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Abstract. We analyse some non-perturbative properties of the Yang-Mills vacuum in two-
dimensional spaces in the presence of Chern-Simons interactions. We show that the vacuum
functional vanishes for some gauge field configurations. We have identified some of those nodal
configurations which are characterized by the property of carrying a non-trivial magnetic charge.
In abelian gauge theories this fact explains why magnetic monopoles are suppressed by Chern-
Simons interactions. In non-abelian theories it suggests a relevant role for nodal gauge field
configurations in the confinement mechanism of Yang-Mills theories. In topological Chern-Simons
theories nodal configurations belong to Atiyah-Bott strata with non-null codimension in the
space of gauge field configurations. In the presence of external static quarks some nodes of the
vacuum functional with non-trivial magnetic charge are removed and they are responsible for
the increase of vacuum energy.

1. Introduction. The dual superconductor picture of the Quantum Chromodynam-
ics vacuum ([20], [21], [24], [25]) assigns a leading role to magnetic monopoles in the
quark confinement mechanism. The magnetic superconducting character of the quantum
vacuum is induced by a condensation of magnetic monopoles. The chromo-electric flux
is, then, expelled from the vacuum by the dual Meissner effect in a similar way as the
magnetic field is expelled from a standard superconductor in the Meissner effect. The
immersion of a quark-antiquark pair in such a magnetic superconducting vacuum gen-
erates a concentration of the chromo-electric flux lines along the string connecting the
two particles, which induces an effective quark-antiquark potential growing linearly with
the distance. Quark confinement is a consequence of such a linear interaction which only
admits quark-antiquark bound states. In other words, the monopole condensation asso-
ciates a finite tension to the string connecting the quark and the antiquark which does
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not admit an infinite separation of the two particles.
Although, such a picture has not been confirmed as the real mechanism responsible

for quark confinement in QCD3+1, a recent analysis carried out by Seiberg and Witten
[30] suggests that it could be the real confinement mechanism in N = 2 supersymmetric
Yang-Mills theories.

The role of monopoles also seems to be crucial for quark confinement in 2+1 dimen-
sions. In compact lattice QED2+1 it has been shown that the logarithmic perturbative
Coulomb potential becomes linear by means of Debye screening of electric charges in a
monopole gas ([26], [27]) in a similar manner as vortices drive the Kosterlitz-Thouless
phase transition in the XY model [10].

On the other hand, in 2+1-dimensional gauge theories there exists the possibility of
having massive gluons while keeping gauge invariance. This is possible because in 2+1-
dimensional space-time massless and massive vector-like particles have the same number
of degrees of freedom. The generation of mass for gauge fields can be explicitly achieved
in local terms thanks to the peculiar properties of the Chern-Simons term.

In such a case quarks are deconfined because no condensation of pseudoparticles can
dramatically modify the exponential decay of gauge propagators. In fact, it has been
shown that in compact QED2+1 the confinement of electric charges is traded by that
of magnetic monopoles [1] (see also [16]), and the magnetic superconductivity picture of
confinement is traded by a standard electric superconducting scenario. In this sense a
topological mass perturbation realizes an electromagnetic duality transformation.

On the other hand it has been suggested by Feynman that in absence of nodes in
the ground state of pure Yang-Mills theory in 2+1 dimensions could be relevant for
the confinement of quarks [18]. Such a property can be qualitatively derived from a
generalization of the min-max principle. However, in the presence of the Chern-Simons
interaction the min-max principle cannot be applied because of the complex character of
the interaction. Moreover, it has been shown that all physical states in such a theory do
have nodal points, i.e. the quantum functionals vanish for some classical configuration of
the gauge fields.

If there is any relationship between the absence of confinement and the existence
of nodes in the vacuum state of the theory with a Chern-Simons term it is possible
to establish a connection between the configurations where the vacuum vanishes and
permanent confinement.

In this paper we analyse the role of magnetic monopoles and nodes in the vacuum
structure of topologically massive Yang-Mills theory. The case of abelian gauge theories
is exactly solved and the role played by magnetic monopoles in the low energy regime
illuminates the possible behaviour of non-abelian theories.

2. Canonical Quantization of Topologically Massive Yang-Mills Theory. Let
M3 be a 2+1-dimensional space-time. Any principal bundle P (M3, SU(N)) defined over
M3 with structure group SU(N) is isomorphic to the trivial bundle P = M3 × SU(N).
Therefore, in 2+1 dimensions SU(N) gauge fields B can be considered as connections
on the trivial bundle P = M3 × SU(N). The dynamics of topologically massive SU(N)
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gauge fields on M3 is governed by the action

(2.1) Sα(B) =
k

4π

∫
M3

Tr(B ∧ dB +
2
3
B ∧B ∧B) +

1
2α2

||F (B)||2.

Here || || denotes the norm associated to the scalar products of p-forms

(2.2) (τ, η) = −2
∫

M3

tr τ ∧ ∗η,

F (B) = dB + [B,B] is the curvature of the connection B and ∗ is the Hodge operator
associated to the (oriented) space-time metric (M3, g). Now, Sα(B) is not univocally
defined for gauge fields B of P = M3 × SU(N), because the value of the Chern-Simons
term depends on the choice of the section which trivializes P in expression (2.1). Indeed,
Sα(B) is not invariant under large gauge transformations φ : M3 → SU(N),

Sα(Bφ) = Sα(B) + 2πkνi,

with non-trivial winding number

ν =
1

4π2

∫
M3

Trφ−1dφ ∧ φ−1dφ ∧ φ−1dφ.

Therefore, a consistent definition of the euclidean functional integral∫
δB eiSα(B)

is only possible for integer values of Chern-Simons charge k.
Let us consider a space-time of the form M3 = Σ × R, where Σ is Riemann surface,

endowed with a direct product metric. If we consider the temporal gauge (B0 = 0), the
only degrees of freedom are the spatial components A of the gauge fields B = (A,B0)
and we can perform a canonical approach. The configuration space AΣ is the space of
connections A defined over the Riemann surface Σ with SU(N) as structure group. The
phase space is the cotangent bundle T ∗AΣ, which can be parametrized by the connections
A ∈ AΣ and the associated canonical momenta Π. These momenta are constrained by
Gauss law [8]

(2.3) d∗A(Π +
k

4π
∗A) =

k

2π
∗ F (A)

induced by the motion equation of the temporal component B0 of connection B. d∗A
denotes the adjoint of the covariant derivative dA operator with respect to the scalar
product defined on AΣ by (2.2), i.e. d∗A = − ∗ dA∗ .

The Gauss law constraint (2.3) is also associated to the symmetry of the dynamics
under the group G of base preserving automorphisms of the principal bundle Σ×SU(N).
The final reduced phase space of the constrained system is the cotangent bundle TM of
the space of gauge orbits M = A/G, defined by the orbits of the action of G on AΣ (from
here on denoted A, for simplicity).

The classical hamiltonian is given by

(2.4) H = (π,A)− L =
α2

2
||Π +

k

4π
∗A||2 +

1
2α2

||F (A)||2.
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In the Schrödinger representation canonical quantization gives the following prescription
for the momentum operator

(2.5) IΠ = −i δ
δA

.

The quantum hamiltonian IH is then obtained by introducing such a prescription for the
quantum momentum IΠ into the expression (2.4) of the classical hamiltonian(1). The
quantum states are given by the complex functionals ψ(A) on AΣ (from here on denoted
A, for simplicity) which satisfy the quantum Gauss law condition

(2.6) −id∗A
δ

δA
ψ(A) =

k

4π
∗ dA ψ(A).

This condition has a simple geometric interpretation in terms of the hermitean U(1)-
connection α̃k defined over A by the one-form ([8], [2])

(2.7) α̃k(τ) =
k

4π
(∗A, τ) +

k

2π
(dAGA ∗ F (A), τ) ∀τ ∈ TAA

with GA = (d∗AdA)−1. Actually, the quantum Gauss law condition (2.6) can be written
as

(2.8) d∗A∇α̃k
ψ(A) = 0

with
∇α̃k

=
δ

δA
+ iα̃k,

which means that the quantum states are covariantly constant along the gauge fibres
with respect to the connection α̃k.

Theorem 1. There exist non-trivial solutions of the quantum Gauss condition (2.8)
if and only if k is an integer.

P r o o f. The existence of solutions of the Gauss law requires the connection α̃k to be
trivial along the orbits of the group of gauge transformations G ([8], [3]). The curvature
form of α̃k is given by

(2.9) Ω̃k(τ̃ , η̃) = − k

4π
(τ̃h, ∗η̃h) +

k

2π
(GA ∗ [τ̃h, η̃h], ∗F (A)),

where τh is the component of τ which is orthogonal to the gauge fibre at A with respect to
the product defined by (2.2) i.e. τ̃h = PAτ̃ , PA = (I − dAGAd

∗
A) being the corresponding

orthogonal projector. Ω̃k vanishes for vectors τ̃ , η̃ ∈ TAA tangent to the gauge fibres
τ̃ = dAφ. However, α̃k is trivial only if the holonomy group associated to any closed
curve contained in a gauge orbit is trivial. This is only possible if the projection Ωk of
the curvature 2-form Ω̃k to the space of gauge orbits M = A/G,

(2.10) Ωk(τ, η) = Ω̃k(τ̃h, η̃h)

belongs (modulo a factor 2π) to an integer cohomology class of M, i.e.

(2.11) 1
2π [Ωk] ∈ H2(M,Z).

(1) There is not ordering problem in the kinetic term because all orderings give rise to the same
quantum operator IH.
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In (2.10) τ̃h denotes the horizontal component of any tangent vector τ̃ ∈ TAA with
projection τ ∈ T[A]M.

Condition (2.11) is satisfied if and only if the Chern-Simons charge k is an integer
([8], [7]).

In this way the quantization condition of k also arises in the canonical formalism.
Although, the above derivation of this consistency condition is very different of that given
in the covariant functional integral formalism, both have a common origin: invariance
under base preserving automorphisms of Σ × SU(N) with non-trivial winding number
[8]. Because of the triviality of α̃k when k is an integer, the action of the group of gauge
transformations G can be globally lifted to an action on the line bundle A × C. Gauss
law implies the invariance of the quantum states under this action. Thus, the quantum
states can be completely characterized by sections of the line bundle Ek(M,C) defined
by the gauge orbits Ek = A× C/G of such an action. This proves the following

Proposition 2. Solutions of Gauss law constraint (2.8) are in one-to-one correspon-
dence with sections of the line bundle Ek(M,C).

In the same way, the connection α̃k of A×C projects down to a connection αk in Ek

and the quantum hamiltonian can be expressed as an operator ([8], [2])

(2.12) IH =
α2

2
||∇αk

||2 +
1

2α2
||F (A)||2 +

k2α2

8π2
(∗F (A), GA ∗ F (A))

acting on the sections of Ek. Therefore the quantum dynamics of the topologically massive
Yang-Mills theory is very similar to that of the magnetic monopole on S2 and the quantum
Hall effect on a torus. The similarity with the quantum mechanical models suggests the
existence of low energy physical effects related to the topological structure of the orbit
space.

Definition 3. A nodal point x ∈M of a section ξ of a line bundle P (M,C) is a point
of the base manifold where the section vanishes, i.e. ξ(x) = 0.

Theorem 4. Every physical state has nodal configurations on M.

P r o o f. The Chern class of the line bundle Ek(M,C) is non-trivial c1(Ek) = [Ωk]/2π.
Then, the bundle Ek(M,C) is non-trivial and it is easy to show that any section (i.e. any
physical state) must vanish at some gauge field configurations [3].

R e m a r k 5. Such a behaviour is in contrast with Feynman’s claim on the absence
of nodes in the ground state of pure Yang-Mills theory in 2+1 dimensions [18](2). If there
is any relationship between the absence of confinement and the existence of nodes in the
vacuum state of the theory with a Chern-Simons term it is possible to establish a connec-
tion between the configurations where the vacuum vanishes and permanent confinement
in the pure Yang-Mills theory.

In quantum mechanics the existence of nodes in the ground state is usually related
to its degeneracy. In such a case, the position of nodal points is not relevant because

(2) The min-max argument does not apply here because of the presence of complex terms in the
first term of the hamiltonian operator (2.12).
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they change from one state to another. However, in topologically massive gauge theories
it has been claimed that the vacuum is not degenerated [4]. In such a case, the nodal
points are also unique and the corresponding gauge configurations can play a role in the
confinement mechanism.

The relevance of nodes was anticipated in [3], however, nodal configurations of the
vacuum functional where unknown for a long time. In the present paper we will show the
solution for this longstanding problem [6].

3. Abelian Theory. In the abelian case, G = U(1), there is no topological reason
for physical states to have nodes. If the space is compactified to become a 2D sphere S2

the first and second homotopy groups of the orbit space vanish, π1(M) = π2(M) = 0
([9], [7]) and, thus, any line bundle over M is trivial. Physical states are sections on a
trivial bundle and, thus, they can be non-null for any gauge field configuration.

The space of orbits splits into several disconnected pieces (π0(M) = Z) each one
containing abelian gauge fields carrying the same magnetic charge. Since the magnetic
charge is quantized by Dirac condition, the different connected components of M

M =
∞⋃

n=−∞
Mn,

are parametrized by an integer number (the first Chern number)

n =
1
2π

∫
Σ

F (A) = c1(A).

From a topological viewpoint all the connected components Mn of M are home-
omorphic. Actually, they are diffeomophic to the component without magnetic charge
M0.

If all the sections of the bundleM×C were physical states, the Hilbert space would be
a sum H =

⊕∞
n=−∞Hn of Hilbert spaces, each one corresponding to different monopole

backgrounds. The energies from each n-monopole sector would be shifted by n2/2α2 by
the effect of the potential term of the hamiltonian.

However this is not the case because Gauss law imposes a very restrictive condition
on physical states.

Theorem 6. Physical states vanish on the gauge orbits of connections with non-trivial
first Chern class.

P r o o f. If we integrate both sides of the Gauss law (2.8)

(3.1)
∫

Σ

∗d∗ δ
δA

ψ(A) =
ik

4π

∫
Σ

F (A)ψ(A),

the left-hand side vanishes by Stokes theorem, because under the integral we have a pure
differential whereas the right-hand side reduces to (kn/2)ψ(A), n being the magnetic
charge carried out by the gauge field A. Consequently, for gauge fields with non-trivial
magnetic charge (n 6= 0) the wave functional ψ(A) must vanish. This means that when
k 6= 0 only the sections over the M0 sector do correspond to physical states, i.e. Hphys ≡
H0.
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Actually, the theory is exactly solvable and the vacuum state reads

Ψ0(A) = exp
{
ik

4π
(
d∗A,∆−1 ∗ F (A)

)
− 1

2α2

(
∗F (A),∆−1

(
m2 + ∆

) 1
2 ∗ F (A)

)}
for gauge fields without magnetic charge

c1(A) =
∫

Σ

F (A) = 0

and vanishes Ψ0(A) = 0 for magnetic monopole configurations (c1(A) 6= 0). The spectrum
corresponds to a free massive photon with mass m = kα2/2π ([14], [15], [22]). The basic
property involved in the above argument is that constant gauge transformations do not
transform abelian gauge fields which implies the vanishing of the left-hand side of the
Gauss law whereas space constant temporal component of gauge fields (A0=const) does
couple to the other components by means of both, Yang-Mills and Chern-Simons, terms
of the action, which leads to the equality of both sides of the Gauss law equation. In
physical terms what happens is that the Chern-Simons term generates a transmutation
of magnetic charge into electric charge which is reflected in the anomalous terms of Gauss
law.

The same physical argument applies for higher genus (g > 0) compactifications Σ of
the physical space. In such a case the topology of the space of gauge orbits M becomes
more sophisticate. It is given by

(3.2) M = Z×

2g times︷ ︸︸ ︷
S1 × . . .× S1×H,

where H is a real Hilbert space.
The above result can be easily derived from the splitting of the space of one-forms

into its longitudinal, transverse and harmonic components,

(3.3) A = A0 + dξ + ∗dφ+ a,

where A0 is any fixed U(1)-connection defined on the same line bundle than A, i.e. A
and A0 have the same first Chern number

c1(A) =
1
2π

∫
Σ

F (A) =
1
2π

∫
Σ

F (A0) = c1(A0).

The Z connected components of M, Mn are parametrized by the magnetic monopole
charge of the gauge fields, c1(A), and the 2g – (S1) components

T g =

2g times︷ ︸︸ ︷
S1 × . . .× S1

are generated by the harmonic forms a which must satisfy some periodic conditions in
order to eliminate the overcounting of Gribov copies generated by large gauge transfor-
mations [9]. The factor H is associated to the transverse components φ of A. If g 6= 0
the curvature of the U(1)-connection Ωk (2.10) belongs to an integer cohomology class
H2(M,Z) = H2(T 2g,Z) = Z2g if and only if k ∈ Z. Consistency of the solutions under
large gauge transformations requires, then, that for g 6= 0 the Chern-Simons charge k be
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an integer(3). The physical states are in such a case sections of the bundle, Ek(M,C).
Since Ek(M,C) is non-trivial because its first Chern class number c1(Ek) 6= 0, the quan-
tization of the theory implies the existence of additional nodes also on the connected
component of the orbit space, M0, defined by the abelian connections without magnetic
charge (c1(A) = 0). However in these cases the vacuum is degenerated and these configu-
rations with vanishing amplitudes ψ(A) = 0 are not physically relevant. They depend on
the specific linear combination of vacuum states chosen. Any connection is in fact a node
of a particular vacuum state. A basis of vacuum states is given by {Ψn

0 , n = 0, 1, . . . , k−1},
with

(3.4)
Ψn

0 (A) = exp
{
−kπū(Im Ω)−1u/2 + kπu(Im Ω)−1u/2

}
θ

[
n/k
0

]
(ku; kΩ)

exp
{
ik

4π
(ξ,∆φ)− 1

2α2
(∆φ,∆−1(m2 + ∆)

1
2 ∆φ)

}
for gauge fields without magnetic charge, c1(a) = 0 ([11], [12]). Ψn

0 vanish for any other
gauge field configuration [5]. In expression (3.4) u = (ui) with i = 1, . . . , g, are the vectors
of Cg which parametrize the harmonic forms a = iπu(Im Ω)−1ω in terms of a given basis
of harmonic differentials ω = (ωi), i = 1, . . . , g. Ω is the matrix of periods associated
to ω and a basis of H1(Σ). Besides those generic nodes, the states Ψn

0 also vanish at the
zeros of the theta functions

θ

[
n/k
0

]
(ku; kΩ).

From the above results, some of them anticipated in [4], we conclude that in 2+1-
dimensional abelian gauge theories Chern-Simons interactions are absolutely incompati-
ble with magnetic monopoles.

In the case k = 0 the theory reduces to a pure Maxwell continuum (non-compact) the-
ory. External charges are confined by a logarithmic potential. Monopoles are not confined
and in fact they have a finite mass M = 1/2α2. When photons become massive by the
effect of the Chern-Simons interaction electric charges are deconfined whereas magnetic
monopoles decouple from the physical degrees of freedom, i.e. their mass becomes infinite
and their correlators vanish. In this theory the dual superconductor picture, i.e. confine-
ment/condensation of electric/magnetic charges, is explicitly realized and the addition of
the Chern-Simons term makes the transition from one regime to another.

4. Non-abelian Theory. The same analysis holds in the non-abelian theory for
gauge field configurations with non-zero total magnetic charge. However we will see that
even in the sector of zero net charge there are some configurations where the states vanish.

Let us restrict ourselves, for simplicity, to the SU(N) case, although our analysis can
be easily generalized for arbitrary gauge groups. Gauge fields are defined on a trivial

(3) Strictly speaking Gauss law only imposes invariance under infinitesimal gauge transforma-
tions. If we do not impose invariance under large gauge transformations it is possible to obtain
a consistent quantization for any value of k ([28], [29]). This is equivalent to consider all the
Gribov copies of the fields a as inequivalent field configurations. In such a case the relevant orbit
space is Z×H1(Σ,R)×H.
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bundle P = Σ×SU(N). Reducible gauge fields A can, actually, be defined on subbundles

Pr (Σ, U(N1)× . . .× U(Nr))

of P with structure group U(N1)×. . .×U(Nr). They are decomposed into a sum A = A1+
A2+. . .+Ar of elementary gauge fields Ai with values in u(Ni). The gauge field elementary
components Ai of A are defined on principal bundles Pi(Σ, U(Ni)) whose first Chern
classes c1(Pi) represent the magnetic charges of the different components of A. Since A
is a connection with gauge group SU(N) the total magnetic charge

∑r
i=1 c1(Pi) = 0

vanishes.
Reducible gauge fields are invariant under the following group of gauge transforma-

tions

(4.1) Φt =


eiµ1tI1 0 . . . 0

0 eiµ2tI2 . . . 0
. . . . . . . . . . . .
0 0 . . . eiµrtIr

 ,

with µi = c1(Pi)/Ni and where Ii denotes the identity matrix of U(Ni). Thus, the
infinitesimal generator of the group Kt of gauge transformations φ = Φ̇t|t=0 satisfies
dAφ = 0, and

(4.2)
∫
d2xTrφd∗A

δ

δA
ψ(A) = 0,

for any functional ψ(A). In particular, for physical states Gauss’ law (2.8) implies that∫
Σ

TrφdA ψ(A)

must vanish. Now,

(4.3)

∫
Σ

TrφdA =
∫

Σ

Trφ (dA+ dAA)

= 2
∫

Σ

TrφF (A) = 4π
r∑

i=1

c1(Pi)2

Ni
,

and, therefore, if one of the magnetic charges c1(Pi) of the components of A is non-null
every physical state must vanish at that gauge field configuration, i.e. ψ(A) = 0.

However, reducible configurations do not exhaust all nodal configurations. The reason
is that the topological arguments leading to the existence of nodes discussed at the be-
ginning also apply to the orbit space of irreducible connections. Therefore, there should
exist other genuine non-abelian configurations where physical states vanish. To find those
configurations a more elaborate dynamical argument is required. In general, nodal con-
figurations will not be the same for all physical states, only those with net magnetic
charge satisfy this property. Non-abelian, irreducible nodes depend on the physical state
we consider. In the following, we will analyse the nodes of the vacuum state.

To study the vacuum state we need to minimize expectation value the quantum hamil-
tonian IH (2.12). For that it will be useful to introduce the chiral components of the
connection. Having fixed a 2-dimensional metric h our 2D space Σ acquires a complex
structure and this induces a chiral decomposition A = Azdz + Az̄dz̄ of the gauge field.
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The component Az̄ defines an holomorphic structure on the vector bundle E(Σ,CN ) as-
sociated to P . Conversely, once one fix an hermitean structure on E any holomorphic
structure on E(Σ,CN ) defines a unique unitary connection A on P. This correspondence
induces an isomorphism between the space of gauge fields A and the space Az̄ of holo-
morphic structures on E(Σ,CN ).

In terms of the chiral components of the gauge field the physical states that minimize
the kinetic term of the hamiltonian (2.12) are of the form

(4.4) ψ(A) = exp
{
ki

8π

∫
dz dz̄TrAz̄Az

}
ξ(Az̄),

ξ(Az̄) being any holomorphic functional of Az̄. The restriction of the Gauss law to those
states reads

(4.5) Dz̄
δ

δAz̄
ξ(Az̄) =

k

π
∂zAz̄ ξ(Az̄),

and it is an analogue to the Gauss law of pure Chern-Simons topological field theory. In
fact, one can identify these states with those of the Chern-Simons theory in holomorphic
quantization ([19], [4]).

In Az̄ there is an action of a larger group of symmetries, the group of chiral or complex
gauge transformations GC. The action of h ∈ GC on Az̄ is given by

hAz̄ = hAz̄h
−1 + ih∂z̄h

−1,

and the isomorphism between A and Az̄ induces an action of GC in A that extends the
ordinary or unitary gauge transformations in G.

The relevance of these transformations comes from the fact that integration of the
Gauss law (4.5) determines how the states with minimal kinetic energy change under
chiral gauge transformations of the gauge field. In [19] it is shown that the states are
multiplied by a non-null factor depending on A and the chiral gauge transformation
h ∈ GC. Now, we have shown that physical states must vanish for reducible gauge fields
with magnetic monopole components, therefore the states with minimal kinetic energy
also vanish along their complex orbits. Generically, the gauge fields in those orbits are
non-reducible and thus we obtain this way a larger set of nodes for these states.

Atiyah and Bott [9] have studied in detail the action of the gauge group of chiral
gauge transformations GC on A and they have shown that the chiral gauge orbits can
be organized in strata of A. The different strata are characterized by the Chern classes
and ranks (ki, ni) of the quotient (semi-stable) bundles Di = Ei/Ei−1 of the canonical
filtration of E(Σ,C), 0 = E0 ⊂ E1 ⊂ . . . ⊂ Er = E of E defined by the corresponding
holomorphic structure. By construction, the slope µi = ki/ni of the different quotient
bundles Di of any holomorphic structure is always a decreasing function, µ1 > µ2 >

. . . > µr = 0 [9].
In every stratum there are abelian harmonic connections verifying the 2D Yang-Mills

equations d∗F (A) = 0. They are associated to holomorphic structures whose canonical
filtration splits into a direct sum of quotient bundles, Ei = D1⊕D2⊕ . . .⊕Di. Therefore,
the different Atiyah-Bott strata Aµ can be parametrized by sequences of decreasing slopes
µ = (µ1, µ2, . . . , µr) with k1 + k2 + . . .+ kr = 0, and every gauge field belongs to one of
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those strata, i.e.
A =

⋃
µ

Aµ.

The (complex) codimension of the closure on an Atiyah-Bott strata An is
N∑

i>j

[nikj − njki + ninj(g − 1)]

where g is the genus of the Riemann surface Σ.
One could argue that most of the fields belong to orbits of gauge fields without

monopole components which define a dense set of A. From a quantum point of view it
means that they are the most relevant configurations for the dynamical behaviour of the
theory. However, it turns out that they are the other orbits which are relevant for the
discussion of the structure of vacuum states. In some sense, one can think of the space of
gauge fields expanded by complex gauge transformations from configurations with non-
trivial monopole components as a boundary of the space of all gauge field configurations.
In this picture, the topological effects would arise as boundary conditions to be satisfied
by the quantum states at those special configurations.

The biggest stratum, A0, is characterized by the fact that it contains the flat connec-
tions. It is an open dense submanifold of A and therefore it has null codimension. Most
of the fields belong to this stratum. From a quantum point of view it means that they
are the most relevant configurations for the dynamical behaviour of the theory. However,
it turns out that they are the other orbits which are relevant for the discussion of the
structure of vacuum states. In some sense, one can think of the space of gauge fields ex-
panded by complex gauge transformations from configurations with non-trivial monopole
components as a boundary of the space of all gauge field configurations. In this picture,
the topological effects would arise as boundary conditions to be satisfied by the quantum
states at those special configurations(4).

One simple physical way of characterizing higher order strata Aµ with µ 6= 0 is by
the abelian magnetic monopoles and antimonopoles with globally vanishing magnetic
charge that they contain. If Σ = S2 and N = 2, A0 is made of the connections which are
gauge equivalent by a complex gauge transformation to the trivial flat connection A = 0.
Higher order strata are parametrized by a positive integer number n > 0 and their gauge
fields are gauge equivalent to a monopole-antimonopole doublet E = Ln ⊕ L−n with
magnetic charges n and −n, respectively. For higher genus surfaces, the main stratum,
A0, is made up of the gauge fields such that all subbundles of the associated holomorphic
bundle E have non-positive first Chern class. It is an open dense submanifold of A. All
flat connections belong to this stratum and the union of their complex gauge orbits is
dense in A0. Then the physical states with minimal kinetic energy (4.4) are completely
determined, like Chern-Simons states, by their values at flat connections [17].

(4) The lower cohomology groups, H0(M,Z) and H1(M,Z) are determined by the topology of
the main stratum A0, but the Z contribution of higher order strata to H2(M,Z) is the origin
of most of the topological effects of the model.
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In the case of the sphere Σ = S2 since the chiral gauge orbit of the trivial connection
A = 0 expands the main stratum A0 of A, there is a unique minimal state as in Chern-
Simons theory. Its wave functional ψ0 is completely determined by its value at A = 0
and it vanishes nowhere in A0. All other orbits have a gauge configuration decomposable
into a sum of monopole/antimonopole gauge field components. Therefore, the physical
states with minimal kinetic energy must vanish along all complex gauge orbits unless
A0(5). This result is compatible with the fact that for any value of ψ0(0) the functional
ψ0(A) converges to 0 as A approaches an orbit of a field configuration with monopole
components. A result that can be also obtained following the techniques of [19].

For higher genus Riemann surfaces the structure of the moduli space of flat connec-
tions is non-trivial and the states with minimal kinetic energy are not uniquely determined
from the Gauss law (see [17] for the toroidal topology). There is a finite-dimensional space
of physical states and they can have additional nodes for some particular flat connections.
This nodes, however, are not physically relevant as they change from one state to another.

5. External Sources. In the presence of external sources the vacuum structure of
the theory is modified. This can be easily understood in the abelian theory.

Let us consider the abelian theory with Q electric static charges, qi, sitting at the
points xi of Σ (i = 1, . . . , Q). The dynamics is governed by the new action

(5.1) SQ
α (B) = Sα(B) +

Q∑
i=1

qiB0(xi).

Because of the static character of the charges, their current, Jµ = δ0µ
∑Q

i=1 qiδ(x − xi),
only couples to the temporal component B0 of the electromagnetic field. Therefore, in
the temporal gauge the value of the action, SQ

α (B) does not depend on the charges. In
particular the hamiltonian IH is the same as in the pure gauge case (2.4). The only effect
of the external charges is to modify the Gauss law which reads

(5.2) d∗(Π +
k

4π
∗A) =

k

2π
∗ F (A)−

Q∑
i=1

qiδ(x− xi).

The canonical quantization prescription (2.5) gives a new meaning to the quantum Gauss
law. In terms of the U(1)-connection α̃Q defined by the one-form

(5.3)

α̃Q(τ) =
k

4π
(∗A, τ) +

k

2π
(τ, dG[∗F (A)− 2π

k

Q∑
i=1

qiδ(x− xi)])

= α̃k(τ)− (τ, dG
Q∑

i=1

qiδ(x− xi)]),

on the bundle A× C, the quantum Gauss law condition (5.2) can be written as

(5.4) d∗A∇α̃Q
ψ(A) = 0

(5) The determinant of chiral fermions also vanishes for the same gauge field configurations [23].
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with

∇α̃Q
=

δ

δA
+ iα̃Q.

The condition (5.4) means that the quantum states are functionals of A which are covari-
antly constant along the gauge fibres with respect to the connection α̃Q. The existence of
solutions require the triviality of the connection α̃Q along such orbits. This condition is
satisfied if and only if the curvature of the projection of α̃Q to M, αQ, defines an integer
2-form, i.e.

(5.5) ΩQ = dαQ = Ωk ∈ H2(M,Z).

Since ΩQ = Ωk, according to Theorem 1 this implies that k has to be an integer for
Riemann surfaces Σ with higher genus g ≥ 0.

The integration of Gauss law leads to the following result.

Theorem 7. Physical states vanish for connections whose Chern numbers c1(A) =
[1/2π]

∫
Σ
∗F (A) do not satisfy the quantization condition

(5.6) c1(A) =
2
k

Q∑
i=1

qi.

This implies that the quantum states have only fluctuations over connections which
satisfy the constraint (5.6).

In particular the vacuum state is given by

(5.7)

Ψ0(A) = exp

{
ik

4π
(d∗A,∆−1[∗F (A)− 4π

k

Q∑
i=1

qiδ(x− xi)])

}

exp

{
− 1

2α2

(
[∗F (A)− mα2

2
(m2 + ∆)−1

Q∑
i=1

qiδ(x− xi)],

∆−1(m2 + ∆)
1
2 [∗F (A)− mα2

2
(m2 + ∆)−1

Q∑
i=1

qiδ(x− xi)]
)}

for gauge fields whose magnetic charge equals the total electric charge of the external
electric sources, ∫

Σ

F (A) =
4π
k

Q∑
i=1

qi,

and vanishes ψ0(A) = 0 for connections which do not satisfy such a condition. Notice
that those configurations lead to singularities in the exponents of the vacuum functional.
In the imaginary terms, because in such a case the harmonic component of ∗F (A) −
4π
k

∑Q
i=1 qiδ(x− xi) is non-null and ∆−1 is not defined on such forms. However, the

relevant singularities appear in the real part of the exponential. Indeed, the harmonic
component of

∗F (A)−mα2(m2 + ∆)−1

Q∑
i=1

qiδ(x− xi),
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does not vanish for such configurations, i.e.∫
Σ

F (A) 6= 2α2

m

Q∑
i=1

qi.

Therefore it belongs to the kernel of the Laplace-Beltrami operator ∆ and its inverse
becomes singular for those terms.

The vacuum energy is also modified by the presence of the external sources. The
energy shift is given by

(5.8) ∆EQ =
α2

2

Q∑
i 6=j

qiqj(∆2 +m2)−1(xi, xj).

In the case of two external charges, q1, q2, the energy shift (5.8) has an exponential decay

∆E(x1, x2) ≈ q1q2e−md(x1,x2) for d(x1, x2) � 1

for large distances d(x1, x2) between the external sources, whereas at short distances it
exhibits an ultraviolet logarithmic divergent behaviour

∆E(x1, x2) ≈ −q1q2 log(md(x1, x2)) for d(x1, x2) � 1.

This confirms the non-confining character of the theory at large distances whereas at
short distances the interaction between charges remains coulombian.

In the case of higher genus surfaces, g > 0, the same analysis shows that the de-
generacy of the vacuum is not removed by the the presence of the external charges and
the effective interaction between them at large/short distances is genus independent. In
particular, the vacuum states are given by

(5.9)

Ψn
0 (A) = exp

{
−kπū(Im Ω)−1u/2 + kπu(Im Ω)−1u/2

}
θ

[
n/k
0

]
(ku; kΩ)

exp

{
ik

4π
(
ξ, [∆φ− 4π

k

Q∑
i=1

qiδ(x− xi)]
)
− 1

2α2

(
[∆φ+mα2

Q∑
i=1

qiδ(x− xi)],

∆−1(m2 + ∆)
1
2 [∆φ+mα2

Q∑
i=1

qiδ(x− xi)]
)}

(n = 0, 1, . . . , k − 1), for gauge fields whose magnetic charge equals the total electric
charge of the external electric charges. The vacuum states (5.9) vanish for any other
gauge field configuration.

The only effect of the external charges appears in the form of the stationary states
and in the corresponding energies, which are given by (5.8).

6. Conclusions. Some of the above results can be generalized for non-abelian the-
ories. In such a case we have considered only the vacuum structure associated to the
kinetic term of the hamiltonian (2.12) but the true vacuum state should minimize the
whole hamiltonian, which also includes a potential term. To understand how this term
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could affect the vacuum structure we need a more elaborate argument. The crucial remark
is that, as we have seen, the vacuum as any other physical state has to vanish at reducible
gauge field configurations with monopole components, but among those configurations
there are the absolute minima of the potential term when we restrict to the corresponding
strata [9]. This can be understood from the following remarks. The flow defined by the
gradient field of the potential term is tangent to the complex gauge orbits and such a flow
has critical points at reducible configurations that are solutions of Yang-Mills equations.
These critical gauge configurations can be found in any strata of A, and it can be shown
that the negative modes of the second variation of the potential at these critical points
are orthogonal to their strata, which implies that they are local minima of the potential
restricted to the those strata. The fact that they are global minima follows from the
results of Atiyah and Bott [9].

Vanishing of the wave functional Ψ0(A) along the chiral gauge orbits containing solu-
tions of Yang-Mills equation with magnetic monopole components is, then, necessary to
minimize the expectation value of IH. It is not only required for the minimization of the
kinetic term, but also for that of the Yang-Mills potential term, and it is a consequence of
Ritz variational principle. Both terms of the hamiltonian, the kinetic and potential terms
conspire to make the vacuum to vanish on the orbits of gauge field configurations with
monopole components [6]. It is obvious that we cannot extend this argument to higher
energy states.

This result explains why in the limit of infinite topological mass α2 →∞ we recover
the Chern-Simons states which by the same argument also vanish for the same configu-
rations, and are completely determined by their values at flat gauge field configurations
[19]. A similar result holds for an arbitrary gauge group G.

In summary, magnetic monopoles in topologically massive gauge theories are sup-
pressed in any physical state by kinematical constraints, but the gauge field configurations
on their complex gauge orbits are also suppressed in the vacuum state. They only give
non-trivial contributions to excited states. Since the topologically massive gauge theories
is not confining it is natural to speculate about the connection between the existence
of nodes and the absence of confinement induced by the Chern-Simons interaction. The
analysis of the effect of external static sources on the vacuum energy supports such a con-
jecture. If this connection exists an important role will be played by those configurations
in the confinement mechanism for pure gauge theories. So far, most of the confinement
scenarios gave a leading role to magnetic monopoles. From the above analysis it might
be inferred that the gauge fields which are chiral gauge equivalent to those monopoles
also play a relevant role. This opens a new possibility for understanding the mechanism
of permanent confinement in 2+1-dimensional gauge theories.
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