
SYMPLECTIC SINGULARITIES AND GEOMETRY OF GAUGE FIELDS
BANACH CENTER PUBLICATIONS, VOLUME 39

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

WARSZAWA 1997

QUANTUM FIBRE BUNDLES. AN INTRODUCTION

TOMASZ BRZEZIŃSKI
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Abstract. An approach to construction of a quantum group gauge theory based on the
quantum group generalisation of fibre bundles is reviewed.

1. Introduction and preliminaries.

1.1. Introduction. The algebraic approach to deformation-quantisation involves the re-
placing of the algebras of functions by non-commutative algebras. In recent years we have
seen a rapid development of this approach to quantisation, initiated by Drinfeld’s [17] re-
alisation of Hopf algebras as deformations of Lie groups. Hopf algebras are now commonly
called quantum groups. Quantum groups originated in the quantum inverse scattering
method developed by the Petersburg School and applied to quantisation of completely
integrable Hamiltonian systems. Nowadays, however, it is believed that quantisation-
deformation and quantum groups in particular may be applied to the description of
spaces at the Planck scale. Having this application in mind, it is important to develop a
kind of gauge theory involving quantum groups. Such a theory was introduced by S. Majid
and the author in [7] in the framework of fibre bundles with quantum structure groups.
In this paper we review the main elements of the quantum group gauge theory of [7].

The article is organised as follows. In the remaining part of Section 1 we give a crash
introduction to Hopf algebras and non-commutative differential geometry. The reader
familiar with these topics may go directly to Section 2, where we describe elements of the
theory of quantum fibre bundles. Then in Section 3 we present gauge theory of such fibre
bundles. We conclude the paper with some remarks on other developments of quantum
group gauge theory and open problems in Section 4.

1.2. Hopf algebras. A unital algebra H over a field k is called a Hopf algebra if there
exist linear multiplicative maps: a coproduct ∆ : H → H ⊗ H and a counit ε : H → k,

1991 Mathematics Subject Classification: Primary 58B30; Secondary 81R50, 17B37, 16W30.
The paper is in final form and no version of it will be published elsewhere.

[211]



212 T. BRZEZIŃSKI

and a linear antimultiplicative map S : H → H (an antipode) which satisfy the following
axioms [28]:

1. (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ ;
2. (id⊗ ε) ◦∆ = (ε⊗ id) ◦∆ = id;
3. m ◦ (id⊗ S) = m ◦ (S⊗ id) = 1ε.
Here and in what follows m denotes the multiplication map. One should think of a

Hopf algebra as a non-commutative generalisation of the algebra of regular functions on
a group. In this case ∆ corresponds to the group multiplication and the axiom 1. states
the associativity of this multiplication. Axiom 2. states the existence of the unit in a
group and 3. is the existence of inverses of group elements, written in a dual form. For
this reason Hopf algebras are also called quantum groups.

For a coproduct we use an explicit expression ∆(a) = a(1)⊗a(2), where the summation
is implied according to the Sweedler sigma convention [28], i.e. a(1)⊗ a(2) =

∑
i∈I a(1)

i⊗
a(2)

i for an index set I. We also use the notation

a(1) ⊗ a(2) ⊗ · · · ⊗ a(n) = (∆⊗ id⊗ · · · ⊗ id︸ ︷︷ ︸
n−2

) ◦ · · · ◦ (∆⊗ id) ◦∆

which describes a multiple action of ∆ on a ∈ H.
A vector space C with a coproduct ∆ : C → C ⊗ C and the counit ε : C → k,

satisfying axioms 1. and 2. is called a coalgebra.
A vector space V is called a right H-comodule if there exists a linear map ρR :

V → V ⊗ H, called a right coaction, such that (ρR ⊗ id) ◦ ρR = (id ⊗ ∆) ◦ ρR and
(id ⊗ ε) ◦ ρR = id. We say that a unital algebra P over k is a right H-comodule algebra
if P is a right H-comodule with a coaction ∆R : P → P ⊗ H, and ∆R is a linear
multiplicative or, equivalently, an algebra map. The algebra structure of P ⊗H is that of
a tensor product algebra. For a coaction ∆R we use an explicit notation ∆Ru = u(0)⊗u(1),
where the summation is also implied. Notice that u(0) ∈ P and u(1) ∈ H. If P is a right
H-comodule so is P ⊗ P with a coaction ∆R

(1) ∆R(u⊗ v) = u(0) ⊗ v(0) ⊗ u(1)v(1).

If P is a right H-comodule algebra then P coH denotes a fixed point subalgebra of P , i.e.
P coH = {u ∈ P : ∆Ru = u ⊗ 1}. P coH is a subalgebra of P with a natural inclusion
j : P coH ↪→ P which we do not write explicitly later on.

Let H be a Hopf algebra, B be a unital algebra over k, and let f, g : H → B be
linear maps. A convolution product of f and g is a linear map f ∗ g : H → B given by
(f ∗ g)(a) = f(a(1))g(a(2)), for any a ∈ H. With respect to the convolution product,
the set of all linear maps H → B forms an associative algebra with the unit 1ε. We say
that a linear map f : H → B is convolution invertible if there is a map f−1 : H → B

such that f ∗ f−1 = f−1 ∗ f = 1ε. The set of all convolution invertible maps H → B

forms a multiplicative group. Similarly if V is a right H-comodule and f : V → B,
g : H → B are linear maps then we define a convolution product f ∗ g : V → B to be
(f ∗ g)(v) = f(v(0))g(v(1)).

1.3. Differential structures. Let P be a unital algebra over k. Denote by Ω1P the
P -bimodule kerm, where m : P ⊗P → P is a multiplication map. Let dU : P → Ω1P be
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a linear map

(2) dUu = 1⊗ u− u⊗ 1.

It can be easily checked that dU is a differential, known as the Karoubi differential. We
call the pair (Ω1P,dU) the universal differential structure on P [21, 22]. Ω1P should be
understood as a bimodule of 1-forms. We say that (Ω1(P ),d) is a first order differential
calculus on P if there exists a subbimodule N ⊂ Ω1P such that Ω1(P ) = Ω1P/N
and d = π ◦ dU, where π : Ω1P → Ω1(P ) is a canonical projection. It is then said that
(Ω1(P ),d) is generated by N . Let a differential structure (Ω1(H),d) on a Hopf algebra H
be generated by N ⊂ Ω1H. We say that (Ω1(H),d) is a bicovariant differential calculus
[31] if there exists a unique right ideal Q ⊂ ker ε such that H ⊗ Q = κ(N ), where
κ : H⊗H → H⊗H, κ : a⊗b 7→ ab(1)⊗b(2), and AdR(Q) ⊂ Q⊗H, where AdR : H → H⊗H
is a right adjoint coaction

(3) AdR : a 7→ a(2) ⊗ (Sa(1))a(3).

The universal differential envelope is the unique differential algebra (ΩP,d) containing
(Ω1P,dU) as its first order part.

2. Fibre bundles. In this section we report the basic elements of the theory of
quantum fibre bundles of S. Majid and the author [7]. The detailed analysis of quantum
group gauge theory on classical spaces may be found in [8]. All the algebras are over a
field k of complex or real numbers. Except for Section 2.4 and Example 3.1.4 we work
with the universal differential structure.

2.1. Quantum principal bundles. Let H be a Hopf algebra, P a right H-comodule
algebra with a coaction ∆R : P → P ⊗H. We define a canonical map χ : P ⊗P → P ⊗H,

(4) χ = (m⊗ id) ◦ (id⊗∆R).

Explicitly, χ(u ⊗ v) = uv(0) ⊗ v(1), for any u, v ∈ P . We say that the coaction ∆R

is free if χ is a surjection and it is exact if kerχ = P (dP coH)P, where d denotes the
universal differential (2) and P coH is a fixed point subalgebra of P . We denote P (dP coH)P
by Ω1Phor and call its elements horizontal forms. Although the freeness and exactness
conditions are algebraic in this formulation one should notice that in fact the latter one is
a condition on differential structures on P and P coH . This becomes clear in Section 2.4.
The map χ |Ω1P has a natural geometric interpretation as a dual to the map G → TuX,
which to each element of the Lie algebra G of a group G associates a fundamental vector
field on a manifold X on which G acts.

Definition 2.1.1. Let H be a Hopf algebra, (P,∆R) be a right H-comodule algebra
and let B = P coH . We say that P (B,H) is a quantum principal bundle within the
differential envelope, with a structure quantum group H and a base B if the coaction ∆R

is free and exact.

This definition reproduces the classical situation (but in a dual language) in which
a group G acts freely on a total space X from right, and a base manifold M is defined
as M = X/G. The freeness of the action of G on X means that a map X × G →
X × X, (u, g) 7→ (u, ug) is an inclusion. In the classical situation and the commutative
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differential structure the exactness follows from the freeness. This is no longer true in a
non-commutative extension.

The notion of a quantum principal bundle is strictly related to the theory of algebraic
extensions [27,2] since P (B,H) is a Hopf-Galois extension of B to P by a Hopf algebra
H. Yet another way of defining of a quantum principal bundle makes use of the notion
of a translation map, which proves very useful in analysis of the structure of quantum
bundles [5].

Proposition 2.1.2. Let H be a Hopf algebra, P a right H-comodule algebra and
B = P coH . Assume that the coaction ∆R is free. Then P (B,H) is a quantum principal
bundle iff there exists a linear map τ : H → P ⊗ BP , given by τ(a) =

∑
i∈I ui ⊗ Bvi,

where
∑

i∈I ui ⊗ vi ∈ χ−1(1⊗ a). The map τ is called a translation map.

A translation map is a well-known object in the classical bundle theory [20, Defini-
tion 4.2.1]. Classically, if X is a manifold on which a Lie group G acts freely then the
translation map τ̂ : X×MX → G, where M = X/G, is defined by uτ̂(u, v) = v. Dualising
this construction we arrive immediately at the map τ above.

2.2. Examples of quantum principal bundles.

Example 2.2.1. A trivial quantum principal bundle. Let H be a Hopf algebra, P a
right H-comodule algebra and B = P coH . Assume there is a convolution invertible map
Φ : H → P such that ∆RΦ = (Φ ⊗ id)∆, Φ(1) = 1, i.e. Φ is an intertwiner. Then
P (B,H) is a quantum principal bundle called a trivial quantum principal bundle and
denoted by P (B,H,Φ). The word trivial refers to the fact that P ∼= B ⊗ H as vector
spaces with an isomorphism ΘΦ : P → B ⊗H, ΘΦ : u 7→ u(0)Φ−1(u(1))⊗ u(2). Moreover,
as algebras P ∼= BΦ#H, where Φ# denotes a crossed product [1], with the isomorphism
ΘΦ above. Explicitly, the product in BΦ#H is given by

(b1 ⊗ a1)(b2 ⊗ a2) = b1Φ(a1
(1))b2Φ(a2

(1))Φ−1(a1
(2)a

2
(2))⊗ a1

(3)a
2
(3).

Such an algebra P is also known as a cleft extension of B [29, 16].
The map τ = (Φ−1 ⊗B Φ) ◦∆ is a translation map in P (B,H,Φ).

For a trivial quantum principal bundle P (B,H,Φ) we define a gauge transformation
as a convolution invertible map γ : H → B such that γ(1) = 1. The set of all gauge
transformations of P (B,H,Φ) forms a group with respect to the convolution product.
This group is denoted by H(B). Gauge transformations relate different trivialisations of
P (B,H,Φ): Ψ : H → P is a trivialisation of P (B,H,Φ) iff there exists γ ∈ H(B) such
that Ψ = γ ∗ Φ. They also have a clear meaning in the theory of crossed products. The
following proposition is a special case of the result of Doi [15] (see also [23, Proposition
4.2]).

Proposition 2.2.2. Let P (B,H,Φ) be a trivial quantum principal bundle. Let for
any trivialisation Ψ of P (B,H,Φ), ΘΨ : BΨ#H → BΦ#H be a crossed product algebra
isomorphism such that ΘΨ |B= id and ∆RΘΨ = (ΘΨ ⊗ id)∆R. Then there is a bijective
correspondence between all isomorphisms ΘΨ corresponding to all trivialisations Ψ and
the gauge transformations of P (B,H,Φ).
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Example 2.2.3. Quantum principal bundle on a quantum homogeneous space. Let H
and P be Hopf algebras. Assume, there is a Hopf algebra projection π : P → H. Define
a right coaction of H on P by ∆R = (id ⊗ π)∆ : P → P ⊗ H. Then B = P coH is a
quantum quotient space, a special case of a quantum homogeneous space. Assume that
kerπ ⊂ m ◦ (kerπ |B ⊗P ). Then P (B,H) is a quantum principal bundle within the
differential envelope. This bundle is denoted by P (B,H, π).

The translation map τ : H → P ⊗BP in P (B,H, π) is given by τ(a) = Su(1)⊗Bu(2),
where u ∈ π−1(a).

A large number of examples of quantum bundles on quantum homogeneous spaces
has been found in [24]. The simplest and probably the most fundamental one is

Example 2.2.4. The quantum Hopf fibration [7, Section 5.2]. The total space of this
bundle is the quantum group SUq(2), as an algebra generated by the identity and a

matrix T = (tij) =
(
α β
γ δ

)
, subject to the homogeneous relations

αβ = qβα, αγ = qγα, αδ = δα+ (q − q−1)βγ, βγ = γβ, βδ = qδβ, γδ = qδγ,

and a determinant relation αδ − qβγ = 1, q ∈ k∗. SUq(2) has a matrix quantum group
structure,

∆tij =
2∑

k=1

tik ⊗ tkj , ε(tij) = δij , ST =
(

δ −q−1β
−qγ α

)
.

The structure quantum group of the quantum Hopf bundle is an algebra of functions on
U(1), i.e. the algebra k[Z,Z−1] of formal power series in Z and Z−1, where Z−1 is an
inverse of Z. It has a standard Hopf algebra structure

∆Z±1 = Z±1 ⊗ Z±1, ε(Z±1) = 1, SZ±1 = Z∓1.

There is a Hopf algebra projection π : SUq(2) → k[Z,Z−1],

π :
(
α β
γ δ

)
7→

(
Z 0
0 Z−1

)
,

which defines a right coaction ∆R : SUq(2) → SUq(2)⊗ k[Z,Z−1] by ∆R = (id⊗ π) ◦∆.
Finally S2

q ⊂ SUq(2) is a quantum two-sphere [26], defined as a fixed point subalgebra,
S2

q = SUq(2)cok[Z,Z−1]. S2
q is generated by {1, b− = αβ, b+ = γδ, b3 = αδ} and the

algebraic relations in S2
q may be deduced from those in SUq(2).

It was shown in [7] that SUq(2)(S2
q , k[Z,Z

−1], π) is a non-trivial quantum principal
bundle over the homogeneous space.

The other examples of quantum principal bundles constructed in [24] include:

Uq(n)(S2n−1
q , Uq(n− 1), π),

SUq(n)(S2n−1
q , SUq(n− 1), π),

SUq(n)(CPn−1
q , Uq(n− 1), π),

Uq(n)(Gk(Cn
q ), Uq(k)⊗ Uq(n− k), π),

where Gk(Cn
q ) is a quantum Grassmannian.
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R e m a r k 2.2.5. The quantum sphere S2
q considered in Example 2.2.4. is the special

case of the most general quantum sphere S2
q (µ, ν), where µ 6= ν are real parameters such

that µν ≥ 0 (see [26] for details). Precisely S2
q = S2

q (1, 0). It can be shown that S2
q is the

only quantum sphere which can be interpreted as a quotient space of SUq(2) by k[Z,Z−1]
in the sense of Example 2.2.3. It turns out, however, that S2

q (µ, ν) may be viewed as a
quotient space of SUq(2) by a coalgebra C = SUq(2)/J , where J is a right ideal in SUq(2)
generated by

p(qα2 − β2) + αβ − pq, p(qγ2 − δ2) + γδ + p, p(qαγ − βδ) + qβγ,

where p =
√
µν/(µ− ν) [6]. Precisely

S2
q (µ, ν) = {u ∈ SUq(2); u(1) ⊗ π(u(2)) = u⊗ π(1)},

where π : SUq(2) → C is the canonical surjection. It can be shown that the vector space C
is spanned by 1 = π(1), xn = π(αn) and yn = π(δn) (cf. definition of π in Example 2.2.4).

One would like to view SUq(2) as a total space of a quantum principal bundle over
S2

q (µ, ν) similarly as in Example 2.2.4. Since C is not a Hopf algebra one needs to gen-
eralise the notion of a bundle. In [6] we proposed the following generalisation of Defi-
nition 2.1.1 (this generalisation of quantum group gauge theory is further developed in
[9]). Let C be a coalgebra and let P be an algebra and a right C-comodule. Assume
that there is an action ρ : P ⊗ C ⊗ P → P ⊗ C of P on P ⊗ C and an element 1 ∈ C

such that ∆R ◦m = ρ ◦ (∆R ⊗ id) and for any u, v ∈ P , ρ(u ⊗ 1 ⊗ v) = χ(u ⊗ v). Then
B = {u ∈ P ; ∆Ru = u ⊗ 1} is a subalgebra of P , and we say that P (B,C, ρ) is a
quantum ρ-principal bundle over B if the coaction ∆R is free and exact.

In the above example of the quantum sphere S2
q (µ, ν) the action ρ is given by ρ(u⊗

c, v) = uv(1) ⊗ ρ0(c, v(2)), where ρ0 is a natural right action of SUq(2) on C.

2.3. Quantum associated bundles.

Definition 2.3.1. Let P (B,H) be a quantum principal bundle and let V be a right
Hop-comodule algebra, where Hop denotes the algebra which is isomorphic to H as a
vector space but has an opposite product, with coaction ρR : V → V ⊗ H. The space
P ⊗V is naturally endowed with a right H-comodule structure ∆E : P ⊗V → P ⊗V ⊗H
given by ∆E(u⊗v) = u(0)⊗v(0)⊗u(1)v(1) for any u ∈ P and v ∈ V . We say that the fixed
point subalgebra E of P ⊗H with respect to ∆E is a quantum fibre bundle associated to
P (B,H) over B with structure quantum group H and standard fibre V . We denote it by
E = E(B, V,H).

It can be easily shown that B is a subalgebra of E with the inclusion jE = b⊗ 1. The
inclusion jE provides E with the structure of a left B-module.

Example 2.3.2. Let P (B,H,Φ) be a trivial quantum principal bundle and let V be
as in Definition 2.3.1. Assume also that H has a bijective antipode. The associated bundle
E(B, V,H) is called a trivial quantum fibre bundle. Trivialisation Φ : H → P induces a
map ΦE : V → E, ΦE(v) =

∑
Φ(S−1v(1)) ⊗ v(0) which allows one to identify E with

B ⊗ V as vector spaces via the linear isomorphism b⊗ v 7→ bΦE(v). As an algebra, E is
isomorphic to a certain crossed product algebra B#V [3].
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The following proposition shows that a quantum principal bundle is a fibre bundle
associated to itself.

Proposition 2.3.3. A quantum principal bundle P (B,H) is a fibre bundle associated
to P (B,H) with the fibre which is isomorphic to H as an algebra and with the coaction
ρR = (id⊗ S) ◦∆′, where ∆′ denotes the opposite coproduct , ∆′(a) = a(2) ⊗ a(1), for any
a ∈ H.

From the point of view of a gauge theory it is important to consider cross-sections of
a vector bundle. In this algebraic setting a cross-section is defined as follows

Definition 2.3.4. Let E(B, V,H) be a quantum fibre bundle associated to a quantum
principal bundle P (B,H). A left B-module map s : E → B such that s(1) = 1 is called a
cross section of E(B, V,H). The set of cross sections of E(B, V,H) is denoted by Γ(E).

Lemma 2.3.5. If s : E → B is a cross section of a quantum fibre bundle E(B, V,A)
then s ◦ jE = id.

The result of trivial Lemma 2.3.5 justifies the term cross section used in Defini-
tion 2.3.4. We remark that the definition of a cross section of a quantum fibre bundle
analogous to the one we use here was first proposed in [19]. We analyse cross-sections
more closely in Section 3.3.

2.4. Quantum principal bundles with general differential structures. The detailed anal-
ysis of quantum principal bundles with general differential structures goes far beyond the
scope of this paper. Here we give only a definition of a quantum principal bundle with
general differential structure. We refer the interested reader to the fundamental paper
[7]. More explicit exposition may be also found in [3].

Let (Ω1(P ),d) be a first order differential calculus on a right H-comodule algebra
P generated by N ⊂ Ω1P and let (Ω1(H),d) be a bicovariant differential structure on
H generated by the right ideal Q ⊂ ker ε. We say that differential structures (Ω1(P ),d)
and (Ω1(H),d) agree with each other if ∆R(N ) ⊂ N ⊗ H , where ∆R is given by (1),
and χ(N ) ⊂ P ⊗ Q. If differential structures on P and H agree we can define a map
χN : Ω1(P ) → P ⊗ ker ε/Q as follows. Let πN : Ω1P → Ω1(P ) and πQ : ker ε→ ker ε/Q
be canonical projections. Then for any ρ ∈ Ω1(P ) take any ρU ∈ π−1

N (ρ) and define
χN (ρ) = (id ⊗ πQ) ◦ χ(ρU ), where χ is a canonical map (4). We say that the coaction
∆R : P → P ⊗H is exact with respect to differential structures generated by N and Q
if kerχN = PΩ1(P coH)P . Finally we define a quantum principal bundle with P (B,H)
with differential structure generated by N and Q if the coaction ∆R is free and exact
with respect to this structure.

3. Gauge Theory. In this section we analyse more closely the structure of quantum
bundles. We introduce the formalism of connections and take a closer look at cross sections
and gauge transformations in general (non-trivial) quantum bundles.

3.1. Connections = gauge fields. From the point of view of gauge theories connections
in principal bundles are the gauge fields. In the definition of a connection an important
rôle is played by a right adjoint coaction of H on itself (3). Since AdR(ker ε) ⊂ ker ε⊗H,
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we can define a coaction ∆R : P ⊗ ker ε → P ⊗ ker ε ⊗ H by ∆R(u ⊗ a) = u(0) ⊗
a(2) ⊗ u(1)(Sa(1))a(3).The canonical map χ : Ω1P → P ⊗ ker ε is equivariant, i.e. ∆Rχ =
(χ⊗ id)∆R, where ∆R on Ω1P is given by (1). From the definition of a quantum principal
bundle we deduce that the following sequence

0 → Γhor
j→ Ω1P

χ→ P ⊗ ker ε→ 0

is an exact sequence of equivariant maps. A connection in P (B,H) is a right-invariant
splitting of this sequence. In other words, if there is a map σ : P ⊗ ker ε → Ω1P such
that ∆Rσ = (σ ⊗ id)∆R and χ ◦ σ = id, then a connection in P (B,H) is identified with
a linear projection Π : Ω1P → Ω1P , Π = σ ◦χ |Ω1P . Obviously, ∆RΠ = (Π⊗ id)∆R. The
connection Π is strong if and only if (id−Π)dP ⊂ Ω1BP , [19].

We denote Ω1Pver = Im Π. Every α ∈ Ω1Pver is said to be a vertical 1-form. If there
is a connection in P (B,H), then Ω1P = Ω1Phor ⊕ Ω1Pver.

Next we define a map ω : H → Ω1P , by

ω(a) = σ(1⊗ (a− ε(a))).

The map ω is called a connection 1-form of the connection Π.

Theorem 3.1.1. Let P (B,H) be a quantum principal bundle and let Π be a connection
in P (B,H). A connection form ω has the following properties:

1. ω(1) = 0;
2. ∀ a ∈ H, χω(a) = 1⊗ (a− ε(a));
3. ∆R ◦ ω = (ω ⊗ id) ◦AdR.
Conversely , if ω : H → Ω1P is a linear map obeying 1−3, then Π = m◦(id⊗ω)χ |Ω1P

is a connection with a connection 1-form ω.

Having a connection Π in a quantum principal bundle P (B,H) one can define the
horizontal projection as a complementary part of Π, and a covariant derivative as a
horizontal part of d (for details see [7]). As a result one defines a curvature of a strong
connection ω as F = dω + ω ∗ ω [19].

Example 3.1.2. Strong connection in a trivial bundle. Let P (B,H,Φ) be a trivial
quantum principal bundle as before, and let β : H → Ω1B be any linear map such that
β(1) = 0. Then the map ω = Φ−1 ∗β ∗Φ+Φ−1 ∗dΦ is a connection 1-form in P (B,H,Φ).
Its curvature is easily computed to be F = Φ−1 ∗ (dβ + β ∗ β) ∗ Φ.

Example 3.1.3. Canonical connection. Let P (B,H, π) be a quantum principal bundle
over the homogeneous space B as described in Example 2.2.3. Assume, there is an algebra
inclusion i : H ↪→ P such that π ◦ i = id, εP (i(a)) = εH(a), for any a ∈ H and such that
(id⊗π)AdRi = (i⊗ id)AdR. Then the map ω(a) = Si(a)(1)di(a)(2) is a connection 1-form
in P (B,H, π). This connection is strong if i is an intertwiner for the right coaction [3,
Lemma 5.5.5].

Example 3.1.4. The Dirac q-monopole. Consider the quantum Hopf fibration of
Example 2.2.4. Let a differential structure (Ω1(SUq(2)),d) be given by the 3D calculus
of Woronowicz [30]. Ω1(SUq(2)) is generated by the forms ω0 = δdβ − q−1βdδ, ω1 =
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δdα− q−1βdγ, ω2 = γdα− q−1αdγ and the relations

ω0α = q−1αω0, ω0β = qβω0, ω1α = q−2αω1,

ω1β = q2βω1, ω2α = q−1αω2, ω2β = qβω2.

The remaining relations can be obtained by the replacement α → γ, β → δ. One can
show that SUq(2)(S2

q , k[Z,Z
−1], π) is a quantum principal bundle with this differential

structure. We define the connection one form ω : k[Z,Z−1] → Ω1(SUq(2)) by

ω(Zn) =
q−2n − 1
q−2 − 1

ω1.

In [7] it has been shown that ω is a canonical connection in SUq(2)(S2
q , k[Z,Z

−1], π)
which reduces to the Dirac monopole of charge 1 [18] when q → 1. The curvature of ω
is F (Zn) = q−2n−1

q−2−1 ω
0 ∧ ω2. The q-deformed Dirac monopole of any charge is discussed

in [11].

3.2. Cross sections = matter fields. In this section we use the notion of a translation
map in a quantum principal bundle P (B,H) to identify cross sections of a quantum fibre
bundle E(B, V,H) with equivariant maps V → P . In gauge theories such maps play
a rôle of matter fields. Recall that a linear map φ : V → P is said to be equivariant if
∆Rφ = (φ⊗id)ρR, where ρR is a right coaction of H on V . In particular, our identification
implies that a quantum principal bundle is trivial if it admits a cross section which is an
algebra map.

Theorem 3.2.1. Let H be a Hopf algebra with a bijective antipode. Cross sections of a
quantum fibre bundle E(B, V,H) associated to a quantum principal bundle P (B,H) are
in bijective correspondence with equivariant maps φ : V → P such that φ(1) = 1.

P r o o f. A map φ : V → P induces a cross section s of E(B, V,H), by s = m◦(id⊗φ).
Conversely, for any s ∈ Γ(E) we define a map φ : V → P by

(5) φ : v 7→ τ (1)(S−1v(1))s(τ (2)(S−1v(1))⊗ v(0)),

where τ(a) = τ (1)(a)⊗Bτ
(2)(a) is a translation map in P (B,H), and then use properties of

a translation map to prove that φ has the required properties and that the correspondence
θ : φ 7→ s is bijective.

Example 3.2.2. Let E(B, V,H) be a quantum fibre bundle associated to a trivial
quantum principal bundle P (B,H,Φ) as described in Example 2.3.2. In this case every
element of E has the from

∑
i∈I biΦE(vi) for some bi ∈ B and vi ∈ V , and the bijection

θ of the proof of Theorem 3.2.1 reads

θ(φ)(
∑
i∈I

biΦE(vi)) =
∑
i∈I

biΦ(S−1vi(1))φ(vi(0)),

for any equivariant φ : V → P . The inverse of θ associates an equivariant map θ−1(s) :
V → P ,

θ−1(s)(v) = Φ−1(S−1v(1))s(ΦE(v(0)))

to any s ∈ Γ(E). Notice that the map θ−1(s) obtained in this way is different from the
equivariant map φ discussed in [7, Proposition A6].
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Corollary 3.2.3. Cross sections s : P → B of a quantum principal bundle P (B,H)
are in bijective correspondence with the maps φ : H → P such that ∆Rφ = (φ⊗S)∆′ and
φ(1) = 1.

Note that in Corollary 3.2.3 we do not need the invertibility of S, but if H has a
bijective antipode S, the sections of a quantum principal bundle P (B,H) are in one-to-one
correspondence with the maps ψ : H → P such that ψ(1) = 1 and ∆R ◦ψ = (id⊗ψ) ◦∆.
We simply need to define ψ = φ ◦ S−1, where φ is given by Corollary 3.2.3.

Proposition 3.2.4. Any trivial quantum principal bundle P (B,H,Φ) admits a sec-
tion. Conversely , if a bundle P (B,H) admits a section which is an algebra map then
P (B,H) is trivial with the total space P isomorphic to B ⊗H as an algebra.

P r o o f. A convolution inverse of a trivialisation Φ of a trivial quantum principal
bundle P (B,H,Φ) satisfies the assumptions of Corollary 3.2.3, hence s = id ∗ Φ−1 is a
section of P (B,H,Φ). Conversely, assume that an algebra map s : P → B is a section of
P (B,H). Clearly, s is a B-bimodule map, hence we can define a linear map Φ : H → P ,
Φ = m ◦ (s⊗ B id) ◦ τ . One then shows that Φ is a trivialisation and θ̃(s) constructed in
Corollary 3.2.3 is its convolution inverse.

R e m a r k 3.2.5. We would like to emphasise that the existence of a cross section of
a quantum principal bundle does not necessarily imply that the bundle is trivial. As an
example of a non-trivial quantum principal bundle admitting a cross section we consider
the quantum Hopf fibration of Example 2.2.4. We consider a linear map φ : k[Z,Z−1] →
SUq(2), given by

φ(1) = 1, φ(Zn) = δn, φ(Z−n) = αn,

for any positive integer n. The map φ satisfies the hypothesis of Corollary 3.2.3, hence it
induces a cross section s : SUq(2) → S2

q , s : u 7→ u(1)φ(π(u(2))) but s is not an algebra
map since, for example, s(αβ) = b− 6= q−1b3b− = s(α)s(β).

3.3. Vertical automorphisms = gauge transformations.

Definition 3.3.1. Let P (B,H) be a quantum principal bundle. Any left B-module
automorphism F : P → P such that F(1) = 1 and ∆RF = (F⊗ id)∆R is called a vertical
automorphism of the bundle P (B,H). The set of all vertical automorphisms of P (B,H)
is denoted by AutB(P ).

Elements of AutB(P ) preserve both the base space B and the action of the structure
quantum group H of a quantum principal bundle P (B,H). AutB(P ) can be equipped
with a multiplicative group structure · : (F1,F2) 7→ F2 ◦ F1. Vertical automorphisms are
often called gauge transformations and AutB(P ) is termed a gauge group.

Proposition 3.3.2. Vertical automorphisms of a quantum principal bundle P (B,H)
are in bijective correspondence with convolution invertible maps f : H → P such that
f(1) = 1 and ∆Rf = (f ⊗ id)AdR.

P r o o f. If f is a map satisfying the hypothesis of the proposition. then F = id ∗ f .
Conversely, for any F ∈ AutB(P ) a map f : H → P , f = m ◦ (id⊗ BF) ◦ τ , where τ is
a translation map has all the required properties.
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Maps f : H → P form a group with respect to the convolution product. This group
is denoted by H(P ). There is an action of H(P ) on the space of connection one-forms
in P (B,A) given by (ω, f) 7→ ωf = f−1 ∗ ω ∗ f + f−1 ∗ df . The connection one-form
ωf is called a gauge transformation of ω. If ω is strong so is its gauge transformation.
Gauge transformation of such ω induces the gauge transformation of its curvature F 7→
f−1 ∗ F ∗ f . Similarly there is an action of H(P ) on Γ(E) viewed as equivariant maps
φ : V → P by Theorem 3.2.1, given by (φ, f) 7→ φf = φ∗f . These are the transformation
properties of the fields in quantum group gauge theories.

Proposition 3.3.2 implies the following:

Corollary 3.3.3. For a quantum principal bundle P (B,H), AutB(P ) ∼= H(P ) as
multiplicative groups.

Theorem 3.3.4. Let P (B,H,Φ) be a trivial quantum principal bundle. Then the
groups AutB(P ), H(P ), and the gauge group H(B) are isomorphic to each other.

Therefore Theorem 3.3.4 allows one to interpret a vertical automorphism of a (locally)
trivial quantum principal bundle as a change of local variables and truly as a gauge
transformation of a trivial quantum principal bundle.

4. Conclusions and open problems. In this paper we reviewed basic properties
of quantum fibre bundles introduced in [7]. There is a number of constructions, already
present in the literature, that we have not described here. For example, locally trivial
quantum principal bundles, defined in [7] were developed by M. Pflaum in [25], using
the methods of the sheaf theory. A very interesting example of the Yang-Mills theory in
quantum bundles was constructed by P. Hajac in [19]. The example considered in [19]
belongs to the interface of the theory described here and the Connes-Rieffel Yang-Mills
theory [14], and points to the very important problem of finding the relationship between
the quantum group gauge theory and Connes’ non-commutative geometry [12].

There is also a number of challenging problems that need to be solved in order to
obtain a full understanding of quantum group gauge theories. For example, in this article
we restricted our discussion only to gauge transformations of bundles with the univer-
sal differential structure. The theory of gauge transformations of bundles with general
differential structures is not yet known. In particular, we would like to define gauge trans-
formations in such a way that a gauge transformation of a connection one-form is still a
connection one-form. A couple of remarks on this problem may be found in [4]. Also, it
would be interesting to equip our algebraic constructions with a some kind of topology,
like C∗ or Fréchet topology. Some topological aspects of quantum fibre bundles are dis-
cussed in [10]. Furthermore, the theory of quantum fibre bundles reviewed in this article
is strictly related to the theory of algebraic extensions. We think that the analysis of
quantum bundles from the point of view of Hopf-Galois extensions may lead to a deeper
insight into the both subjects. Finally, we think it is desirable to develop generalised fibre
bundles defined in Remark 2.2.5. in order to construct a gauge theory on general homo-
geneous spaces. The development of such a theory becomes even more important and
challenging now that the appearance of the SUq(2) homogeneous spaces in the Connes
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description of Standard Model was announced [13].
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