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1. Introduction. Let ω be a closed two-form on a smooth manifold M . Most of inter-
esting singular symplectic structures on M are given in the form of pull-back ω = φ?ω0

by a smooth map φ : M → R2n from a symplectic structure ω0 on R2n [7, 9, 5, 6]. The
natural structure group of such singular symplectic manifolds is defined by integration of
φ−liftable Hamiltonian vector fields on (R2n, ω0). Action of this group on the space of
Lagrangian varieties in (R2n, ω0) provides the classification of maximal isotropic varieties
in pulled-back singular symplectic structure. Hence there is a natural question to ask:
How does the local intersection data determine the orbits of the group of symplectomor-
phisms preserving singular values of φ and acting on the space of Lagrangian germs?
This question may be reformulated as a generalization of the classical problem: Under
which conditions the two Lagrangian germs are equivalent? In this paper we attempt
to answer this question imposing the genericity conditions on the classified symplectic
objects and assuming the set of critical values of φ is a smooth surface in R2n. Another
motivation to our study comes from the theory of symplectic triads [1, 10] and its general-
ization. However the local invariants considered in this paper do appear as the classified
not necessary typical common positions of the considered two surfaces. Our aim is to
construct all these invariants through the technique of finding the corresponding local
normal forms. In Section 2 we classify the germs of generic pairs (H,L; p), where H is a
hypersurface in R2n and L is a Lagrangian submanifold in (R2n, ω0). Then in Section 3
we consider the slightly different case if H is any coisotropic submanifold of (R2n, ω0). It
is known that even-dimensional submanifolds in general position in the symplectic space
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are symplectic. In Section 4 we find the normal forms of pairs (H,L; p) provided H is
symplectic and H and L are in the transversal and nontransversal positions.

2. H–relative Lagrangian submanifolds. Let (M,ω0) be a symplectic manifold,
ω0 be in the Darboux form. Let H ⊂ M be a smooth hypersurface in M . By (H; p) we
denote the germ of H at p.

Definition 1. A pair of germs (H,L; p), where (L; p) is a germ of a Lagrangian
submanifold, is called an H-relative Lagrangian submanifold of M .

Theorem 1. If L is transversal to H at p ∈ L∩H then the pair (H,L; p) is symplec-
tically equivalent to the following one

(
{
(x, y) ∈ R2n : x1 = 0

}
,

{
(x, y) ∈ R2n : yi = 0 for i = 1, . . . , n

}
; 0).

Any two H-relative Lagrangian submanifolds which are transversal to H are H-relative
symplectically equivalent , i.e. there exists a symplectomorphism Φ which preserves a hy-
persurface H and maps one Lagrangian manifold into the other.

P r o o f. It is easy to see that H is symplectically equivalent to{
(x, y) ∈ R2n : x1 = 0

}
.

L is H-relative symplectically equivalent to a Lagrangian submanifold generated by a
function

S : Rn 3 x 7→ S(x) ∈ R,

because L is transversal to H. A symplectomorphism

φ(x, y) = (x, y − gradS)

maps L into
({

(x, y) ∈ R2n : yi = 0 for i = 1, . . . , n
}

; 0
)
.

It is easy to prove the following lemma.

Lemma 2. If L is not transversal to H at p ∈ H ∩ L then the pair (H,L; p) is
symplectically equivalent to

(H0, L0; 0) = (
{
(x, y) ∈ R2n : x1 = 0

}
,{

(x, y) ∈ R2n : xi = −∂S/∂yi for i = 1, . . . , n
}

; 0)

where S is a function-germ such that

(1) d(∂S/∂y1)|0 = 0.

P r o o f. It is clear that H is symplectically equivalent to H0 = {(x, y) : x1 = 0} and
L may be simultaneously turned into

L0 = {(x, y) : xI = −∂S/∂yI(yI , xJ), yJ = ∂S/∂xJ(yI , xJ)},

where I ∪ J = {1, . . . , n} , I ∩ J = ∅, 1 ∈ I ([3]). Then by the symplectomorphic change
of variables

Ψ(xI , xJ , yI , yJ) = (xI ,−yJ , yI , xJ),

we get the desired formula.
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Now we need the group GH of germs of symplectomorphisms which preserve the
fibration (x, y) → y and the hypersurface H =

{
(x, y) ∈ R2n : x1 = 0

}
for the repre-

sentation of (H,L; p). Every element Φ of this group can be defined as a lifting of a
diffeomorphism φ : Rn 3 y 7→ φ(y) ∈ Rn which preserve the fibration over (y2, . . . , yn),
i.e. y = (y1, y2, . . . , yn) 7→ ȳ = (y2, . . . , yn) with adding the gradient of a function f which
depends on ȳ

Φ(x, y) = ((φ∗)−1(y)x+ df(ȳ), φ(y)).

Using the action of the group GH on the Lagrangian germs we obtain the following result.

Theorem 3. A generic pair (H,L; p) such that H is not transversal to L at p is
symplectically equivalent to the pair (H0, L0; 0) obtained in Lemma 2, where

(2) S(y) = ±yk
1 +

k−2∑
i=2

yiy
k−i
1 +

(
g(y2, . . . , yk−2)±

n∑
i=k−1

y2
i

)
y1,

provided k = dimR Ey1/∆(S(y1, 0)) + 1 ≤ n+ 2, where g ∈ m2
y2,...,yk−2

\m3
y2,...,yk−2

, and
my2,...,yk−2 denotes the maximal ideal of the ring of smooth function-germs Ey2,...,yk−2 .

P r o o f. S is a deformation of the function R 3 y1 7→ S(y1, 0) ∈ R which satisfies (1).
Therefore S is equivalent to the pull-back of the universal deformation of ±yk

1 ([3, 8]):

S(y) = ±yk
1 +

k∑
i=2

φi(y2, . . . , yn)yk−i
1 ,

where φk−1 ∈ m2. By the symplectomorphism

Φ(x, y) = (x, y − grad(φk))

we reduce S to the form

S(y) = ±yk
1 +

k−1∑
i=2

φi(y2, . . . , yn)yk−i
1 .

We may assume that (φ2, . . . , φk−2) is a submersion and

φk−1(0, yk−1, . . . , yn) ∈ m2
yk−1,...,yn

\m3
yk−1,...,yn

,

because (H,L; 0) is generic. Therefore S is equivalent to the germ

S(y) = ±yk
1 +

k−2∑
i=2

yiy
k−i
1 + φ(y2, . . . , yn)y1,

where φ is deformation of a Morse function-germ φ(0, yk−1, . . . , yn). Therefore by a lifting
of a diffeomorphism of the form Ψ(y) = (y1, . . . , yk−2, ψ(y2, . . . , yn)), we obtain (2).

Example 1. Let n = 3, then we have

S(y1, y2, y3) = y3
1 + y2

2y1 (simple),

S(y1, y2, y3) = ±y4
1 + y2y

2
1 + (g(y2)± y2

3)y1, g ∈ m2,

S(y1, y2, y3) = y5
1 + y2y

3
1 + y3y

2
1 + g(y2, y3)y1, g ∈ m2.
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Corollary 4. If k > n + 2 then the normal form of S under natural genericity
conditions may be written in the following way

S = ±yk
1 + yi1y

k−j1
1 + . . .+ yil

yk−jl

1 + φs1(ȳ)y
k−s1
1 + . . .+ φsr (ȳ)y

k−sr
1 + ψ(ȳ)y1,

where {i1, . . . , il} = {2, . . . , n}, {j1, . . . , jl, s1, . . . , sr} = {2, . . . , k−2}, φsn
∈ m, ψ ∈ m2.

R e m a r k 1. All simple cases for n = 2 are classified by Ak-singularities

Al−1 : S(y1, y2) = y3
1 ± yl

2y1, l ≥ 2.

3. Coisotropic pairs. Now we slightly generalize the notion of a pair (H,L; p) taking
instead of a hypersurface H any coisotropic submanifold, say V . In the generic transversal
case we have

Proposition 5. Let V 2n−k be a coisotropic submanifold of M , let L be a Lagrangian
submanifold of M and p ∈ V ∩ L. If L is transversal to V at p, then the pair (V,L; p) is
symplectically equivalent to

(V0, L0; 0) = (
{
(x, y) ∈ R2n : x1 = . . . = xk = 0

}
,
{
(x, y) ∈ R2n : y1 = . . . = yn = 0

}
; 0).

P r o o f. We use the same method as in the proof of Theorem 1.

Lemma 6. If L is not transversal to V at p then the pair (V,L; p) is symplectically
equivalent to

(V0, L0; 0) = (
{
(x, y) ∈ R2n : x1 = . . . = xk = 0

}
,{

(x, y) ∈ R2n : xi = −∂S/∂yi(y) for i = 1, . . . , n
}

; 0),

where S is a function-germ such that the rank at 0 of the derivative of the mapping

Rn 3 y 7→ (−∂S/∂y1(y), . . . ,−∂S/∂yk(y))

is not maximal.

P r o o f. If L is transversal at 0 to the submanifold{
(x, y) ∈ R2n : y1 = . . . = yk = 0

}
then we can find the generating function S, which depends on (xI , yJ), where I ∪ J =
{1, 2, . . . , n}, I ∩ J = ∅, such that

(3) {1, . . . , k} ⊂ J

and the rank at 0 of the derivative of the mapping

Rn 3 (xI , yJ) 7→ (−∂S/∂y1(xI , yJ), . . . ,−∂S/∂yk(xI , yJ)).

is not maximal. Otherwise L is generated by a function F which depends on (xI , yJ) such
that condition (3) is not satisfied. Let I1 = I ∩{1, . . . , k} and I2 = I \ {1, . . . , k}. We can
find F such that the rank at 0 of the derivative of the mapping

R|I1| 3 xI1 7→ ∂F/∂xI1(xI1 , 0) ∈ R|I1|

is 0. By a symplectomorphism

Φ(x, yI1 , yI2 , yJ) = (x, yI1 − xI1 , yI2 , yJ),
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which preserves V0, we get transversality of L to
{
(x, y) ∈ R2n : y1 = . . . = yk = 0

}
at 0.

Finally we use a symplectomorphism

Ψ(xJ , xI , yJ , yI) = (xJ ,−yI , yJ , xI),

which completes the proof.

Now we use the group of germs of symplectomorphisms which preserve the fibration
(x, y) 7→ y and the submanifold V0. This approach leads to the classification of families
of functions of k variables.

Theorem 7. If V 2n−k is not transversal to L at p then the generic pair (V 2n−k, L; p)
is symplectically equivalent to the pair

(
{
(x, y) ∈ R2n : x1 = . . . = xk = 0

}
, L0; 0),

where L0 is generated by the function

S(y) = f(y1, . . . , yk) +
µ−l−1∑

i=1

φi(yk+1, . . . , yn)ρi(y1, . . . , yk) +
l∑

i=1

ψi(yk+1, . . . , yn)yi,

µ = dimR(Ey1,...,yk
/〈∂f/∂y1, . . . , ∂f/∂yk〉) <∞, ρi ∈ m2

y1,...,yk
, ρ1, . . . , ρµ−l−1, y1, . . . , yl

generate my1,...,yk
modulo 〈∂f/∂y1, . . . , ∂f/∂yk〉 and

rankD0(ψ1, . . . , ψl) < l.

4. Equivalence of Lagrangian submanifolds in the presence of a generic
even-dimensional submanifold. First we formulate the result on the normal form of
a symplectic surface in (M,ω0).

Lemma 8. If X2(n−k) is a symplectic submanifold of (M,ω0) then at each point
p ∈ X2(n−k) the germ (X2(n−k); p) is symplectically equivalent to

(X0; 0) = (
{
(x, y) ∈ R2n : xi = yi = 0 for i = 1, . . . , k

}
; 0).

P r o o f. By induction using the Moser method and the procedure described in [4].

Let us consider a symplectic pair (X2(n−k), L; 0). First we consider the transversal
case. Since L is transversal to the submanifold{

(x, y) ∈ R2n : x1 = . . . = xk = 0
}

we can express L by a generating function S : Rn 3 x 7→ S(x) ∈ R. The transversality
assumption is equivalent to the following condition

rankD0

(
Rn−k 3 (xk+1, . . . , xn) 7→

(∂S/∂x1(0, xk+1, . . . , xn), . . . , ∂S/∂xk(0, xk+1, . . . , xn)) ∈ Rk
)

= k.

Now we restrict our problem to the case k = 1.

Theorem 9. If L is transversal to X2(n−1) at p then the symplectic pair
(X2(n−1), L; p) is symplectically equivalent to

(X0, L0; 0) =
( {

(x, y) ∈ R2n : x1 = y1 = 0
}
,{

(x, y) ∈ R2n : y1 = x2, y2 = x1, yi = 0 for i = 3, . . . , n
}

; 0
)
.
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P r o o f. By Lemma 8 and the transversality assumption we can represent X2n−2 in
the form {

(x, y) ∈ R2n : x1 = y1 = 0
}

and we can generate L by a function

S : Rn 3 x 7→ S(x) ∈ R, S ∈ m2

which satisfies the following condition: there exists j ∈ {2, . . . , n} such that

(4) ∂2S/∂xj∂x1(0) 6= 0.

Now we expand S in the form

S(x) = x2
1h(x) + x1g(x2, . . . , xn) + f(x2, . . . , xn).

By a symplectomorphism

Φ(x, y) = (x, y + grad(x2
1h(x) + f(x2, . . . , xn))),

which preserves X2n−2, we transform L and consequently S to the form

S(x) = x1g1(x2, . . . , xn).

By condition (4) the mapping

φ : Rn 3 x 7→ (x1, g1(x2, . . . , xn), x3, . . . , xj−1, x2, xj+1, . . . , xn) ∈ Rn

is a diffeomorphism. Now we use the symplectomorphism φ? : R2n → R2n, which com-
pletes the proof.

Theorem 10. If L is not transversal to X2(n−1) at p then the generic symplectic pair
(X2(n−1), L; p) is symplectically equivalent to the following pair

(
{
(x, y) ∈ R2n : x1 = y1 = 0

}
,{

(x, y) ∈ R2n : y1 = ±x1 ± x2
2 ± . . .± x2

n, y2 = ±2x1x2, . . . , yn = ±2x1xn

}
; 0).

P r o o f. L is transversal to{
(x, y) ∈ R2n : x1 = 0

}
or

{
(x, y) ∈ R2n : y1 = 0

}
.

Otherwise T0L ⊂ T0X, which is impossible, because L is an n-dimensional Lagrangian
submanifold and X2(n−1) is a (2n−2)-dimensional symplectic manifold. We may assume
that L is transversal to

{
(x, y) ∈ R2n : x1 = 0

}
at 0. Then (X,L; 0) is symplectically

equivalent to

(
{
(x, y) ∈ R2n : x1 = y1 = 0

}
,
{
(x, y) ∈ R2n : y = ∂S/∂x(x)

}
; 0),

where S does not satisfy condition (4). By genericity of (X,L; p) we get

∂2S/∂x2
1(0) 6= 0.

S is a deformation of a function R 3 x1 7→ S(x1, 0) on the manifold with boundary
{x ∈ Rn : x1 = 0} ([2]). Therefore it has the form

S(x) = ±x2
1 + g(x2, . . . , xn)x1,

and dg0 = 0. We may assume that g is a Morse function, which completes the proof.
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