clearly completely integrable. The above proposition shows that there is no M-A
system in the class H0j and that there is only one (up to local contact equivalence) in
the class P0.

Theorem 4.2. There is only one M-A system up to local contact equivalence in the
class H11. In other words, let Σ be a hyperbolic M-A system with characteristic systems
E,F . If the derived systems E2, F 2 respectively of E,F are both completely integrable,
then Σ is locally contact equivalent to the M-A system corresponding to the equation
s = 0.

This theorem goes back to S. Lie. For a classical proof see Goursat [Gou], or Mat-
suda [Ma5]. Another proof based on the general method for the equivalence problems of
geometric structures can be found in Morimoto [Mo4].

Let us just see that the equation s = 0 is in fact in H11. The corresponding M-A
system is defined by the 2-form

dq ∧ dy ≡ −dp ∧ dx (modω, dω).

Hence the characteristic systems are given by

E : ω = dq = dy = 0

F : ω = dp = dx = 0

Their derived systems E2, F 2 are given by

E2 : dq = dy = 0

F 2 : dp = dx = 0,

which are clearly completely integrable.
We can also find in the book of Goursat [Gou] the following propositions:

Proposition 4.3. If a M-A system is hyperbolic and each of its characteristic system
admits a first integral , then the M-A system is locally equivalent to a Monge-Ampère
equation of the following form:

s+ f(x, y, z, p, q) = 0.

P r o o f. Let E, F be the characteristic systems of a hyperbolic M-A system Σ and
assume that they have first integrals x, y, respectively. Since E∩F = 0, dx, dy are linearly
independent. In general on a contact manifold with a fixed contact form ω, we define the
bracket [f, g] for functions f, g by

[f, g] = dω(Xf , Xg),

where the vector field Xf is given by (3.1). Then we see that [x, y] = 0, since Xx, Xy

are sections of F, E respectively and therefore perpendicular. It then follows from a
fundamental theorem of contact geometry that the functions x, y can be extended to a
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normal coordinate system x, y, z, p, q. Let E be defined by the Pfaff equation:

dx = α = ω = 0,

where we may suppose that α is written as

α = α2dy + α3dp+ α4dq.

But since dω(Xα, Xy) = 0, we see α4 = 0. Moreover we can easily see that α3 6= 0. Hence
we may choose α as

α = f dy + dp.

Thus our M-A system is generated by the 2-form

dx ∧ (dp+ f dy),

which is equivalent to the Monge-Ampère equation

s+ f = 0.

Proposition 4.4. If a M-A system is parabolic and its characteristic system admits
a first integral , then the M-A system is locally equivalent to a Monge-Ampère equation of
the following form:

t+ f(x, y, z, p, q) = 0.

P r o o f. Similar to the proof of Proposition 4.3.

The discussions above provide us with a rough idea of classifying the M-A systems.
Now we give some remarks and indications for further detailed classification.

1) Hij (1 ≤ i ≤ j ≤ 4) is not empty: In fact each Hij contains infinite number of
different equivalence classes except that H11 does only one.

2) P0 contains only one equivalence class, P1 is empty, and Pj (j = 2, 3, 4) contains
infinite number of classes.

3) The M-A systems in H1j are Monge integrable.
4) A M-A system may be treated as a G-structure on a contact manifold (or gen-

eralized G-structure on a filtered manifold as developed in Morimoto [Mo4]) and we can
apply the general methods of equivalence for (generalized) G-structures to obtain further
invariants of M-A systems. However, since the classification spreads into many branches,
it is difficult to carry out all the calculation. One of the goals which may be attainable is
to classify the homogeneous M-A systems in each Hij or Pj . (We say a M-A system Σ is
homogeneous if the automorphism group Aut(Σ) of contact transformations is transitive.)
(see [Mo1]).

5) Most generic is a M-A system Σ belonging to H44, which satisfies

dim Aut (Σ) ≤ 8,

and if the equality holds then it is locally equivalent to a M-A system defined on the
homogeneous space SL(3,C)/SL(2,C) and invariant by the actions of SL(3,C). In a
suitable local expression it can be written in the following form:

rt− s2 = (z − xp− yq)4.
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See [Mo1], [Mo2], and for particular solutions of this equation see A. Kushner and
B. Doubrov [D-K].

6) Another approach to a classification of Monge-Ampère equations is developed by
Lychagin, Rubtsov and Chekalov ([L], [L-R-C]).

5. Global solutions, singularities. So far we have been mainly concerned with
local problems. But since our formulation of Monge-Ampère equations is quite free from
coordinate expressions, we are ready to consider various global problems as well as sin-
gularities of solutions. Here we will touch upon some of such problems.

5.1. A global model of the equation rt − s2 = 0. Let V be a 4-dimensional vector
space and V ∗ its dual space. Denote by P (V ) and P (V ∗) be the projective spaces of the
1-dimensional subspaces of V and V ∗, respectively. Set

Q = {([x], [ξ]) ∈ P (V )× P (V ∗) : 〈x, ξ〉 = 0}.

With the canonical projections ρ : Q → P (V ) and ρ′ : Q → P (V ∗), we can identify Q

with the projective cotangent bundle of P (V ) and that of P (V ∗):

Q ∼= PT ∗P (V ) ∼= PT ∗P (V ∗).

Moreover there is a canonical contact structure D on Q such that the above isomorphisms
are contact isomorphisms. We then have

D = Ker ρ∗ ⊕Ker ρ′∗.

The subbundle Ker ρ′∗ of D of rank 2 then defines a M-A system that has Ker ρ′∗ as a
characteristic system; we denote by Σ0 the M-A system on Q thus defined. Since Ker ρ′∗
is completely integrable, the M-A system Σ0 is in the class P0 and locally isomorphic to
rt−s2 = 0 by Proposition 4.1. It should be remarked that this M-A system is canonically
associated with projective geometry.

By Proposition 3.1, a surface S in Q is a solution of Σ0 if and only if S is a Legendre
submanifold and the rank of ρ′ : S → P (V ∗) is less or equal to 1 everywhere. We may
consider Σ0 as a Monge-Ampère equation for a surface of P (V ); a surface Y ⊂ P (V ) is
called a solution if the Legendre lift Ỹ (in other words, the projective cotangent lift, or
the projective conormal bundle of Y ) is a solution of Σ0. It then turns out that a solution
Y ⊂ P (V ) is a ruled surface generated by projective lines and the tangent spaces of Y
are constant along each generating line. For instance the cone C defined by

z2 = x2 + y2

with affine coordinates x, y, z is a solution of Σ0. We note that the projective cotangent
lift C̃ of C is diffeomorphic to a torus and has no singularity, while C does. As to the
non-singular global solutions, we have the following

Theorem 5.1. A compact connected smooth surface of P (V ) is a solution of Σ0 if
and only if it is a projective plane.

See [I-M] for a proof. We remark an interesting contrast between this theorem and
that of Bernstein which asserts that a solution defined on the whole xy-plane of the
equation rt − s2 = 1 is a polynomial of degree 2. The latter arises from the ellipticity
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of the equation, and the former from some properties of projective geometry and holds
both in the real and the complex category.

If S ⊂ Q is a compact connected smooth solution of Σ0 and not the Legendre lift
of a projective plane, then, by the above theorem, the projection ρ : S → P (V ) must
have always singularities. Here we ask a question: Is there any law for the number of
singularities with respect to the projection ρ : S → P (V )?

5.2. A global model of s = 0. As we have seen in our classification, the Monge-Ampère
equation s = 0 is also local trivial. Let us give a global model of this equation.

Let π : S3 → S2 be the Hopf fibring, that is,

S3 = {(z1, z2) ∈ C; |z1|2 + |z2|2 = 1},

and π is the quotient map to S2 = CP 1 by the S1-action:

(z1, z2)eiθ = (eiθz1, e
iθz2).

Then there is a natural contact form ω on S3 given by the restriction of the form
1
2
Im(z̄1dz1 + z̄2dz2),

which is invariant by the S1-action.
Now preparing two copies of the Hopf fibring, π : S3 → S2 and π̄ : S̄3 → S̄2, we set

M = S3 × S̄3/ ∼,

the quotient space by the action of the diagonal ∆ of S1 × S̄1. Then we see that the
1-form ω − ω̄ induces a contact structure D on M . We have also the natural projections
ρ : M → S2 and ρ̄ : M → S̄2. If we set

E = D ∩Ker ρ∗, Ē = D ∩Ker ρ̄∗,

then E and Ē are of rank 2 and perpendicular and we have

D = E ⊕ Ē.

Hence there is a unique M-A system Σ11 onM that has E and Ē as characteristic systems.
Since E and Ē have respectively two independent first integrals given by ρ and ρ̄, the
M-A system Σ11 is locally equivalent to s = 0 by Theorem 4.2.

It would be interesting to study the global solutions of this M-A system.

5.3. Singularities of solutions. When we study singularities of a solution S of a M-A
system Σ on a contact manifold M , we should distinguish the following different sorts of
singularities:

(a) Singularities of S itself.
(b) Singularities with respect to a Legendre fibring: If there is given a Legendre fibring

ρ : M → N , in particular, if M is the projective cotangent bundle PT ∗N of a manifold
N , it will be interesting to study the singularities of S with respect to the projection
ρ : S → N .

(c) Singularities arising with respect to a prescribed space of independent variables.
If M = J1

XN , that is M is the space of the 1-jets of cross-sections of a fibred manifold
N → X, the singularities with respect to the projection S → X are the singularities
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which arise when one wants to regard S as an ordinary solution of the Monge-Ampère
equation expressed in coordinate with independent variables in X.

Singularities of Legendre varieties have been studied by many people. Now, in relation
with Monge-Ampère equations, we pose the following general questions:

(1) What happens to the singularities of a Legendre variety if imposed to be a solution
of a M-A system?

(2) How does it depend on the choice of a M-A system?

Here we mention a result obtained by G. Ishikawa concerning to the questions above.
Consider a map-germ f : R2, 0 → R5, 0 defined by

(x, y, z; p, q) ◦ f = (u, v2, uv3; v3,
3
2
uv),

which is isotropic with respect to the contact form ω = dz− pdx− qdy, that is, f∗ω = 0.
An isotropic map-germ g from R2, 0 to a contact manifold M is called an open umbrella
if it is contact equivalent to the above map-germ f up to parametrization.

Proposition 5.2. An open umbrella can be a solution of a M-A system of type rt−
s2 = 0 but cannot be a solution of a M-A system of type s = 0.

For further information on the singularities of a solution of Σ0, we refer to Ishikawa
([Is1], [Is2]). We cite also another approaches to singularities of Monge-Ampère equations
by M. Kossowski [Ko] and M. Tsuji [Ts].

There being so much literature on Monge-Ampère equations, the following references
are not intended to be complete. However, they are considerably ameliorated thanks to
the referees who informed me of papers relevant to our subjects, and to whom I am very
grateful.
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[Gou] E. Goursat, Leçon sur l’intégration des équations aux derivées partielles du second
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MONGE-AMPÈRE EQUATIONS VIEWED FROM CONTACT GEOMETRY 121

[Ma3] M. Matsuda, On Monge-Ampère equations, Sugaku 24-2 (1972), 100–118 (in
Japanese).

[Ma4] M. Matsuda, Reduction of Monge-Ampère’s equations by Imschenetsky transfor-
mations, J. Math. Soc. Japan 25 (1973), 43–70.

[Ma5] M. Matsuda, Theory of exterior differential forms, Iwanamishoten, Tokyo, 1976
(in Japanese).
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