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Abstract. We define suitable Sobolev topologies on the space CP (Bk, f) of connections
of bounded geometry and finite Yang–Mills action and the gauge group and show that the
corresponding configuration space is a stratified space. The underlying open manifold is assumed
to have bounded geometry.

1. Introduction. Consider a differential equation Au = 0 (D). If S is the set of all
possible solutions and G the automorphism group of (D) then the configuration space
S/G plays a decisive role for the solution theory of (D). At the first instance, S/G is a
senseless object until there are introduced suitable topologies and performed completions.
In this paper, we present a canonical approach for gauge theory on open manifolds, i.e.
for the equation δωRω = 0. For compact manifolds, there exists a nice and complete
representation given by Kondracki et al. in [14], [15]. Unfortunately all of the arguments
become completely wrong on open manifolds, e.g. the properness of the action of the
completed diffeomorphism group on the space of Riemannian metrics, mapping properties
of elliptic operators and many other features of elliptic theory. In this paper, we restrict
ourselves to the case of bounded geometry and give a complete topological description of
the configuration space of gauge theory.
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Let (Mn, g) be an open Riemannian manifold satisfying the following two conditions
(I) and (Bk),

(I) rinj(M) = inf
x∈M

rinj(x) > 0,

(Bk) |(∇g)iRg| ≤ Ci, 0 ≤ i ≤ k, k > n/2 + 1.

Here rinj denotes the injectivity radius. rinj > 0 implies the completeness of the metric.
See [6] for a proof.

We motivate (I) and (Bk) as follows. Compact Riemannian manifolds always satisfy
(I) and (Bk) for all k. Hence (I) and (Bk) mean that the geometry at infinity is bounded
in a certain sense which seems physically reasonable. A second reason for assuming (I)
and (Bk) is more technical. (I), (Bk), k ≥ r > n

2 + 1 assure several important and in
the sequel needed properties of Sobolev spaces as the embedding theorem 2.2 and the
module structure theorem 2.3. Our general idea constructing completed nonlinear spaces
is starting with bounded objects (maps, connections) and completing by adding Sobolev
perturbations.

Let P (M,G) → M be a G-principal fibre bundle, G compact with Lie algebra g,
gP = P ×ad G, CP (Bk,fin) the set of G-connections satisfying

(Bk(ω)) |(∇ω)iRω| ≤ Di, 0 ≤ i ≤ k,

and

YM(ω) :=
1
2

∫
M

|Rω|2x dvolx(g) <∞.

and let

G =
{
ϕ : P '−→P

∣∣∣ ϕ covers idM , ϕ(p · g) = ϕ(p) · g,
k−1∑
i=0

sup
p∈P

|∇idϕ|p <∞
}
,

where P is endowed in a canonical manner with a metric of bounded geometry. We
introduce in CP (Bk,fin), G Sobolev topologies, obtain Cr

P (Bk,fin), k ≥ r > n/2 + 1,
where Cr

P (Bk,fin) splits into a topological sum of its components,

Cr
P (Bk,fin) =

∑
i∈I

comp(ωi) =
∑
i∈I

ωi + Ω1,r(gP ,∇ω).

Gr+1 = Gr+1(comp(ωi)) is adapted to comp(ωi), is a Hilbert–Lie group and acts smoothly
on comp(ωi).

Our main task is to study

comp(ωi)/Gr+1(comp(ωi)).

We show that this is a stratified space with in general uncountable number of strata
which are labelled by conjugacy classes of isotropy groups. Here we assume additionally
a certain spectral condition.

The paper is organized as follows. In Section 2 we recall some facts on the space
Cr

P (Bk,fin) which are contained in [4]. Section 3 is devoted to the detailed definition of the
completed gauge group Gr+1(ω0). We show in Section 4 that Gr+1(ω0) acts smoothly on
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comp(ω0), the orbits are submanifolds and the action admits a slice. Section 5, finally, con-
tains our main theorem, the stratification of the configuration space comp(ω0)/Gr+1(ω0).
A special feature of the theory on open manifolds is the fact that the isotropy group of a
connection is discrete in Gr+1(ω0). We cannot present here all proofs in detail which are
contained in [13]. The general procedure has been essentially modelled in [14].

Up to a great part we follow the schedule of [14], but with modified analytic arguments.
To obtain closed image properties, we must add the spectral condition that the essential
spectrum of a certain Laplace operator starts away from zero.

2. The space of connections. We assume (Mn, g) open, complete with (I) and (Bk).
As is well known, there is no obstruction against the existence of a metric g with (I) and
(Bk), 0 ≤ k ≤ ∞. Let (E, h) be a Riemannian vector bundle with metric connection ∇E .
Additionally to (I) and (Bk) for (Mn, g) we define the condition

(Bk(E,∇E)) |(∇E)iRE | ≤ Ci, 0 ≤ i ≤ k.

The Levi–Civita connection∇g and∇E induce metric connections∇ in all tensor bundles
with values in E, T q

r (M)⊗E. Denote by Ωq(E) the space of E-valued q-forms, Ωq(E) =
C∞(

∧q
T ∗M ⊗ E). Now we define several Sobolev spaces and restrict ourselves to the

case of E-valued q-forms. The case of E-valued tensor is quite analogous and can be
considered as Ω0(T r

q ⊗ E).
Let for 1 ≤ p <∞, r ≥ 0

Ωq,p
r (E) :=

{
σ ∈ Ωq(E)

∣∣∣∣ |σ|p,r :=
( ∫

M

r∑
i=0

|∇iσ|px dvolx(g)
)1/p

<∞
}
,

Ω
q,p,r

(E) = completion of Ωq,p
r (E) with respect to | |p,r ,

Ω̂q,p,r(E) = completion of C∞0 (
r∧
T ∗M ⊗ E) with respect to | |p,r and

Ωq,p,r(E) = {σ
∣∣ σ measurable distributional q-form such that |σ|p,r <∞}.

Moreover define for m ≥ 0

b
mΩq(E) =

{
σ ∈ Ωq(E)

∣∣∣ b,m|σ| :=
m∑

i=0

|∇iσ|x <∞
}
,

b,mΩq(E) = completion of b
mΩq(E) with respect to b,m| | and

b,mΩ̂q(E) = completion of C∞0 (
q∧
T ∗M ⊗ E) with respect to b,m| |.

Then
b,mΩq(E) = {σ

∣∣ σ is a Cm-form with b,m|σ| <∞}.

There are natural inclusions
b,mΩ̂q(E) ( b

mΩq(E)

Ω̂q,p,r(E) ⊆ Ω
q,p,r

(E) ⊆ Ωq,p,r(E).

Proposition 2.1. Assume (Mn, g) open, complete with (I) and (Bk). Then

Ω̂q,p,r(E) = Ω
q,p,r

(E) = Ωq,p,r(E).
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Theorem 2.2. Assume (Mn, g) open, complete with (I) and (B0), r > n/p+m. Then
there exists a continuous embedding

Ωq,p,r(E) ↪→ b,mΩq(E).

b,m|σ| ≤ D · |σ|p,r.

Theorem 2.3. Assume (Mn, g), (Ei, hi,∇Ei) → M , i = 1, 2, with (I) and (Bk),
k ≥ r1, r2 ≥ r ≥ 0. If r = 0 assume

r − n

p
< r1 −

n

p1

r − n

p
< r2 −

n

p2

r − n

p
≤ r1 −

n

p1
+ r2 −

n

p2

1
p
≤ 1
p1

+
1
p2


or



r − n

p
≤ r1 −

n

p1

0 < r2 −
n

p2

1
p
≤ 1
p1


or



0 < r1 −
n

p1

r − n

p
≤ r2 −

n

p2

1
p
≤ 1
p2


.

If r > 0 assume 1
p ≤

1
p1

+ 1
p2

and

r − n

p
< r1 −

n

p1

r − n

p
< r2 −

n

p2

r − n

p
≤ r1 −

n

p1
+ r2 −

n

p2


or



r − n

p
≤ r1 −

n

p1

r − n

p
≤ r2 −

n

p2

r − n

p
< r1 −

n

p1
+ r2 −

n

p2


.

Then there exists a continuous embedding

Ωp1,r1(E1)⊗ Ωp2,r2(E2) ↪→ Ωp,r(E1 ⊗ E2),

where we write Ωp,r ≡ Ω0,p,r.

The proofs of Proposition 2.1 and Theorem 2.2 are contained in [3], of Theorem 2.3
in [10].

Now we are able to define for CP (Bk) a uniform structure which allows us to complete
this space. Let δ > 0, 1 < p <∞, k ≥ r > n/p+ 1, for η ∈ Ω1(gP )

|η|ω,p,r :=
( ∫

M

r∑
i=0

|(∇ω)iη|pxdvolx(g)
)1/p

and set

Vδ := {(ω, ω1) ∈ CP (Bk)2
∣∣ |ω − ω1|ω,p,r < δ}.

Theorem 2.4. B = {Vδ}δ>0 is a basis for a metrizable uniform structure Up,r(CP (Bk))
on CP (Bk).

Denote by Cp,r
P (Bk) the completion with respect to this uniform structure and by

comp(ω) the component of ω in Cp,r
P (Bk).
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Theorem 2.5.

a. comp(ω) = ω + Ω1,p,r(gP ,∇ω).
b. CP (Bk) has a representation as a topological sum,

CP (Bk) =
∑
i∈I

comp(ωi) =
∑
i∈I

(
ωi + Ω1,p,r(gP ,∇ωi)

)
.

(In the sequel we restrict ourselves to the case p = 2.)
Denote by CP (Bk,fin) the set of all connections CP (Bk) such that

YM(ω) =
1
2

∫
M

|Rω|2 dvolx(g) <∞.

Then i : CP (Bk,fin) ↪→ CP (Bk) induces a uniform structure i−1 (Up,r(CP (Bk))) and
defines a completion C2,r

P (Bk,fin).

Theorem 2.6. C2,r
P (Bk,fin) has a representation as a topological sum,

C2,r
P (Bk,fin) =

∑
j∈J

comp(ωj) =
∑
j∈J

(
ωj + Ω1,2,r(gP ,∇ωj )

)
.

The proofs of Theorems 2.4–2.6 are contained in [4] and use essentially Proposition
2.1 and Theorems 2.2 and 2.3.

R e m a r k. The proof that comp(ω) = ω+Ω1,2,r(gP ,∇ω) essentially uses the fact that
ω′ ∈ comp(ω) implies

Ω1,2,r(gP ,∇ω) = Ω1,2,r(gP ,∇ω′
)

as equivalent Sobolev spaces. This proof is nontrivial. Another difficulty arises from the
fact that the elements of C2,r

P (Bk,fin) are only C1 but smooth elements are dense. At
the first instance, for ω non-smooth (∇ω)i does not make sense for i > 2. But if ω′ is a
smooth connection in an ε-neighbourhood of ω then we define

∇ω := ∇ω′
+∇ω −∇ω′

.

It is easy to see that (∇ω′
+ (∇ω −∇ω′

))i makes sense for any i.

In the sequel, we consider one fixed component comp(ω0) ⊂ C2,r
P (Bk,fin) and write

Cr(ω0) ≡ comp(ω0).

3. The gauge group. There are three equivalent definitions of the gauge group,

G = {ϕ : P '−→P
∣∣ ϕ covers idM and ϕ(p · g) = ϕ(p) · g},

Ĝ = {ϕ̂ : P −→ G
∣∣ ϕ̂(p · g) = g−1ϕ̂(p)g},

G̃ = C∞(P ×G G),

where G acts on itself by means of the inner automorphism Ad.
G, Ĝ and G̃ are isomorphic: ϕ ∈ G given defines ϕ̂ by ϕ(p) = p · ϕ̂(p) and ϕ̃(x) =

[(p, ϕ̂(p)] ∈ G̃, where p ∈ π−1(x). Any Sobolev construction for one of the three groups in-
duces by extending the isomorphism above such a construction for the other three groups.
We concentrate here to the group Gr+1(ω0) = Ĝr+1(ω0) adapted to Cr(ω0) and proceed
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as follows. First we construct Gr+1(ω0) as topological group. Then we endow a neigh-
bourhood of the unit element with the structure of a local Lie group, using Campbell–
Hausdorff series. According to a standard theorem, Gr+1(ω0) then is a Hilbert–Lie group.
To do this, we have to estimate the norm of the commutator by the product of the norm
of the factors. This is the key step of our construction. Unfortunately, in general Gr+1(ω0)
does not satisfy the second axiom of countability. Therefore we have to consider later on
a smaller group Gr+1

• (ω0). We have to define the elements of the completed gauge group
Gr+1(ω0) and to introduce a natural, suitable Sobolev topology. First we motivate our
definition and start with the non-completed group. G acts on CP from the left as follows:

ϕω := ω ◦ d(ϕ−1).

In terms of ϕ̂ ∈ Ĝ this means

ϕω = Ad(ϕ̂)ω + (ϕ̂−1)∗θ,

where θ denotes the Maurer–Cartan form of G. This implies ϕω−ω = (ϕω−ω)◦(projωv +
projωh) = (ϕω − ω) ◦ projωh since ϕω − ω is horizontal. Hence

ϕω − ω = (ϕω − ω) ◦ projωh = (ϕ̂−1)∗θ ◦ projωh .

R e m a r k. It is easy to see that (ϕ̂−1)∗θ ◦ projωh = −dR−1

ϕ̂
◦ ϕ̂.

We define
∇ωϕ̂ := (ϕ̂−1)∗θ ◦ projωh = −dR−1

ϕ̂
◦ ϕ̂.

Then
ϕω = ω +∇ωϕ̂.

Similarly as the groups G, Ĝ, G̃, we denote at the Lie algebra level by X̂ : P → g
vector fields with

X̂pg = Ad(g−1)Xp

and by X̃ sections of gP . X̂ and X̃ correspond to each other.
Let ω0 ∈ C(Bk,fin) smooth. Then (P, gω0) is a manifold satisfying (I) and (Bk), where

gω0 is the Kaluza–Klein metric,

gω0(X,Y ) := gM (π∗X,π∗Y ) + 〈ω0(X), ω0(Y )〉Killing.

This has been proven in [4]. We say ϕ̂ : P → G is bounded up to order r if

b,r−1|dϕ̂| :=
r−1∑
i=0

sup
p∈P

|∇idϕ̂|x <∞.

Here dϕ̂ is considered as a section of T ∗P ⊗ ϕ̂∗TG, endowed with the induced connection.
Then the manifold Ωr(P,G) of maps is well defined (cf. [5], [11]). f ∈ Ωr(P,G) if and only
if for any ε > 0 there exists f0 ∈ Ω∞(P,G) with b,r−1|df0| <∞ andX ∈ Ωr(f∗0TG, f

∗
0∇G)

with |X|r < ε such that
f = expX = expf0

X ◦ f0.

If k ≥ r > n/2 + 1 then f ∈ C1, according to the Sobolev embedding theorem.
In the sequel, we assume (Mn, g) open complete with (I) and (Bk), k ≥ r > n/2 + 1

and consider Cr(ω0) ≡ comp(ω0) ⊂ C2,r(Bk,fin).
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Proposition 3.1. Assume ∇ω0 ϕ̂ ∈ Ω1,2,r(gP ,∇ω0), ω ∈ Cr(ω0). Then ϕω ∈ Cr(ω0).

P r o o f. ω = ω0 + η, η ∈ Ω1,2,r(gP ,∇ω0)

ϕω = ϕ(ω0 + η) = ω0 + η +∇ω0+ηϕ̂.

On the other hand,

ϕω = ϕω0 + Ad(ϕ̂)η = ω0 +∇ω0 ϕ̂+ Ad(ϕ̂),

hence
∇ω0+ηϕ̂ = ∇ω0 ϕ̂+ (Ad(ϕ̂)− I)η.

We are done if we could show
|Ad(ϕ̂)η|ω0,r <∞.

Since ∇ω0 ϕ̂ ∈ Ω1,2,r(gP ,∇ω0) and ϕω0 ∈ Cr(ω0) are equivalent, ω0 and ϕω0 generate
equivalent Sobolev norms. Hence it suffices to show

|Ad(ϕ̂)η|ϕω0,r <∞.

But an easy straightforward calculation shows

|Ad(ϕ̂)η|ϕω0,r = |η|ω0,r <∞.

This motivates the following definition. Let Gr+1(ω0) be the set of all ϕ̂ ∈ Ωr+1(P,G)
such that

(i) ϕ̂(pg) = g−1ϕ̂(p)g
(ii) ∇ω0 ϕ̂ ∈ Ω1,2,r(gP ,∇ω0).

Proposition 3.2. Gr+1(ω0) forms a group under pointwise multiplication.

P r o o f. First we have to show that Ωr+1(P,G) forms a group under pointwise mul-
tiplication, i.e. given any ε > 0 and f, g ∈ Ωr+1(P,G) there exists h0 ∈ C∞(P,G),
b,r|dh0| < ∞, Z ∈ Ωr+1(h∗0TG), |Z|r+1 < ε such that f · g = expZ ≡h0 Z ◦ h0. This is
highly nontrivial and follows from [5], [11]. Next we show that Gr+1(ω0) is a subgroup.
Condition (i) is trivial. For (ii) we have to show:

a. ϕ̂, ψ̂ ∈ Gr+1(ω0) implies |∇ω0(ψ̂ϕ̂)|ω0,r <∞.
b. ϕ̂ ∈ Gr+1(ω0) implies |∇ω0(ϕ̂−1)|ω0,r <∞.

The first assertion follows from

(3.1) ∇ω0(ψ̂ϕ̂) = Ad(ψ̂)∇ω0 ϕ̂+∇ω0 ψ̂

and the second from

(3.2) ∇ω0(ϕ̂−1) = −Ad(ϕ̂−1)∇ω0 ϕ̂.

Here (3.2) follows from (3.1) by setting ψ̂ = ϕ̂−1.

The next step is the introduction of a suitable Sobolev topology. We have to establish
a filter basis B = B(e) for e ∈ Gr+1(ω0) satisfying the following conditions:

(i) If U ∈ B then there exists V ∈ B such that V V −1 ⊆ U .
(ii) If U ∈ B then there exists V ∈ B such that V −1 ⊆ U .
(iii) e ∈ U for each U ∈ B.
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(iv) If g ∈ Gr+1(ω0) and U ∈ B then there exists V ∈ B such that V ⊆ gUg−1.

The proof of the existence of B with (i)–(iv) shall be prepared by a series of proposi-
tions.

Observe that Ωq(gP ) and the space Ωq(P,g)G ⊂ Ωq(P,g) of g-valued G-invariant
q-forms on P are isomorphic. Let s, t ∈ Ω0(P,g). Pointwise commutators define [s, t] ∈
Ω0(P,g). Define for σ ∈ Ω1(P,g) and X ∈ Ω0(TP ) ≡ Ω(TP )

[σ ∧ s](X) := [σ(X), s]

[s ∧ σ](X) := [s, σ(X)].

ω ∈ C defines a covariant differential Dω :

Ω0(gP ) ' Ω(P,g)G Dω

−→Ω1(P,g)G
h ' Ω1(gP ),

where ( )h denotes horizontal forms.

Lemma 3.3. For s ∈ Ω(P,g)G ' Ω0(gP ),

(3.3) Dωs = ds+ [ω ∧ s].

Here one writes with a basis {Ai} of g, s = siAi, ds = dsi⊗Ai. For a proof see [12].

Dω satisfies the following product rule.

Lemma 3.4. For s, t ∈ Ω(P,g)G,

Dω[s, t] = [Dωs ∧ t] + [s ∧Dωt].

The proof is an easy calculation with the use of (3.3).

R e m a r k. For higher derivatives, a similar simple formula is not available. It holds
only up to permutation in tensor products (cf. [9]). But for norm estimates a weaker
product rule is available. Consider the sequence

Ω0(gP ) Dω

−→ Ω1(gP ) ∇ω

−→ Ω0((T ∗M)⊗2 ⊗ gP ) ∇ω

−→ · · · .

Proposition 3.5. For s, t ∈ Ω0(gP ), X1, . . . , Xu ∈ Ω(TM) ≡ Ω0(TM),

∇u
Xu···X1

[s, t] =
u∑

i=0

∑
u≥αi≥···≥α1≥1

[
∇i

Xαi
···Xα1

s,∇u−i

Xu···X̂αi
···X̂α1 ···X1

t

]
.

This can be proven by an easy induction, starting with Lemma 3.4.

Theorem 3.6. Let (Mn, g) be open, complete with (I) and (Bk), ω0 with (Bk), k ≥
r > n/2+1. Then there exists a Ξ ∈ R, Ξ > 0, such that for all X̃, Ỹ ∈ Ω0,2,r(gP ,∇ω0) ≡
gr

P (ω0),

(3.4) |[X̃, Ỹ ]|ω0,r ≤ Ξ · |X̃|ω0,r · |Ỹ |ω0,r.

P r o o f. For A,B ∈ g,
|[A,B]| ≤ c · |A| · |B|.

Proposition 3.5 then implies for s, t ∈ Ω0(gP )

|∇u[s, t]|2x ≤ C ·
u∑

i=0

(
|∇is|x · |∇u−it|x

)2
.
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The module structure theorem 2.3 finally yields the assertion.

R e m a r k. (3.4) is the key inequality for establishing a Campbell–Hausdorff series in
our case and for endowing Gr+1(ω0) with the structure of a local Lie group. For this, we
recall some definitions.

Let G a Lie group with Lie algebra g and exponential exp. Assume g to be endowed
with a norm | | such that there exists a Ξ ≥ 1 with

(3.5) |[x, y]| ≤ Ξ · |x| · |y|.

Set

CH(x, y) :=
∞∑

k=1

∑
µ,ν∈Nk

(−1)k−1

k

1
µ1 + ν1 + · · ·+ µkνk

[xµ1yν1 · · ·xµkyνk ]
µ1!ν1! · · ·µk!νk!

,

where

[xµ1yν1 · · ·xµkyνk ] := [[x, x], x], · · ·x]︸ ︷︷ ︸
µ1 times

, y], · · · , y]︸ ︷︷ ︸
ν1 times

, · · · , x], · · · , x]︸ ︷︷ ︸
µk times

, y], · · · , y]︸ ︷︷ ︸
νk times

.

Theorem 3.7. Assume (3.3). Then there exists a constant C(Ξ) such that with U :=
{x ∈ g

∣∣ |x| < C(Ξ)}, CH(·, ·) becomes an analytic mapping U × U → g and

(3.6) exp(x) exp(y) = exp(CH(x, y)).

This is a classical result.

We do not recall the definition of analytic mapping between Banach spaces which is
contained in [1].

Theorem 3.8. Let L be a complete normed Lie algebra satisfying (3.5). Assume α ∈ R,
0 < α ≤ 1/(3Ξ) · log 3/2. Set Lα := {x ∈ L

∣∣ |x| < α}, Θ := {(x, y) ∈ Lα×Lα

∣∣CH(x, y) ∈
Lα} and define m = CH|Θ. Then

(i) Θ is open in Lα × Lα and m analytic;
(ii) x ∈ Lα implies (0, x), (x, 0) ∈ Θ and m(0, x) = m(x, 0) = 0;
(iii) x ∈ Lα implies −x ∈ Lα, (x,−x), (−x, x) ∈ Θ and m(x,−x) = m(−x, x) = 0;
(iv) x, y, z ∈ Lα, (x, y), (m(x, y), z), (y, z), (x,m(y, z)) ∈ Θ implies m(m(x, y), z) =

m(x,m(y, z));
(v) x, y ∈ Lα implies |CH(x, y)| ≤ −1/Ξ · log(2− expΞ(|x|+ |y|)).

For a proof see [2].

Definition. A couple (Γ, e,Θ,m) is called a local Lie group over R if it satisfies the
following conditions:

(i) Γ is an analytic manifold modelled by a real Hilbert space;
(ii) e ∈ Γ;
(iii) θ : Γ → Γ is an analytic mapping;
(iv) m is an analytic mapping from an open subset Ω ⊂ Γ× Γ into Γ;
(v) m(e, g),m(g, e) ∈ Γ and m(e, g) = m(g, e) = g for all g ∈ Γ;
(vi) (g, θ(g)), (θ(g), g) ∈ Ω and m(g, θ(g)) = m(θ(g), g) = e for all g ∈ Γ;
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(vii) assume g, h, k ∈ Γ arbitrary, (g, h), (h, k), (m(g, h), k), (g,m(h, k)) ∈ Ω, then
m(m(g, h), k) = m(g,m(h, k)).

Corollary 3.9. Assume Lα, m as in Theorem 3.8. Then with i : Lα → Lα, x 7→ −x,
(Lα, 0, i,m) is a local Lie group.

Now we are able to endow Gr+1(ω0) with a topology such that there arises a topological
and even a Hilbert–Lie group.

We define a neighbourhood filter basis of e ∈ Gr+1(ω0) as follows. Assume 0 < ε0 <

min{D · rinj(M), 1/(3Ξ) · log 3/2}. (D comes from the Sobolev embedding theorem 2.2.)
Set for ε

(3.7) Uε := {exp X̂
∣∣ |X̃|ω0,r+1 < ε}.

Theorem 3.10. B = {Uε}0<ε<ε0 is a filter basis for the neighbourhood filter of e such
that Gr+1(ω0) becomes a topological group.

P r o o f. First we have to show exp X̂ ∈ Gr+1(ω0), X̃ ∈ gr+1
P (ω0). This follows imme-

diately from

∇ω0 exp X̂ =
∞∑

m=0

(−1)m+1 ad(X̃)m

(m+ 1)!
(∇ω0X̃).

Moreover, the map X̃ 7→ ∇ω0 exp X̂ is even analytic. We have to establish properties
(i)–(iv) for B (which were formulated after the proof of Proposition 3.2).

(i) Choose ε′ < min{ε0, 1/(2Ξ) · log 2− exp(−1/(2Ξ) · ε)}. Using (v) of Theorem 3.8,
we see immediately Uε′Uε′ ⊆ Uε.

(ii) For 0 < ε < ε0, U−1
ε = Uε.

(iii) e = exp 0.
(iv) Here we have to show: Given any ϕ ∈ Gr+1(ω0), 0 < ε < ε0, there exists

0 < ε′ < ε0 such that Uε′ ⊆ ϕ̂Uεϕ̂
−1. For this we consider the map Gr+1(ω0) →

L(gr+1
P (ω0),gr+1

P (ω0)), ϕ̂ 7→ Ad(ϕ̂−1). This map is well defined. Write ϕ̂ = expϕ̂0
Ẑ · ϕ̂0.

Then Ad(ϕ̂−1
0 ) acts as bounded operator on gr+1

P (ω0) according to the boundedness con-
dition of ϕ̂0. The same holds for Ad((expϕ̂0

Ẑ)−1) according to the module structure
theorem. This is a highly nontrivial fact and we refer to [5]. Denote by ‖Ad(ϕ̂−1)‖ω0,r+1

the corresponding operator norm. Choose

ε′ < min
{ ε

‖Ad(ϕ̂−1)‖ω0,r+1
, ε0

}
.

Let exp X̂ ∈ Uε′ and choose Ỹ := Ad(ϕ̂−1)X̃. Then

exp X̂ = expAd(ϕ̂)Ad(ϕ̂−1)X̂ = expAd(ϕ̂)Ŷ = ϕ̂ exp Ŷ ϕ̂−1 ∈ ϕ̂Uεϕ̂
−1

if we can show exp Ŷ ∈ Uε, i.e. |Ỹ |ω0,r+1 < ε. But

|Ỹ |ω0,r+1 = |Ad(ϕ̂−1)X̃|ω0,r+1 ≤ ‖Ad(ϕ̂−1)‖ω0,r+1|X̃|ω0,r+1

≤ ‖Ad(ϕ̂−1)‖ω0,r+1 ·
ε

‖Ad(ϕ̂−1)‖ω0,r+1
= ε.

We use the following well known
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Theorem 3.11. Let G be a topological group and V ⊂ G an open neighbourhood of
the unit element. Assume that V is an analytic manifold and has the structure of a real
local Lie group. Then G is a Hilbert–Lie group.

Now we apply this to our situation. Let Uε be as in (3.7). Uε is homeomorphic to an
open neighbourhood from the Hilbert space gr+1

P (ω0). Then Lε := exp−1(Uε) is a real
local Lie group: Set for exp X̂, exp Ŷ ∈ Uε

m(exp X̂, exp Ŷ ) := expCH(exp X̂, exp Ŷ ) = exp X̂ exp Ŷ

θ(exp X̂) := exp(−X̂) = (exp X̂)−1

e := 0.

Hence we obtain

Theorem 3.12. Gr+1(ω0) is a Hilbert–Lie group.

R e m a r k. Gr+1(ω0) consists of C1 elements ϕ̂. Sometimes we write ϕ ∈ Gr+1(ω0)
which means the corresponding element ϕ : P '−→ P .

4. The action of the gauge group. Recall the action of Gr+1(ω0) on Cr(ω0) :

ϕω = Ad(ϕ̂)ω + (ϕ̂−1)∗θ = ω +∇ωϕ̂.

Theorem 4.1. Assume (Mn, g) open with (I), (Bk), k ≥ r + 1 > n/2 + 2. Then
Gr+1(ω0) acts smoothly on Cr(ω0).

P r o o f. Let ϕ ∈ Gr+1(ω0), ω = ω0 + η ∈ Cr(ω0), η ∈ Ω1,2,r(gP ,∇ω0) and X̂ ∈
gr+1

P (ω0). Then

(ϕ̂ exp X̂)(ω0 + η) = ω0 +∇ω0(ϕ̂ exp X̂) + Ad(ϕ̂)Ad(exp X̂)η.

The assertion follows from the smoothness of the map

(X̂, η) 7→ ∇ω0(ϕ̂ exp X̂) + Ad(ϕ̂)Ad(exp X̂)η

and the latter follows from the smoothness of the maps

(X̂, η) 7→ ∇ω0(ϕ̂ exp X̂)

(X̂, η) 7→ Ad(ϕ̂)Ad(exp X̂)η.

If the underlying manifold Mn is compact then the action is proper. This is proba-
bly wrong in the open case. Nevertheless, one very important property of the action is
preserved.

Theorem 4.2. Assume (Mn, g) open with (I) and (Bk), k ≥ r > n/2 + 2. Then
Gr+1(ω0) acts closed on Cr(ω0).

P r o o f. We have to show: ϕiω → ω1 implies the existence of a ψ ∈ Gr+1(ω0) such
that ω1 = ψω. We endow P with the corresponding Kaluza-Klein metrics. Let Ux0 be a
normal chart centred at x0 ∈M of radius

0 < ε < min{rinj(g), rinj(gω), rinj(gω1)}

and for p0 ∈ π−1(x0)
{hω

1 , . . . , h
ω
n , A

]
1(p0), . . . , A]

m(p0)}



280 J. EICHHORN AND G. HEBER

be an orthonormal basis. We choose a subsequence {ϕ1i}i such that

(i) ϕ−1
1i (p0) → q0 ∈ π−1(x0), q0 = p0g0, g0 ∈ G;

(ii) dϕ−1
1i (hω

ν ) → χν ∈ Tq0P .

Then dϕ−1
i (A]

s(p0)) → A]
s(q0). Denote by e(ω) the exponential map of gω,

Bε
p0

:= {t ∈ Tp0P
∣∣ gω(t, t) < ε2}.

We want to define ψ on e(ω)Bε
p0

. Let q = e(ω)t,

t =
n∑

ν=1

aνhω
ν +

m∑
s=1

bsA]
s(p0)

and set

ψ−1(q) ≡ ψ−1(e(ω)t) := e(ω1)
[ n∑

ν=1

aνχν +
m∑

s=1

bsA]
s(p0)

]
Proposition 4.3. If t, t1 ∈ Bε

p0
, e(ω)t = [e(ω)t1] · g, then

ψ−1(e(ω)t) = ψ−1(e(ω)t1) · g,

i.e. ψ is a gauge transformation on e(ω)Bε
p0

. Equivariant continuation provides ψ

over Ux0 .

P r o o f. The proof follows from the following facts:

(i) gϕω = ϕ∗gω

(ii) ϕ ◦ e(ω) = e(ϕω) ◦ dϕ
(iii) e(ϕ1iω) → e(ω1) uniform on compact subsets of TpPε = {t ∈ TpP

∣∣gω1(t, t) ≤ ε}.
(iv) π[e(ω)t] = π[ψ−1e(ω)t].

(i), (ii), (iv) are easy calculations. For (iii) one uses gϕiω → gω1 in Mr
G(ω0) = certain

Sobolev space of metrics (cf. [6]) if ϕiω → ω1 in Cr(ω0) and the boundedness of Christoffel
symbols up to a certain order (cf. [7]).

Corollary 4.4. ϕ−1
1i → ψ−1 over Ux0 in C1.

Let η = ω − ω1.

Corollary 4.5. ∇ωψ̂ = η over Ux0 .

Theorem 4.2 follows by a compact exhaustion K1 ⊆ K2 ⊆ · · · of M, finite cover of
each Ki by normal charts, the construction above and compatibility.

The next step is to show that the orbits are submanifolds of Cr(ω0). We recall the key

Theorem 4.6. Let G be a Lie group, X an analytic manifold , (g, x) 7→ gx an an-
alytic left action. Assume that for x ∈ X the orbit map ρ(x) : G → X, g 7→ gx is a
subimmersion. Denote by Gx the isotropy group of x.

(i) Gx is a Lie subgroup and Te(Gx) = ker(Teρ(x)).
(ii) The canonical map ix : G/Gx → X, [g] 7→ gx is an immersion with image G · x.
(iii) If the orbit G · x is locally closed and G satisfies second countability then G · x

is a submanifold of X and ix is an isomorphism from G/Gx onto G · x and Tx(G · x) =
im(Teρ(x)).
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R e m a r k. The smooth version of Theorem 4.6 is also valid.

Denote for ω ∈ Cr(ω0) by S(ω) the symmetry group,

S(ω) = {ϕ ∈ Gr+1(ω0)
∣∣ ϕω = ω}.

Proposition 4.7. Let ϕ ∈ S(ω). The following conditions are equivalent :

(i) ϕ̂ exp X̂ ∈ S(ω)
(ii) exp X̂ ∈ S(ω)
(iii) ∇ωX̃ = 0.

We omit the easy computational proof.

Corollary 4.8. S(ω) is discrete in Gr+1(ω0).

P r o o f. (iii) implies (X̃, X̃)x = const. (Mn, g) with (I) and (Bk) imply vol(Mn, g) =
∞, hence X̃ 6∈ L2 and ϕ is isolated.

Corollary 4.9. Gr+1(ω0)/S(ω) is an analytic manifold and

Gr+1(ω0)
π−→ Gr+1(ω0)/S(ω)

a submersion.

Lemma 4.10. The map

iω : Gr+1(ω0)/S(ω) → Cr(ω0), [ϕ] 7→ ϕω

is smooth.

P r o o f. It is sufficient to show that iω ◦ π is smooth. But this is nothing else than
the restriction of the smooth action map

Φ : Gr+1(ω0)× Cr(ω0) −→ Cr(ω0)

to the submanifold Gr+1(ω0)× {ω}.

Denote by ∆ω
0 = (∇ω)∗∇ω the Laplace operator on 0-forms with values in gP , by

σe(∆ω
0 ) its essential spectrum. This an invariant of Cr(ω0), i.e. σe(∆ω

0 ) = σe(∆ω0
0 ). If

(Sp) inf σe

(
∆ω0

0 |(ker(∆ω0
0 )⊥)

)
> 0

then im ∆ω0
0 , im ∆ω

0 , im∇ω0 and im∇ω are closed.

Proposition 4.11. Assume k− 1 ≥ r > n/2+2, ω ∈ Cr(ω0) and (Sp). Then iω is an
injective immersion.

P r o o f. Let o be the class of e ∈ Gr+1(ω0) in Gr+1(ω0)/S(ω). We have to show

(i) kerTo = {0};
(ii) imToiω ⊂ TωCr(ω0) is closed and admits complement.

(i) is very simple. If we consider (ii), an easy calculation shows imToiω = imTeΦω and
TeΦω = −∇ω. (Sp) implies im∇ω closed. The existence of an L2-complement is assured
by
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Proposition 4.12. Assume k − 1 ≥ r > n/2 + 2 and the spectral condition (Sp) and
ω ∈ Cr(ω0). Then

(4.1) Ω1,2,r(gP ,∇ω0) = im∇ω
r+1 ⊕ ker(∇ω)∗r ,

where both spaces on the right-hand side are closed and L2-orthogonal.

The proof is rather long and nontrivial since ω is nonsmooth and one has to establish
Hodge theory for elliptic differential operators with Sobolev coefficients. We refer to [8],
[13].

To apply Theorem 4.6 (iii), we need second countability of Gr+1(ω0) which is in general
not satisfied since Gr+1(ω0) can have uncountably many components. It is easy to see that
each element of the centre of G generates one component. Therefore we restrict in the
sequel ourselves to the subgroup Gr+1

• (ω0) which consists of the components of Gr+1(ω0)
generated by the centre of G if this centre is countable or which equals to the component
of the identity if the centre is uncountable. In the case G = SU(2) the centre consists of
two elements, i.e. of two components, each of them satisfies second countability.

The key role in the whole structure of the configuration space is played by the slice
theorem which we now start to discuss.

We want to construct an equivariant tubular neighbourhood for each orbit. For this
we need a Riemannian metric, a normal bundle and an exponential map. The tangent
bundle of Cr(ω0) is simply Cr(ω0)×Ω1,2,r(gP ,∇ω0). We define a weak Riemannian metric

ω 7→ ( , )w,ω = ( , )w

as follows: (ω, ξ), (ω, η) ∈ {ω} × Ω1,2,r(gP ,∇ω0),

((ω, ξ), (ω, η))w := (ξ, η)w :=
∫

M

(ξ, η)x dvol(x).

( , )w is Gr+1(ω0)-invariant.
A strong metric ( , )st on Cr(ω0) is given by

ω 7→
r∑

i=0

(
(∇ω)i·, (∇ω)i·

)
w
.

( , )st is Gr+1(ω0)-invariant and smooth and therefore defines an exponential map. Weak
metrics in general do not have an exponential map. But in our case, with respect to ( , )w

Expωη = ω + η.

This exponential map is equivariant with respect to Gr+1(ω0). Denote

Nω = {η ∈ TCr(ω0)
∣∣ η⊥Gr+1

• (ω0) · ω w.r.t. ( , )w}.

Lemma 4.13. Nω is a smooth subbundle of TCr(ω0)|Gr+1
• (ω0) · ω.

Proposition 4.14. Set

Nε
ω := {η ∈ Nω

∣∣ (η, η) < ε2}.

There exists an ε > 0 such that

E = Exp|Nε
ω −→ Cr(ω0)
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is a Gr+1
• (ω0)-equivariant diffeomorphism onto an open Gr+1

• (ω0)-invariant neighbourhood
of Gr+1

• (ω0) · ω.

We refer to [13] for the proof.

Corollary 4.15. There exists a Gr+1
• (ω0) equivariant map T : Nω → Cr(ω0) which

maps Nω diffeomorphic onto an open Gr+1
• (ω0)-invariant neighbourhood of Gr+1

• (ω0) · ω.

P r o o f. Choose ε as above, define F : Nω → Nε
ω as

F (η) := ε · η√
(η, η)st + 1

and set T = Exp ◦ F .

T (Nω) is an open Gr+1
• (ω0)-invariant tubular neighbourhood of Gr+1

• (ω0) · ω with
bundle projection π ◦ T −1 onto Gr+1

• (ω0) · ω. The fibre Sω1 over ω1 ∈ Gr+1
• (ω0) · ω is

called a slice. Then

Sω1 = T (Tω1Cr(ω0) ∩Nω) = Exp (Tω1Cr(ω0) ∩Nε
ω) ⊂ Cr(ω0).

Corollary 4.16. Let ω1 ∈ Gr+1
• (ω0) · ω. Then

(i) ϕ ∈ S(ω1) implies ϕSω1 = Sω1 ;
(ii) ϕ ∈ Gr+1

• (ω0), ω2 ∈ Sω1 and ϕω2 ∈ Sω1 imply ϕ ∈ S(ω1).

The corollary can be obtained by easy calculations.

(i) means that S(ω1) acts on Sω1 . (ii) shows that orbits different from the orbit
Gr+1
• (ω0) · ω can intersect the slice several times and in this case

(Gr+1
• (ω0) · ω2) ∩ Sω1 = S(ω1) · ω2.

We formulate now the main theorem of this section.

Theorem 4.17. Assume (Mn, g) open with (I) and (Bk), k − 1 ≥ r > n/2 + 2,
ω ∈ Cr(ω0) and inf σe(∆ω

0 |(ker ∆ω
0 )⊥) > 0. Let U an open invariant neighbourhood of

Gr+1
• (ω0) · ω. Then there exists a tubular neighbourhood of Gr+1

• (ω0) · ω such that the
complement of the closure of the tubular neighbourhood in U is nonempty , i.e. there
exists an equivariant map T : Nω → U such that

(i) T (Nω) is open.
(ii) T : Nω → T (Nω) is a diffeomorphism.
(iii) T (Nω) ⊂ U .
(iv) U − T (Nω) 6= ∅.

P r o o f. Choose ε1 as in Proposition 4.14. Then Exp(Nε1
ω ) ∩ U is an open invariant

neighbourhood of Gr+1
• (ω0) · ω. Choose 0 < ε2 < ε1 such that

Exp (TωCr(ω0) ∩Nε2
ω ) ⊂ U.

( , )st is invariant and Exp equivariant. Hence

Gr+1
• (ω0) · Exp (TωCr(ω0) ∩Nε2

ω ) = Exp(Nε2
ω )

and Exp(Nε2
ω ) ⊂ U . Choose ε = ε2/2 and apply Corollary 4.15.
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Corollary 4.18. The configuration space

Rr
•(ω0) := Cr(ω0)/Gr+1

• (ω0)

is a regular topological space.

R e m a r k. The steps establishing Theorem 4.17 have been strongly modelled by Kon-
dracki/Rogulski in [14].

5. The stratification of the configuration space. We will prove that the config-
uration space is a stratified space, the strata labelled by conjugacy classes of symmetry
groups. In distinction from the compact case, in the open case uncountably many strata
are possible. The procedure is once again modelled by [14].

Let S be a (discrete) subgroup of Gr+1(ω0) such that there exists ω ∈ Cr(ω0) with S =
S(ω). Then any conjugate subgroup is also symmetry group of a connection: ϕSϕ−1 =
S(ϕω). Denote by (S) the conjugacy class of S in Gr+1(ω0) where we admit conjugacy
only by means of elements of Gr+1

• (ω0). Denote

J := {(S)
∣∣ S = S(ω) for some ω ∈ Cr(ω0)}

Cr
(S)(ω0) := {ω ∈ Cr(ω0)

∣∣ S(ω) ∈ (S)}

Cr
S(ω0) := {ω ∈ Cr(ω0)

∣∣ S(ω) = S}

C̃r
S(ω0) := {ω ∈ Cr(ω0)

∣∣ S(ω) ⊃ S}.
Their properties and mutual relations are described by the following propositions.

Proposition 5.1. For any (S) ∈ J , Cr
(S)(ω0) is a smooth submanifold of Cr(ω0).

Proposition 5.2. C̃r
S(ω0) is an affine, closed subspace of Cr(ω0) and Cr

S(ω0) is an
open subset of C̃r

S(ω0).

The proofs of Propositions 5.1, 5.2 essentially use tubular neighbourhoods and slices.

Theorem 5.3. Let S ⊂ Gr+1(ω0) be the symmetry group of a connection ω1 ∈ Cr(ω0).
Then Cr

S(ω0) is a generic subset of C̃r
S(ω0), i.e. Cr

S(ω0) ⊂ C̃r
S(ω0) open and dense.

We refer to [13] for the proof.

Corollary 5.4. Cr
(S)(ω0) is dense in Gr+1

• (ω0) · C̃r
S(ω0).

Lemma 5.5. Cr
(S)(ω0) is open in Gr+1

• (ω0) · C̃r
S(ω0).

Lemma 5.6. Gr+1
• (ω0) · C̃r

S(ω0) is a closed subset Cr(ω0).

We conclude from Corollary 5.4 and Lemmas 5.5–5.6

Theorem 5.7. Cr
(S)(ω0) is a generic subset of Gr+1

• (ω0) · C̃r
S(ω0) and

Cr
(S)(ω0) = Gr+1

• (ω0) · C̃r
S(ω0).

The Cr
(S)(ω0), (S) ∈ J are the bricks of = Gr+1

• (ω0)·C̃r
SE(ω0) as shown by the following

Lemma 5.8. Assume ω′ ∈ Gr+1
• (ω0) · C̃r

S(ω0) and let S′ = S(ω′). Then

Cr
(S′) ⊂ Gr+1

• (ω0) · C̃r
S(ω0).
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To formulate now main theorems, we recall the notion of stratification used here. Let
X be a topological space and D a finite or countable family of nonempty subsets of X.
D is called a regular stratification if it satisfies the following conditions:

(i)
⋃
D = X.

(ii) Ω,Ω′ ∈ D, Ω ∩ Ω′ 6= ∅ imply Ω = Ω′.
(iii) Ω,Ω′ ∈ D, Ω ∩ Ω′ 6= ∅ imply Ω ⊃ Ω′.
(iv) Ω,Ω′ ∈ D, Ω ∩ Ω′ 6= ∅ imply Ω′ ∩ (Ω ∪ Ω′) = Ω′.

Giving up the condition of countability, we obtain the notion of quasistratification.

Theorem 5.9. Let (Mn, g) be open with (I) and (Bk), k − 1 ≥ r > n/2 + 2 and
inf σe

(
∆ω0

0 |(ker ∆ω0
0 )⊥

)
> 0. Then

{Cr
(S)(ω0)

∣∣ (S) ∈ J }

is a regular quasistratification of Cr(ω0).

Finally we turn to the configuration space Rr
•(ω0) = Cr(ω0)/Gr+1

• (ω0).

Lemma 5.10. Rr
•(ω0) is a connected , metrizable space satisfying second countability.

This follows immediately from the properties of Cr(ω0), of the projection π̂ : Cr(ω0) →
Rr
•(ω0) and the metrization theorem.

For an orbit in Rr
•(ω0) the symmetry groups of different elements of the orbit are

conjugate by elements of Gr+1
• (ω0), as we have already seen. Hence there exists a well

defined map
type : Rr

•(ω0) −→ J .

Define for (S) ∈ J
Rr

(S)(ω0) := type−1((S)).

R e m a r k.

(i) Cr
(S)(ω0) = π̂−1(type−1((S)));

(ii) Rr
(S)(ω0) = π̂(Cr

(S)(ω0)).

Theorem 5.11. Rr
(S)(ω0) can be endowed with a unique manifold structure such that

π̂ : Cr
(S)(ω0) −→ Rr

(S)(ω0)

is a smooth submersion.

Lemma 5.12. Rr
(S)(ω0) = π̂(Gr+1

• (ω0) · C̃r
S(ω0)).

We finish with our main

Theorem 5.13. Assume (Mn, g) open with (I) and (Bk), k − 1 ≥ r > n/2 + 2 and
inf σe

(
∆ω0

0 |(ker ∆ω0
0 )⊥

)
> 0. Then

D = {Rr
(S)(ω0)

∣∣ (S) ∈ J }

is a regular quasistratification of the configuration space

Rr
•(ω0) = Cr(ω0)/Gr+1

• (ω0).
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(i), (ii) are clear. (iii) and (iv) can be proved by the straight use of our definitions
and constructions.
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