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Abstract. We discuss the geometry of the Yang-Mills configuration spaces and moduli spaces
with respect to the L? metric. We also consider an application to a de Rham-theoretic version
of Donaldson’s p-map.

1. Introduction. In classical four-dimensional Yang-Mills theory, the moduli spaces
of self-dual (SD) or anti-self-dual (ASD) connections over a Riemannian manifold carry a
natural metric known as the L? metric. Thus one can study the intrinsic geometry of the
moduli spaces themselves as concrete Riemannian manifolds. The L? metric relates to
several other aspects of gauge theory, some of primarily mathematical interest (such as
Donaldson’s p-map, discussed below in §5.2) and some of primarily physical interest (such
as the semi-classical measure discussed in [GP3]). These talks will provide a qualitative
introduction to the basic features of the L? metric and to some of the mathematical
questions it has been used to approach.

The ambient setting for the problems I will discuss is infinite-dimensional: the space of
connections on a principal bundle. Consequently there are many technical issues—such
as definitions of “manifold” and “smooth”, and proofs that objects live in the proper
category—that, while essential for complete proofs, can obscure the purely geometric
ideas. As my purpose in these talks is more qualitative, I will ignore most of these technical
issues; complete proofs of the theorems below are too long to present here in any case.
I will generally speak as if the connections, gauge transformations, etc., to which I refer are
all smooth, even though to make certain statements literally correct one must take various
Sobolev completions. The underlying analysis of these completions has been presented
excellently in many sources (e.g. [MV], [FU §3], [MM §6.4]) that can be consulted for
details.

Research supported in part by NSF grant DMS-9307648.
1991 Mathematics Subject Classification: Primary 53C07; Secondary 58D27.
The paper is in final form and no version of it will be published elsewhere.

(317]



318 D. GROISSER

The basic objects in our discussion will be:

e (M,go), a compact four-dimensional Riemannian manifold;

e (G, a compact semisimple Lie group (often SU(2)); Z, the center of G (a finite
group); and G == G/Z;

e g, the Lie algebra of G, equipped with an Ad-invariant inner product;

e P, a principal G-bundle over M; AdP := P X4 g, the adjoint bundle; and
QF(Ad P) := T'(A¥(T*M)®Ad P), the space of Ad P-valued k-forms on M (k =0,...,4);

e A, the space of connections on P; and A* C A, the subspace of irreducible connec-
tions;

e G, the group of gauge transformations of P (automorphisms of P covering the
identity); Z, the center of G, isomorphic to Z; and G = G/Z,

e B:=A/G, the “configuration space”; and B* := A*/G;

e SD C A, the subspace of self-dual connections (the reader can make the appropriate
sign changes below for ASD connections);

e M :=8D/G C B, the moduli space, whose points are called instantons; and M* =
M N B*, the subspace of irreducible instantons.

Ad P-valued differential forms inherit a pointwise inner product (-, -) from the metrics
on M and g. Integration then defines the L? metric on these forms:

(1) gla, B) :={a, B) := /M(mﬁ)dvolgo, Va,B € QF(AdP), k=0,...,4.

As is well-known, A is an affine space whose tangent space at any point is canonically
isomorphic to Q'(Ad P). In particular, therefore, (1) defines a flat Riemannian metric
on A (technically, only a weak metric, but this turns out not to be a serious problem
for our purposes; see [GP1]). Furthermore, the Ad-invariance of the inner product on g
makes the metric g gauge-invariant.

The full quotient space B has a complicated, stratified structure due to the presence
of reducible connections. However, on the open dense subspace A* C A the action of G
is almost free: the stabilizer of every irreducible connection is precisely the finite group
Z. Thus G acts freely on A*, and one can prove the following.

PROPOSITION. B* is a Hilbert manifold, and the action of G on A* induces a principal
G-fibration A* — B* (where G =G/Z).
This proposition is literally true only after completing G and A in appropriate Sobolev

norms (see [FU §3]).

In Sections 2-4 below we discuss (without detailed proofs) the induced geometry of
B* and M*. In Section 5 we describe applications of a key “localization principle” to
the proofs of several of the theorems of Section 4, and to a differential-form version of
Donaldson’s p-map.

2. The geometry of A*/G with the L? metric.

2.1 The connection on A* —% B* and its curvature. It is worthwhile first to consider a
finite-dimensional ”toy model” that captures all of the essential geometry.
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Suppose K is a Lie group with Lie algebra ¢, N a finite-dimensional manifold, and
m: @ — N aprincipal K-bundle. We call the tangent space to the K-orbit through ¢ € @
the vertical space V; C T,Q. Suppose in addition that @ carries a Riemannian metric
(+,)¢ invariant under the action of K. Then these structures determine a connection
on @ — N by defining (at each ¢ € Q) the horizontal space H, = (V)* C T,Q. The
horizontal distribution {H,}.eq is K-invariant, hence a connection, which we shall call
the canonical connection.

Recall that any connection on @ defines a connection form w € Q'(Q, ) as follows. For
each ¢ € @ the right K-action on @ defines a map

gt — T,Q

d
(2) vo— £(q - exp(tv))
t=0
carrying € isomorphically to V;. The splitting of T,() given by the connection determines
projections hor, : T,Q — H, and vert, : T;Q) — V,, and w is defined by

(3) w(X) L;1|Vq (verty(X)) VX € T,Q.

Thus H, = ker(w,). For the canonical connection we can be even more explicit. Since
both ¢ and T,Q are Hilbert spaces, ¢, has an adjoint ¢ : T, — €. Since V; = im(s,), we

_ * _ * —1,% . L * —1,% 3 .
have H, = ker(:;) and verty = t4(t7t4)” "¢;, and the subexpression (i;1,)” ¢y inverts ¢,

on im(zy). Hence for the canonical connection, we have wy = (th1q) "0 !
Now assume further that the total space Q an open subset of a flat affine space, so that
there is a fixed Hilbert space W and a trivialization j, : TQ = @ x W (induced by a
global chart) such that for each ¢ € @, the isomorphism j,, : T,Q — W is an isometry.
If we set iq = j«q © tgq, We can then write the canonical connection form as a pullback
w = j*w, where
Bq = (I5Tg) "I
In this context, we wish to compute the curvature two-form F' € Q?(Q; £) of the canonical
connection. For a general connection, given Xy, Yy € H,, and horizontal local extensions

X,Y, one has

(4) F(XO’%) = _wq([X’ Y])v

independent of the choice of extensions. In our case there is a particularly simple way to
choose X, Y: writing Xy = j;quO (etc. for Y'), for arbitrary p set

X, = hor, (5, %o) = i) (Ko = 2(757) 73 %o )
Note that ¢ and ¢* are now simply functions on @ with values in fized vector spaces:

7:Q — Hom(¢, W) and i* : Q — Hom(W, ). Hence the Lie bracket above reduces to
directional derivatives of Z,7* (written X () etc.), and we find

(5) F(Xo,Yo) = —2(7q) " {Xo, Yo}
where
(6) X0, Yo} = 3 (Xo(F)¥o — ¥o() %)

(Here Xo(*) € Hom(W, ) is the directional derivative; thus X(:*)Yy lives in £.)



320 D. GROISSER

Now let us return to gauge theory, replacing KN by A* 9, B*. In this case
W = Ql(Ad P) (with the metric (1)) and, for each A € A*, j, is simply the natural

identification of T4 A* with Q!(Ad P). The Lie algebra of G is Q%(Ad P), and the map
T4 is simply covariant derivative:

ia=d*:Q°AdP) — Q' (AdP).

Furthermore 7% = (d)*, the formal L? adjoint of d*, so that the vertical and horizontal
spaces at A are

(7) Vi =im(d?) € QY(AdP), Ha = ker(d?)* c Q'(AdP).
In addition,
(Taza)™ = (A9) ™= Gy
(This covariant Green operator on °(Ad P) exists since A is irreducible.) After proper

attention to analytic details (see [GP1]), the formal calculation (5) gives precisely the
right answer. Replacing X, Yy by «a, 3 € Q'(Ad P), one finds

(8) {a,8} = —a()3 = B()a =) o, 8.

In the last expression «;,3; are the local Ad P-valued components of «, § relative to a
local orthonormal frame {6'} of T*M (ie. « = >, 0, ® 0,8 = >, 3; ® 0*), and [-, ]
denotes the pointwise bracket in Ad P inherited from g. Thus the curvature F at a point
A € A* is given by

(9) Fla, B) = —2G§ ({o. B}) -

2.2 The Riemannian structure of B*. The data of the "toy model” 7w : @ KN
described above also determine a Riemannian metric on N, as follows. Given two vectors
X, Y, € T, N, lift them horizontally to horizontal vectors X', Y’ € H, (where ¢ € 7~ !(z)
is arbitrary), and define (X,,Y;)n = (X', Y”)q; the choice of ¢ is immaterial because of
the K-invariance of (-,-)g and the equivariance of horizontal lifts. With this definition
of (-,-)n, such a setup is called a (principal) Riemannian submersion.

Since the canonical connection on Q — N and the metric on N are determined by
the same data, the Riemann tensor of N is closely related to the bundle curvature of
@ — N. The relation can be derived from O’Neill’s formula for the sectional curvature o
of general Riemannian submersions (see [CE §3]):

3
(10) on(Xe, Ya) = 00X, V") + 7 [verty[X", Y]

(Here we take {X,,Y,} to be an orthonormal pair, and on the right, take arbitrary
horizontal extensions of X', Y’ to define the bracket.) In our situation, og = 0, and the
vertical part of the bracket in (10) is (minus) the image under ¢, of the bundle curvature
F(X,Y). Hence for orthonormal {X,, Y.}, (5) gives

(1) on (X, Ya) = 3|5y (77) X, Y5, = 3((X, Y7}, (050) X, Y Ne.

Returning to gauge theory, after due attention to analysis (see [GP1]), once again the
answer given by the finite-dimensional model is correct: for A € A*, and L?-orthonormal
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a, 8 € ker(d4)* = H 4 representing tangent vectors @, 3 € TinB*,

(12) OB+ (a[A]vﬁ[A]) = 3<{aaﬁ}7G€{a7ﬁ}>
This formula and (9) were first written down by Singer [S].

3. The Riemannian structure of the moduli space. The moduli space M =
8D/G C B is in general not a manifold. For a given point [A] € M, there are two
“obstructions” already visible in the deformation complex

A
(13) 0°(Ad P) 44 ' (ad P) = 02 (Ad P).
(Here d* is always covariant exterior derivative, and the subscript “—” denotes anti-self-

dual components or the projection onto these components.) The formal tangent space
T[A]M is
(14)  Ta(SD)/Va = Ta(SD) NHa = ker(d™)* Nker(d?) := Ta € QY (Ad P).

If ker(d4) : Q0 — Q' and ker(d4)* : Q' — Q2 are both zero then M is in fact a
manifold in a neighborhood of [4] (see [FU]). These are both open, gauge-invariant con-
ditions on the connection, the first of which is satisfied by all irreducible connections.
The second—the “h2-condition”, equivalent to surjectivity of d* and to the existence of
GA = (d4 (df)*)_l—can be shown to hold for all [A] € M for a generic choice of metric
go on M ([FU]), as well as for certain other special metrics. Even when the h? condition
fails for some [A] € M, it is often satisfied for [A] near the “boundary” of M (see Section
4 below). This will be the region of greatest interest to us later, so for now we will not
assume anything special about gg, but instead will write

(15) M = {[A] € M | kerd® = {0} and ker(d?)* = {0}} .

Thus M** is a finite-dimensional submanifold of B*, of dimension equal to the index of
(13). As a submanifold of a Riemannian manifold, M** inherits a metric (automatically
strong, by finite-dimensionality) by restriction.

Were the ambient manifold B* finite-dimensional, this curvature of the Riemannian
manifold (M**,g) could now be computed from the Gauss equation:

<Rsubmanifold (X7 Y)Zv W> = <Rambient (X7 Y)Za W>
Here h is the second fundamental form h of the submanifold. Once again, after doing the
necessary analysis, this finite-dimensional model gives the right answer for our gauge-
theory example (see [GP1]). The second fundamental form of the embedding M** — B*
at [A] € M** is given by
(16) h(a, f) = =G ([o. A]-), o, B € Ta,
where, in the notation following (8), [a, 8] = _; ;[c, B;10° A 69 (the subscript “—” again
denotes ASD projection). Combining this with (12), we find that the sectional curvature
of M** at [A] € M** is given by

(17) om(a, B) = 3<{aa/6}7G64{a7ﬁ}> + <[ava]*vGé[ﬁ75]7> - <[O‘75]77Gé[avﬂ]*>'
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(Again o, 8 are assumed L2-orthonormal here.) This is a pretty formula, incorporating all
the data encoded in (13), but what does it tell us? In general it is hard even to determine
the sign of the sectional curvature from (17). The term G4[3, 8]_, for example, is doubly
non-local: the Green operator acts non-locally on its argument, and the harmonic 1-forms
a, 8 themselves involve non-local information. However, in the next section we shall see
that near the boundary of certain moduli spaces, one can extract useful information
from (17).

4. Special case: five-dimensional moduli spaces. In this section (except as indi-
cated in §4.2) we will assume that

(i) P is an SU(2)-bundle of Pontryagin index (“instanton number”) 1,
(ii) M is simply connected,
(iii) the intersection form (the quadratic form on H?(M;R) given by cup product) is
positive-definite.

Under these conditions, dim(M**) = 5, and there is a “collar region” in M** diffeomor-
phic to (0,1) x M. The collar consists of instantons whose curvatures are sharply peaked
in a small region in M and are small elsewhere. One can introduce gauge-invariant pa-
rameters Ap(A), p(4), the scale and center of a concentrated connection (essentially the
width and center of the peak; see [D1] or [FU] for a careful definition) and thereby obtain
a diffeomorphism, for \g sufficiently small,

Up: My, — (0,X) x M
(18) [A] — (Ap(4),p(4)),
on some subset M, of the collar whose complement in M is compact. The cited defini-
tions of W are non-canonical, involving a choice of a smooth cut-off function; later we
will discuss a more canonical definition. Below, we write A for Ap.

It is for regions of the form M, that one can pry something tangible out of (17). The
reason is the following

LOCALIZATION PRINCIPLE. For [A] € My, formulas of interest should reduce to local
formulas as Ap(A) — 0.

Theorems concerning the geometry of the collar are based on attempting to force this
principle to be true.

4.1 Asymptotic properties of the metric in the collar. The first theorems on the geometry
of the collar were proven in [GP2]:

THEOREM 1. In the notation above, as A — 0 the metric g on My, behaves asymptoti-
cally like a product (in a C° sense):

(19) (U5 *g ~ 4% (2 dN? @ go).
Consequently, if we define My, to be the Cauchy completion of (Max,,8), then

(i) My, is a Riemannian manifold-with-boundary, and ¥p extends to a diffeomor-
phism My, =510, Ao x M.
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(ii) The induced topological, smooth, and Riemannian structures on the boundary OM :=
U5 ({0} x M) are independent of Up or (sufficiently small) N, and there is an isometry
of Riemannian manifolds

(20) (OM, gl 77) = (M, 472 gq).
(iii) If we define X := (distance to OM)/vV8n2 then A\/X\ — 1 as A — 0.
Remarks.

(a) Statement (i) implies that the L? completion implements Donaldson’s compactifica-
tion scheme, attaching a boundary of “delta-connections” of zero scale.

(b) Statement (iii) implies that in the collar there is a canonical definition of scale,
namely the (normalized) distance-to-boundary A, that is asymptotic to any of the non-
canonical scales Ap.

Theorem 1 involves only C° properties of the metric g. To see that the asymptotic
product relation (19) fails already at the level of second derivatives, it is worthwhile to
look at the two examples in which g has been computed explicitly: M = S* ([GP1],
[DMM], [H]) and M = CP? ([G1], [K]), both with their standard metrics go. In the first
case the moduli space is a (smooth) cone on a point (i.e. a ball), while in the second it
is a cone on CP?. In either case there is rotational symmetry, and on the complement of
the vertex the metric takes the form

(21) (B71)"g = 4722 (VN & h(\)go)

where the functions f, h have the asymptotic behavior (as A — 0) indicated in Table 1.
Table 1

s CcP’

) 1+ 3X%log A + O(\?) 1+6X%2log X\ + O(\?)

h(A) | 1= 3A2 = 2xtlog A+ O(AY) | 1—3X% — 6X*log A + O(AY)

(In these examples, the definition of A used is the radius of the smallest ball containing
half the total Yang-Mills action.) From the precise formulas for f, h given in the references
above, the formulas in Table 1 can be extrapolated to the level of second derivatives, and
one finds that in both cases

(i) OM is a totally geodesic submanifold of M, and

(ii) the Riemann tensor of M, extends continuously to My, .
At first glance (ii) is surprising, since Table 1 seems to imply that g is not C% at A = 0
(f" ~log\). However, this is an artifact of a bad coordinate system. Instead, note that
the map

Upat : My, — (0,Ag) x M
(22) [A] — (A(A),p(A) := unique closest point to [A] in M)
is well-defined in the two examples above (for A less than the “radius” of the punctured
cone), and we have the following theorem ([G2]):
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THEOREM 2. For M = S* or CP?2 (with their standard metrics), W, is C™ in the
collar, and hence can be used to define a smooth structure on My, compatible with the

original smooth structure on My,. With respect to this smooth structure on My,, the
metric g is smooth on the interior, C° on My,, but not C® on M,,.

This begs the question: what is the optimal regularity of g7 Theorem 2 implies that
there is no coordinate system in which g is C°°, for if there were, then g would also be
C® in the coordinates used above (given by the inverse of the normal exponential map
from the boundary).

In all likelihood, the high degree of symmetry in the two examples above leads to extra
regularity. More generally, since one cannot write down explicit formulas for the metric,
and experimenting with changes of coordinates can be quite messy, it seems difficult to
obtain information about optimal regularity. However, with some effort, first derivatives
of the metric can be dealt with directly, and we have the following theorem (see [G3]).

THEOREM 3. With the hypotheses and notation as in Theorem 1, endow My, with the
C* structure induced by Vp. With respect to this smooth structure, the extension of g
to My, is Ct (in fact CY* for small o). Furthermore, the boundary OM is always a
totally geodesic submanifold of M, .

The proof of Theorem 3 given in [G3] is too computational to be useful for higher
derivatives. To obtain such information, it seems reasonable to attempt to use curvature
invariants. Such an approach yielded the following in [G2]:

THEOREM 4. With the hypotheses and notation as in Theorem 1, the Riemann tensor
R of (My,,8) is bounded for \g sufficiently small. The restriction R of Raq to any
“tangential foliation” with leaves of the form {\p = const.} extends continuously to OM,
and

(23) R = (47°) ' Ry,

where Ry is the Riemann tensor of (M, go).

It is likely that the entire tensor R extends continuously to M,,, though the methods
of [G2] do not establish this (at issue is rather detailed information on the eigensections
of A§' with small eigenvalue). Note also that (23) is exactly what one would obtain from
the Gauss equations, Theorem 3, and (20), if one knew that the metric on M), were C2.
In light of these theorems, the following conjecture seems plausible:

CONJECTURE 1. With hypotheses and notation as above, for \g sufficiently small W,
is always well-defined and C3 in the collar. With respect to the C3 structure induced on
My, by Vo, the extension of g to My, is C2.

The proof of Theorem 4 in [G2] relies on a surprising cancellation phenomenon. In (17),
as A — 0 the eigenvalues of G4 are uniformly bounded, while Gg‘ has three eigenvalues
growing as A~2. Thus one might expect that the last two terms in (17) are bounded as
A — 0 and therefore (knowing that the sectional curvature is bounded) that the first term
is bounded as well; that somehow the quantities {c, 8} must be almost perpendicular to
the A~2-eigenspaces.
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What actually happens, however, is that as A — 0, all three terms in (17) diverge as
A~2, but the divergences cancel, leaving behind a finite remainder (see §4.3). This conspir-
atorial cancellation is all the more surprising because of the geometrically independent
sources of the terms in (17)—the first term arising from the ambient space B*, the other
two terms arising from the second fundamental form of the embedding My, — B*. (The
flaw in the naive analysis above is that although a, 3 are bounded in L? as A — 0, {a, 3}
and [«, §]- are not.)

We mention in passing that the M’s above have another geometrically interesting fea-
ture: cone singularities in the interior. It turns out that near these singularities g is
asymptotic to a “linear” cone metric dr? @ r?gepe2; see [GP2).

4.2 Further questions about the geometry of M. The hypotheses we placed on M and
P to obtain the five-dimensional moduli cases considered above are very restrictive. The
constraints on M are only satisfied if M is homeomorphic to a sphere or to a connected
sum of (one or more) CP%s. Furthermore, we required P to be an SU(2)-bundle of
instanton number 1. What happens if we relax these requirements? At present, very little
is known. However, there are several questions suggested by Theorems 1, 3, and 4.

For the first question, let M}, denote (in this subsection) the moduli space for the SU(2)-
bundle of instanton number k over a given Riemannian manifold. In general this space is
non-compact for the same reason the 5-dimensional spaces were: one can have a sequence
of connections whose squared curvatures approach a delta-function, or more generally a
sum of delta-functions. This leads to the “Donaldson/Uhlenbeck compactification” My,
defined as the closure of M, with respect to an appropriate topology on

My JT Mioa x M) JT (M2 x 220 T - [] =M,

where ¥7M is the j-fold symmetric product of M with itself (see [DK §4.4]). The stra-
tum Mj_; x 37 M corresponds, heuristically, to j units of “charge” (instanton number)
bubbling off at points whose locations are labeled by Y7 M, leaving behind a background
connection of instanton number k — j. There is enough evidence to make the following
conjecture.

CONJECTURE 2. The L? completion of My, is always the Donaldson/Uhlenbeck com-
pactification.

There are at least two pieces of supporting evidence. The first was provided in [D2],
where (to circumvent technical difficulties) Donaldson defined e-thickened moduli spaces

Be={[A] € B||[F4|2 < e};

thus (.. Bc = M. (We have dropped k for simplicity.) Let d. be the distance function
on d. defined by taking the infimum of the L2-lengths of connecting paths. Donaldson
proved that for any e > 0, the completion of M in the metric d|,, is homeomorphic to
the compactification above. Intuitively, as ¢ — 0, the metric d. ought to approach the
path-length metric defined by g, so Donaldson’s result supports Conjecture 2.

The other piece of evidence was provided by P. Feehan [F], who proved that for arbitrary
k, but for M of the restricted topological type considered earlier (simply connected and
with definite intersection form), Conjecture 2 is true.
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Conjecture 2 concerns only rather coarse properties of M, those that do not involve
derivatives of the metric. There are analogues of Theorems 3-4 that come to mind as
more general possibilities. In particular, we have the following

VAGUE QUESTION. Assume M, is a moduli space for which Conjecture 2 is true. Are
the boundary strata My_; x %7 M totally geodesic subspaces of the completion My, (at
least for large enough strata)?

It is premature to elevate this to the level of a conjecture, or even to attempt to state
it precisely. But the question is not unreasonable. The analysis involved for general M
has many similarities to the analysis in [G3] for the five-dimensional M’s, and it is this
analysis that drives Theorem 3. The analysis makes it plausible that if M contains an
entire stratum My_; x 37 M, then the stratum will be totally geodesic away from the
diagonals in the symmetric product. However, in some cases charge can only bubble off
along certain subvarieties of M (for general M, k). In such a case one would not expect
a totally geodesic stratum.

5. The localization principle at work: two applications.

5.1 Localization and Theorems 1, 3, and 4. The proofs of Theorems 1, 3, and 4 all rely
on the localization principle described earlier. In order to put this principle to work one
needs an approximation to the tangent space 74 (see (14) that uses only local information.
To this end we define the approzimate tangent space

(24) Ta = {X := 1xF* | X = certain type of vector field on M}.

Here F4 is the curvature two-form of A, and ty denotes contraction, so that X €
QY (Ad P). Specifically, we take X to be a linear combination of vector fields of the
form grad(Sf), where [ is a cut-off function centered at pp(A) (zero beyond, say, half
the injectivity radius), and f either is linear in normal coordinates, or is squared distance
to pp(A). Essentially, if f is of linear type then X corresponds to an infinitesimal mo-
tion of the center point pp, while if f is of distance-squared type then X corresponds
to an infinitesimal change of scale A. For such X one finds that (d*)*X = 0 and that
d* X is small, in several relevant norms, relative to HX |l2- In particular this implies that
if m: T4 — T4 is the L?-orthogonal projection, then Id — 7 is also small in relevant
norms—i.e. that 74 is, in fact, close to 74 in a useful sense.

To put this approximation to use in the context of Theorem 4 requires another ap-
plication of the localization principle: localizing objects of the form G()“{WX ,ﬂ?} and
Gﬁ‘[WX' , WY],. This is accomplished by inverting the Weitzenbock identities for 1-forms
and 2-forms (see [G2]):

(25) GMX, V) = —%FA(X, Y) + G4 (Remo(X, Y)),
(26) GAX,Y]. = (X* Ay FA_ + GA(Rem_(X,Y)),

where Rem;(X,Y) is a local expression involving X, Y, F4 and their derivatives. (In (26),
X*is the 1-form that is metric-dual to X.) It turns out that G (Rem;(X,Y)) is small in
relevant norms. The purely local first terms in (25)-(26) are what lead to the cancellation
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in the sectional curvature formula discussed following Conjecture 1. (Of course, to prove
the theorem one still has to deal with the effect of replacing X, Y by 7X, 7Y in (25)-(26).)

5.2 Localization and the p-map. We conclude with a rather different application of the
localization principle. Throughout this section, G = SU(2) and G = SO(3).

The space A* x P carries two free, commuting, group actions: the diagonal action
of G, and the action of G on the right-hand factor. If we divide out first by the G-
action, defining P := Ag P, there remains an induced free G-action on P, with quotient
B* x M. Thus we obtain an SO(3)-bundle P — B* x M. Donaldson defined a map
p: Ho(M;Q)) — H*(B*; Q) (see [DK, §5.1]) by
(21) p([5]) =~ (P)/I5].

(Here py(P) € H*(B*;Z) is the first Pontryagin class, and / denotes slant product, i.e.
“integration over fibers”.)

For today, our interest is not directly in the topological invariants that arise by com-
posing p with the restriction map H*(B*) — H*(M?*), but rather in the interplay be-
tween the topology of the p-map and the L? metric. Specifically, we will discuss a de
Rham-theoretic version of y, by which we mean a map

(28) pupgr: QM) — QY(B*), i=0,...,4,

commuting with exterior derivative, with the property that for a homology class [X] €
H.(M), the de Rham cohomology class of ppr(P.D.(X)) (where P.D. denotes Poincaré
dual) equals the image of u(X) in de Rham cohomology.

Any connection on P gives us a candidate for pupg; simply replace pi(P) by the cor-
responding Chern-Weil representative ¢ := pPT(P). The arbitrariness in the connection
makes pppr non-canonical, the ambiguity disappearing in cohomology. However, we will
see that by using the L? metric to define the connection (as in [DK, §5.2.3]), the map
upr we obtain behaves well even at the level of forms. This is perhaps surprising, since
the role the base metric gg plays (via the definition of M) of most Donaldson invariants
is only incidental.

For simplicity we will only consider the case i = 2 in (28); for i = 4 see [GS], where
an application of ypg to Kronheimer-Mrowka simple type is discussed. Note that £ is an
element of Q*(B* x M) = Y7_ Q9 (B*)@Q*~J(M). The slant product in (27) kills all but
the component lying in Q2(B*) ® Q2(M), and pairs the Q?(M) factor of the surviving
component with an element [¥] of Ho(M)—or, equivalently, wedges the Q2(M) factor
with P.D.([¥]) and integrates the result over M, leaving an element of Q?(B*). Thus, for
a closed form ¢ € Q?(M) and @, § € Tj4 B,

(29) nor(@)(@.5) = [ (5056) 1o,

To define the connection on P, let 7y : A* XxXP — P, mg : P — B*x M, and
w3t A*X P — (A*x P)/G = A*x M be the natural projections. We then define the
subspaces Va p, Hap of Tap(A* x P) =TaA* & T,P by Va, = ker(m.) and Ha, =
HAGBHI‘;‘, where H4 is as in (7) and where VpA, HI‘,4 C T, P are the vertical and horizontal
subspaces defined by the connection A. Thus T4 ) (A* x P) = VA, ® (0, V,}) ©Ha , and
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this decomposition is invariant under both group actions. Note that the first summand is
precisely the vertical space for my, while the second is the vertical space for 73 (and hence
can be naturally identified with the vertical space for m2). Thus the (G x G)-invariant
distribution {H4 ,} induces a G-invariant horizontal distribution on P, i.e. a connection.

The curvature F of this connection can now be computed; we omit the details (see [DK,
§5.2]). The result is that the pullback F = 7} F satisfies

(30) F((, X), (8,Y)) = (FHa, B) + a(Y) = B(X) + FAX,Y))],

where F4 is as in (9) and (o, X),(B,Y) € Ha,p. According to Chern-Weil theory,
—p1(P)/4 is represented by (87%)~'tr(F A F). Hence if @, 3 € Tj4B* are represented
by a, 8 € Ha, then combining (29) and (30) we have

(31) jpr(6)@F) = ——

a2 [y o
(Note: [DK, Proposition 5.2.18] omits an overall sign and a relative factor of 2 that are
important below.)

Now return to the 5-dimensional moduli spaces considered in Section 4, with a slight
modification: to make easier contact with the literature, consider anti-self-dual connec-
tions over manifolds with negative-definite intersection forms. Let A = Ap be a scale
function as in (18). For small A the collar map gives an embedding 7 : M — B* (factor-
ing through M). One of the first theorems of Donaldson concerning the py-map was that
in this context, the composition 75 o y : Ha(M) — H?(M) is precisely Poincaré duality
(see [DK §5.3]).

Since puppg starts out by Poincaré-dualizing the argument of u, a de Rham-theoretic
version of Donaldson’s theorem would simply assert that the composition 75 o ppr :
O2(M) — Q2(M) is the identity on the level of cohomology. But the localization discussed
in §5.1 gives much more. If we write o = 7X, f = 7Y as in §5.1, and use (25), we find
that the local terms in (31) dominate:

L t
- T
47T2 M

1
— @/M |F41? $(X,Y) dvoly,.

Now let A — 0, holding the center point of A fixed at some p € M, and holding X,Y
fixed. Then (872)~!|F4|2dvol approaches a delta-form centered at p, and the remainder
implicit in (32) tends to zero as A — 0 ([GP4]). Thus

(A B+ 2G5 a, BIFA) A .

(32) ppr(d) (X, 1Y) ~ (ixFA Ny FA— FAX,Y)FA A ¢

(33) npr(9) (X, 1Y) — §(X,,Y,) as A — 0.

Finally, we invoke the fact that if the vector field X is of “linear type” centered at p (see
§4.3), then 7X ~ —(72)+Xp, the approximation becoming arbitrarily good as A — 0 (see
[GP2]). Thus (33) implies that

(34) lim 7% (4pr(9)) = .

In other words, as A — 0, we recover Donaldson’s Poincaré duality result, on the level of
forms, not merely in cohomology.
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