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Abstract. In the present article we display a new constructive quantum field theory ap-
proach to quantum gauge field theory, utilizing the recent progress in the integration theory on
the moduli space of generalized connections modulo gauge transformations.

That is, we propose a new set of Osterwalder Schrader like axioms for the characteristic
functional of a measure on the space of generalized connections modulo gauge transformations
rather than for the associated Schwinger distributions.

We show non-triviality of our axioms by demonstrating that they are satisfied for two-
dimensional Yang-Mills theory on the plane and the cylinder.

As a side result we derive a closed and analytical expression for the vacuum expectation
value of an arbitrary product of Wilson-loop functionals from which we derive the quantum
theory along the Glimm and Jaffe algorithm which agrees exactly with the one as obtained by
canonical methods.

1. Introduction. It is an old dream of theoretical physicists to base the description
of Yang-Mills (gauge) theories on the so-called Wilson-loop observables. These are simply
(products of) traces of holonomies around closed loops in the given spacetime. Also
general relativity, when formulated as a dynamical theory of connections, can be explored
via Wilson-loop variables [1].

The advantage of these observables is that they provide for an overcomplete set of
coordinates for the gauge invariant information that is contained in the connection [§],
also called the moduli space of (spacetime) connections modulo gauge transformations,
A/G. There are two major disadvantages:

1) The space A/G is nonlinear. Therefore, all the mathematical physics techniques
that have been developed for field theories whose underlying space of fields is linear are not
available. A solution out of this is to fix a gauge and to work with Schwinger functions of
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connections in that gauge but that comes at a price: manifest gauge invariance is lost and
we have the problem of the annoying Gribov copies. Also from a geometrical viewpoint
it just does not seem to be right to enforce linearity by brute force.

2) If one keeps manifest gauge invariance, and the only way to do this as far as we
know is to work with Wilson-loop functionals®, then the connection is smeared with a loop
function. There is then an immediate problem: it is well-known that linear quantum fields
are rather distributional and need to be smeared in all spacetime directions, however, a
loop only smears in one such direction. That either means that we have to give up this
approach or that YM quantum fields are simply better behaved in the precise sense that
the (vacuum expectation value of the) Wilson observables exists. There is a chance that
this is true, at least in the non-Abelian case, since the physically relevant phase of, say,
QCD is not described by the Fock Hilbert space.

In this article we take advantage of the existence of new integration techniques de-
veloped in [3, 2, 14] in order to set up a system of Osterwalder-Schrader (OS) axioms
that are tailored to A/G [4]. Our axioms are imposed directly on the measure rather
than on the associated Schwinger distributions [17] and is thus more in the fashion of
[9]. This will enable us to circumvent all the problems that are connected with these
earlier approaches. Our approach is as rigorous as the ones in [9] for the linear case or
[17] for the YM case. Furthermore, we prove non-triviality of these axioms by showing
that they have a non-trivial solution, namely we verify them for two-dimensional pure
YM theory for any semi-simple compact gauge group which is known to be an integrable,
finite dimensional model.

The paper is organized as follows:

In Section 2 we review the relevant notions from calculus on A/G.

In Section 3 we motivate and introduce a new set of axioms tailored to quantum gauge
field theory.

In Section 4 we derive the general form for the generating functional of the Yang-
Mills measure on .4/G for any compact semi-simple gauge group for the two-dimensional
spacetimes of the topology of the plane and the cylinder which are the ones of physical
relevance.

In Section 5 we explicitly verify the new axioms for the model analysed in Section 4
and give the relation to the Hamiltonian approach.

2. Preliminaries.

2.1 Integration on A/G.

We review here the necessary notions from [3, 2, 14, 4] and references therein.

We will consider the set £, of oriented unparametrized loops based at an arbitrary but
fixed point p of spacetime M as the entity of piecewise analytical embeddings of the circle
into M. Throughout this paper we will deal only with based, piecewise analytical loops.
With respect to the natural composition of loops, £, adopts the structure of a semi-group.

Yfor instance, invariants constructed from the curvature suffer from the field copy problem
[20, 21].
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With the help of the space A/G of smooth connections modulo gauge transformations we
turn £, into a group HG, called the hoop group in the sequel, as follows:

We define two loops ai,a2 € L, to be holonomically equivalent, oy ~ ao, iff their
holonomies agree on every point A € A/G, that is, ha, (A) = ha,(A) VA € A/G. Here
the holonomy map is defined as the path-ordered exponential of the line integral of the
connection along the loop:

(2.1) ha(A) = Pexp(]( A).

«@
The symbol P asks that in any parametrization of the loop the terms with the highest
values of the parameter be ordered to the left. Then HG := £, /~. We will not distinguish
any more in the sequel between a hoop and its various representants and will use the
word loop again unless confusion could arise.

We will assume once and for all that the gauge group G is compact and semisimple
of rank r (the non-semisimple case can be treated in a similar manner). The associated
principal fibre bundle is taken to be trivial.

We now introduce the so-called Wilson-loop functionals [8]

(2.2) T.(A) := %tr(ha(A))

where the trace is taken with respect to the N-dimensional fundamental representation of
G. The Wilson loops are manifestly gauge invariant functions on A/G and are separating
on A/G in the sense that given all the T, we can reconstruct the smooth connection
modulo gauge transformations [8].

These quantities enable us to construct an Abelian C*-algebra as follows: consider the
quantities of the form

roon I
.= Zz,zn H Tau,J'
J=1

I=1i=1
The system of these objects is easily checked to be an Abelian algebra: the Mandelstam
identities [8] reveal that every product of traces of the holonomy can be written as a
linear combination of products of Wilson loops with at most r factors. Moreover, it is
an Abelian *-algebra since T, = T,,—1. Finally, we turn it into an Abelian C*-algebra by
completing it with respect to the norm

(2.3) [P := sup [¥[(A).
A€eA/G

The C* property follows easily from that for complex numbers.

This Abelian C*-algebra will be called the holonomy algebra H.A.

We can now employ usual Gel'fand theory: The Gel'fand spectrum T/Q of generalized
connections is in one-to-one correspondence with the space of all homomorphisms from
‘HG into the gauge group G, that is to say, it is the algebraic dual of HG. By the Riesz-
Markov theorem, regular Borel measures on A/G are in one-to-one correspondence with

positive linear functionals on the space of continuous functions on .A4/G (recall that with
respect to the Gel'fand topology A/G is a compact Hausdorff space).
An interesting example of a measure uo on A/G has been constructed in [3]:
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Consider the family of all piecewise analytical oriented graphs I' in M, that is, piecewise
analytic embeddings of closed intervals in M. We will denote its fundamental group by
71(I"). Choose a system of generators 3i,..., O, of m1(I") where n := dp := dim(m (I")) is
the dimension of the fundamental group. A cylindrical function f on T/Q can be written
as the pull-back under the following map for one of the graphs I'":

(2.4) pr:A/G— G5 A (hg, (A),... hs, (A)),
that is, f = (pr)*fr where fr is a map from G into the complex numbers.

The measure pg is then defined to be the following linear functional for cylindrical
functions

/7duo(z4)f(z4) = /7dur(A)fr(pr(A))

A/G A/G
12/ dpr(gr) - dpr(gap) fr(gr, - - -5 9ar)-
Gar

That this defines indeed an infinite dimensional (o-additive) measure pg as the projective
limit [22] of the measures pr defined in (2.5) was shown in [14].

The rigorously defined measure o will be used in the next section to construct the
Yang-Mills measure.

Here are two more definitions which prove useful in the sequel.

(2.5)

DEFINITION 2.1. A loop network state on a given graph I' with fundamental group
[B1,..., 0] is labelled by a triple (T, 7, ¢) consisting of that graph T', a vector of non-
trivial irreducible representations @ = [m1, ..., T,] and a contraction matrix ¢ which takes
values in the projectors onto the orthogonal irreducible representations contained in the
decomposition of @ _; 7. It is defined by

(2.6) Tt 7.0(A) = tr[Q) m(hg, (A)) - c].
k=1

Different choices of generators of 71(I") lead to unitarily equivalent bases.

The loop network states can be seen to provide for a complete (and orthogonal with
respect to ) basis of states for any cylindrical subspace of C(A/G) defined by a graph
T [16, 6, 19]. In particular, the multiloop states Ty, ...T,, can always be expressed in
terms of those so that we arrive at the following definition:

DEFINITION 2.2. The characteristic functional of a measure on A/G is defined by the
set of expectation values of loop network states:

(2.7) Xu(L, 7 e) = | dp(A)Tr z..(A).
A/G

3. A proposal for Constructive Quantum Gauge Field Theory. As already
mentioned before, the concepts introduced in the textbook treatments [9] of constructive
scalar field theory seem inadequate for nonlinear theories such as gauge field theories
whose space of histories is given by .A/G. The idea is to come up with new axioms that
are guided by the ones for scalar field theory but take the nonlinearity of A/G fully into
account.
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Although this idea is not completely new, related contributions [17] seem to be too
strongly attached to techniques applicable to linear theories, mainly because these works
are based on axioms for Schwinger distributions. From our point of view it seems much
more natural to impose the axioms on the underlying measure.

The OS axioms for a QFT based on a linear space of histories can be roughly described
as follows [9]:

One states everything in terms of the characteristic functional y of a measure p (its
Fourier transform) which is required to be continuous and positive definite on (finite
subspaces of ) the space S of test functions of rapid decrease

(3.) () = (exp(ial)) = | du(®)exp(ial)

’

and ®[f] := [puy, d¥T 2 ®(z)f(x) denotes the canonical pairing between distributions
and test functions.

As this S is a nuclear space, Minlos’ theorem [22] then tells us that (as already displayed
in (3.1)) the measure has support on the space S’ of tempered distributions. It is obvious
that right from the beginning everything is soaked into kinematical linearity.

In order to find the appropriate analogue of these notions for constructive gauge field
theory, let us make some heuristic considerations:

The counterpart of the scalar field ® is of course the connection. Since we are interested
in a measure theoretic formulation of the theory, we now have to look for the analogue of
the expression exp(i®[f]). Let us look for a moment at the Abelian case. Then the Wilson-
loop functional is given by T, = exp(iA[a]) where we have allowed for a distributional
connection and the canonical pairing between the field A and the loop « is now given
by Alo] = § A = fol dta®A,(a(t)) rather than ®[f] = [d?'z®(z)f(x). This is an
important difference: in order that this object makes sense, the connection is not allowed
to be in &’ (R?)! This immediately implies that the theory that we want to base on Wilson
loops will not result in the usual Fock space, not even for Maxwell theory!

However, the formal similarity between the expressions exp(i®[f]) and T, generalized
to the non-Abelian case thus motivates to base the generating functional y of a measure

on A/G on the usage of Wilson loops. Since for a rank r group products of Wilson-loop
functionals can only be reduced to sums of products of at most r Wilson-loop functionals,
we arrive naturally at the expression (2.7) for the characteristic functional of a measure

on A/G. Accordingly, the analogue of the probes of the the field ®, namely test functions
of rapid decrease, are piecewise analytic loops in Euclidean space.

The nice thing is that the precise analogue of Bochner’s theorem can be argued to be
the Riesz-Markov theorem: any positive linear functional x on C(A/G) gives rise to a
regular Borel measure p on A/G which is a compact Hausdorff space by construction.

What we do not have is an analogue of the Minlos theorem which is due to the fact
that we did not specify any topology on the space of probes, i.e. the set of loops (see [18]
for an attempt to build a nuclear topology on HG). Since we will never need to specify
the analogue of Schwinger distributions in what follows, we do not worry about that.
Suffice it to say that our carrier space A/G is the maximal extension of .A4/G such that
Wilson-loops are still continuous (with respect to the Gel’fand topology on A4/G) and
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we do not mind working with that bigger space although the actual carrier of physically
relevant measures maybe significantly smaller.

Let us now formulate analogues of the OS axioms [9]:

A Quantum gauge field theory is a probability measure x on A/G satisfying the following
azrioms:

e OS-I) Analyticity. This axiom in scalar QFT ensures that Schwinger functions of all
orders exist. Since we are not interested in these for gauge field theory, because they are
not gauge invariant, we will drop that axiom here altogether!

e OS-II) Regularity. The regularity axiom for the scalar field prescribes some bound
on the characteristic functional. Technically, it can be used to show that the measure
is supported on the space of tempered distributions, rather than on those which are
continuous on the test functions of compact support. This is important if we want to do
things like Wick rotations of Schwinger functions to Wightman functions. Since we are
not interested in that issue, we also simply drop this axiom!

e OS-III) Fuclidean invariance. The action g-T' of an element g of the full Euclidean F
group in d spacetime dimensions on a graph is just the image of the linear transformation
2 +— (g - z) where z is a point on I'. The measure is required to be invariant under this
action

x(g-T,7,¢)=x(T,7,c).

e OS-1V) Reflection positivity. This is the most important of the axioms because it
allows to reformulate the theory in terms of more familiar concepts, that is, it provides
us with a notion of time, a Hilbert space, and a Hamiltonian (compare [9] for the proof
of this fact which is completely insensitive to whether the space of histories is linear or
not). The technicalities are as follows:

Choose an arbitrary hyperplane in R? which we will call the time zero plane. Consider
the linear span, denoted V', of the following functions on .4/G of the form

\I/{zl} A/Q—>(C, AI—)ZZ[T]
I1eS

where each index I stands for data I = (I',7,¢) of a loop network and where T" is
supported in the positive time half-space {x = (2°,7) € R%; 2° > 0} and S is a finite
set of indices. Furthermore, let ©(z°,7Z) = (—2°, ) denote the time reflection operator
(© € E). Then it is required that for each ¢,=Z € V

(3.2) (0,Z) = (0,=) := |  du(A)OU[A]Z[A] > 0.
A/G

Reflection positivity has been verified on the (finite) lattice for YM theory [9].

e OS-V) Ergodicity. This axiom ensures the uniqueness of the vacuum (a vector invari-

ant under the time translation subgroup of E, T'(s)(2?, ¥) = (2°+ s, ¥)). The requirement

is that
t

(33) tiw 7 [ as(z(sw)ln = [

t—o0 0 A/C

A/G

dp(A)¥[A]
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for any vector ¥ € L1(A/G,du) NV and any Ay € A/G. Note that the right-hand side
implies that the left-hand side does not depend on the particular choice of Ag.

4. Euclidean YM gauge theory in two dimensions.

4.1 The lattice regularization. Consider a special family of graphs I'(a, Ly, Ly) in M,
namely finite square lattices with spacing a of length L, and L, in = and y direction
respectively with respect to the Euclidean norm of the 2-dimensional Euclidean spacetime
M (i.e. the spacetime metric iS gop = d4p). Thus we have introduced an IR regulator (the
finite volume defined by L, and L,) and an UV regulator (defined by the lattice spacing
a). We have (N, +1)(N, + 1) vertices on that finite lattice where Nya := L, Nya := L,,.

An open path along an edge (link) ! of the lattice from the vertex i to the vertex j will
be denoted by
which enables us to define the plaquette loops O based at (x,y) according to

(42) Blay) =100 (ot1) © lmyt ) m et 1y +1) © Lot L) — @+Ly+1) © Lo g)—(@+1)-
That is, the plaquette loop starts at the bottom left corner and our convention is such
that the coordinate directions define positive orientation. Here the coordinates x,y are
taken to be integers (in lattice units).

There are no boundary conditions for the plane M = R! x R! while we identify
l(l7y)_,(17y+1) and Z(Nm+1,y)—>(Nm+1,y+1) on the cylinder M = Rl X Sl.

We will choose the basepoint p to lie in the upper right corner of I' and we will use the
following generators of 71 (T'):

1) On the plane, choose an open path pg, within I' from p to the point (x,y). Then
we have the N, N, generators

— — o1
(43) 6$7y = 6|j(w)y) = px7y o D(w,y) o pxﬂ.
2) On the cylinder we need apart from (4.3) one more generator “which wraps once
around the cylinder”. We will choose the horizontal loop “at future time infinity”

(4.4) By = Z(Nw,Ny+1)~>(1,Ny+1) o Z(er,NyH)H(Nw,NyH) 0...0 l(l,Ny+1)H(2,Ny+1)-

We are now ready to define the regulated characteristic functional of the regulated G
Yang-Mills measure:

Consider the following cylindrical functions on A/G, cylindrical relative to our lattice
graph I":

1) the exponential

(45) exp(_ﬂSWilson) where SWilson(A) = Z[l - %%tf(hm (A))]

a
is the so-called Wilson action for G Yang-Mills theory [7], hg is the holonomy along
the based loop O, Rtr means “take the real part of the trace of” and the “inverse
temperature” is given by

(4.6) p= 1

>
gpa*~d
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(d = 2 is the dimension of M) where go = go(a) is the bare coupling. Here we have chosen
a basis {77}97(“) for the Lic algebra L(G) of G such that tr(r;7;) = —N6; .
2) the product of Wilson-loop functionals for any r loops aj, ..., «, embedded in T' =

I'(a; Ly, Ly) and N is the dimension of the fundamental representation of G.

These functions are cylindrical since the loops «; can, by definition of the fundamental
group of a graph, be expressed as a particular composition of the generators of 71 (I').

Thus, all these functions are measurable with respect to the measure g introduced in
Section 2 and the following definition makes sense:

X(Ozl7 “e ,aN,l;a;La:,Ly) = <Ta1 .. ~Ta,,.>

1
4.7 = dpg(A)e=PSwitson (AT (A) . T, (A

% 11 /GduH(hﬁ)exp(—ﬁSW,-lson)tr( II 2s)---=(I] ko)

pem (I) Beay BEa,
where the notation 8 € a; means “composition of all those generators 3 necessary to
express «; (in the specific order as defined by «;)”.

The partition function Z = Z(a; Ly, Ly) is defined through x(p,...,p;a; Ly, Ly) = 1
where p is, as above, the basepoint of all the loops on the lattice (it is in particular a
trivial loop).

The idea is now quite similar to related constructions in constructive quantum scalar
field theory [15]. There, one integrates the regularized version of the exponential of —f
times the interaction part of the Euclidean action times exp(i®[f]) with the rigorously
defined free (Gaussian) measure. Then one takes the thermodynamic (infinite volume)
and continuum limit of the resulting expression and obtains the characteristic functional
of a rigorously defined interacting theory.

In our case the role of the Gaussian measure is played by the rigorously defined, o-

additive measure po on the universal carrier A/G, the “regularized interaction part of
the action” is played by the Wilson action and the analogue of exp(i®[f]) is given by the
products of Wilson-loop functionals.

The reader might worry that we have changed lattice gauge field theory in the previous
section [7]. One can show that this is not the case, i.e. both formulations are equivalent [5].

4.2 FEzpression of the Wilson loop in terms of plaquettes. By definition of the funda-
mental group of a graph, each of the a; involved in the characteristic functional x can
be written as a particular composition of the generators of the graph (lattice). In this
section we are going to characterize this composition.

First three definitions:

DEFINITION 4.1.

i) A loop is said to be simple iff there is a holonomically equivalent loop which has
no self-intersections.

ii) By the surface enclosed by a simple loop we mean the surface that is bounded by the
simple loop and lies to the left as one follows the loop counterclockwise (mathematically
positive direction).
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iii) Two distinct simple loops are said to be non-overlapping iff the intersection domain
of the surfaces that they enclose has zero Euclidean area.

So, for example all the loops (3, , are simple since they lie in the same hoop class as the
plaquette loops O, .. Non-overlapping distinct simple loops may share whole segments
whence the plaquette generators of our graph (lattice) are mutually non-overlapping.

The following two simple lemmas govern the form of the characteristic functional in
two spacetime dimensions.

LEMMA 4.1. Every simple, homotopically trivial loop on I' can be written as a particular
composition of the generators Bo whose surfaces are contained in the surface enclosed by
that loop, each of them appearing once and only once.

Proof. We will do this by direct construction.

Consider a simple based loop of the form o = p~! o 3 0 p where p is the given open
path between p and the starting point ¢ on the unbased loop . Subdivide 3 into columns
parallel to the y-axis. If ¢ does not coincide yet with the vertex of the horizontal link
with the lower z argument on the bottom of the most right column then let [ be the edge
of 3 between ¢ and that point on 3. Then we have a = (lop)~to (loBol ) o (lop) so
that by appropriate redefinition of § and p we can always achieve that the starting point
g on « is the point mentioned above.

Let ¢ := (z,y) and n be the height of that most right column. Then the holonomy
around « is given by (g is the product of the holonomies of those links that are not
involved in the most right column)

gy ) (1) Ly 1) — (@t L) - - Bt y)— @t Ly D) ) — et 1)
-1
= Ad[h, (9@ ytn—1) = @ytn) - Play)—@y+1)
(48) Ad[(h(w,y+n—2)—>(w,y+n—1) - h(w7y)—>(m,y+1)hp)71](Dw,y+n—1) .. Ad[hp](l]x’y)
=: {Ad[h; '](h5)}gu,yn—1 - - Gy
Here we have denoted by Ad the adjoint action of the group on itself, that is, Ad[g](h) :=
ghg™".

The curly bracket in the last line is the holonomy around « with the most right column
removed and the lost segment, resulting from that removement, reattached. This loop we
1o 30 p. The remaining product involves all the based plaquette loops of the
most right column, each of them appearing precisely once. We iterate like this to the left
until we reach the last column. But the analogous curly bracket term as the one above
for the last column is the identity. m

called p~

LEMMA 4.2. FEvery loop can be written as a composition of simple non-overlapping loops.

Proof. Given aloop « on I', consider the pattern of surfaces on M that its homotopi-
cally trivial part defines (the homotopically non-trivial loop [, are not overlapping with
any other loop and do not enclose a surface). Take the boundaries of these surfaces as the
definition of the simple non-overlapping loops ay, I = 1,...,n, and note that the pattern
of surfaces defines a subgraph T of I'. Since the a; are simple, by the preceding lemma,
we can express one (call it ;) of the 8, contained in the surface enclosed by a; by
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ag and the rest of these 3, ,. This is possible because the corresponding transformation
is non-singular (the [, , contained in the surface enclosed by a; appear precisely once).
Since the a; are non-overlapping, we conclude that the [; are all distinct. Since they
belong to a generating system of loops on I'" we see that we may choose a; as generators

as well. They obviously generate 71(T). =

The argument can be straightforwardly generalized to the case of a multiloop
Qi,...,a, by considering the pattern of surfaces made by the union of those r loops.
In this way, the choices of open paths pg between p and the plaquettes O made in (4.8) is
consistent because the O appear in one and only one of the non-overlapping, simple, ho-
motopically trivial loops. As already mentioned earlier, the Wilson action is not affected
by such a choice.

Consider the case that the loop a contains a homotopically trivial loop A = [Aoy~1]o~.
The loop in the bracket is homotopically trivial if v is in the same homotopy class
as A. Thus we are able to express « in the manner described above in terms of non-
overlapping simple homotopically trivial loops and our favourite homotopically non-trivial
generators 7.

Summarizing, we have shown that

(49) X(ala ceey aT) = % H /G d;U'H(gD) eXp(_ﬂSWilson)X

T1_, 6 Tloca, 957) on R2
fG d/u’H(g) Hz‘:l tI‘(” H'y,DG(xi ng”) on Rl X Sl

where the 7”7 denote that one has to order the variables involved correctly and that
each of the variables could occur more than once and in particular also its inverse. We
have denoted by gn and g plaquette and homotopically non-trivial loop () integration
variables. Always x(0) = 1.

4.3 The general form of the generating functional. We now actually perform the lattice
integration of any product of Wilson-loop functionals, thereby extending the results of
10, 13, 12).

Following the remarks at the end of Section 2, we know the vacuum expectation value
of a multiloop functional when we know the vacuum expectation value of its decom-
position into loop networks. So, let us denote the non-overlapping pieces of aq, ..., a,
by Y1, .., 7%m, m > r and the homotopically non-trivial loop by ~. Then, according to
Lemma 4.1, we can write the multiloop functional as a certain linear combination of the

states
m

(4.10) Tr(aN, Ny, (7ir).e = (@ Tk (Mo (A)) @ 7 (hy (A)) - ]
k=1

Let Ar(vg) denote the area of the surface enclosed by ~x. According to Lemma 4.2, each
v can be expressed as a certain product of the ny = Ar(v:)/a® plaquette loops that
are enclosed by v, each of them appearing once and only once, and, due to their non-
overlapping character, these sets of plaquette loops for the different loops ~y; are mutually
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different, that is, they provide independent integration variables! This is a special feature
of two dimensions for the plane and the cylinder.

So, let vk = Br,10...0 Bin, then due to my(hy,) = mi(hg, ) ... Tk(hs,,, ) we end up
doing the following basic integral (o an arbitrary irreducible representation)

@) L) = [ ool dute) = exp(=50 - Rex(o)dun (o)

The measure du is conjugation invariant and therefore I, has to be proportional to o(1)
according to the lemma of Schur. By taking the trace we see that

(4.12) L@=dmum7LWFﬁ%wam@

where x, = tro is the character of the irreducible representation and d,, is its dimension.

Since the measure for the loop = is just the Haar measure, the vacuum expectation value
of our loop network is non-vanishing only if 7 is the trivial representation 0. Therefore
we get altogether

(4.13) (@ Ny Ny, (7)) = 620 T [250] ™

where d, is the dimension of the irreducible subspace specified by c¢. Here we have made
use of the fact that ¢ is a projector and that in the decomposition into irreducibles of
&®i_, T, the irreducible representation specified by ¢ is contained.

Note that the expression (4.13) is completely insensitive to the size of the lattice due
to the fact that the plaquettes are non-interacting. Therefore the thermodynamic limit
is already taken. The task of taking the continuum limit now reduces to proving that

- (8) 7195 Ar()B
Bo(ﬁ) }

(4.14) w(o,a) = lim
B—o00
exists.

The proof goes as follows:

For 8 — oo, the integrand of J,, () is concentrated at the identity, so it will be sufficient
to calculate the integral for ¢ in a neighbourhood U of the identity. To that effect, write
g = e where A =t!7; € L(G) is in the Lie algebra of G and t! are real parameters in a
neighbourhood of zero. We thus have upon inserting g = 1y + A4 + %AQ +0(A3)

1 1 2 3 1dim(G) I\2 3
(4.15) 1= G Rtr(g) = =5 tr(4%) +o(4%) = 5 IZ:‘; (t")? + o(A?)

where the term of first order in A vanishes because it is trace-free (L(G) is semi-simple).
We have also used the normalization tr(7;7;) = —Ndy;.

Similarly, we have an expansion for the oth irreducible representation of G given by
o(g9) =o(1)+ X + 3 X2+ 0(X?) where X = ¢/ X[ is the representation of the Lie algebra
element A in the o-th irreducible representation. Then we have

(4.16) Xo(9) = dy +t! tr(X7) + %tlt‘] tr(X7X ;) + o(X?).
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According to the Baker-Campbell-Hausdorff formula [7] we have that
4.17)  ¢mesm = ' (s0m
1
where 71 (s,t) = s + 1! — gfIJKthK +o(s%, 12, 53, 5%, st*,13)

and where f! - are the structure constants of the semi-simple Lie algebra of L(G) which
therefore are completely skew. Now, the Haar measure can be written [7]

ddim(G)t ddlm(G)t
det(iarg,s’t))szo ~ 1+o(t?)

(4.18) dpgr (et ™) =

since det(0r/9s)s—o = det(1 + 3t Ry + o(t?)) = 1+ 3 tr(t' Ry) + o(t?) = 1 + o(t*) where
(Rr)% = f’,x is the I-th basis vector of L(G) in the adjoint representation which is
trace-free.

We now change coordinates ¢t — +/ft, insert (4.15), (4.16) and (4.18) into (4.14), write
an expansion in 1/4/f3 and integrate with the result

dim(G)
_ _ ok 12 >
(4.19) Jo(5) M@Mﬂw5u(;axw+mm»
But Y, (X)? = —A\;m(1) is the Casimir invariant and A, its eigenvalue. Therefore we

arrive finally at w(m,v) = exp(—3Azg3 Ar(y)) and thus

(4.20) X(Twh A, (7, 7),0) = Grodeexp(~ 508 D A Ax(ai).
k=1

5. Verification of the axioms and comparison with the Hamiltonian formal-
ism. Let us first verify the axioms.

III) The generating functional (4.20) clearly depends only on the areas of the various
loops involved and therefore is not only invariant under the Euclidean group (rather, the
symmetry group of the metric on the cylinder) but even under area-preserving diffeomor-
phisms.

IV) Reflection positivity is also satisfied because after dividing by the space N of null
vectors in V' we obtain a scalar product which is positive definite as we will show now by
employing the algorithm displayed in [9]:

Consider a multiloop {a1,...,as}, s < r, which is composed, among others, of
homotopically non-trivial loops. Let v be the horizontal loop at ¢ = 0 and write every
homotopically non-trivial loop 1 occurring in the multiloop {ai,...,as} as n = [po
7~ 1o~ where the loop in brackets is homotopically trivial, thereby obtaining a multiloop
a1,...,0s whose homotopically non-trivial contribution comes from  only. It follows that
all the vectors in V can be written as linear combinations of loop networks where the
homotopically non-trivial contribution comes form ~. The special feature of the loop = is
that it is left invariant under the time reflection operation. We now write

Tr,7m)e = Tr_y 0075 (1)

where c{ is the matrix obtained from c¢ by fixing the last two indices of both its m + 1
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fold multi-indices to be i,j. Now, observing that for I',TV supported in the positive
time half-space it is true that (T — v), IV — ~ contain only topologically trivial loops
enclosing disjoint areas in the two-dimensional spacetime. The non-interactive nature of
the measure therefore implies, using the basic integral [, d,lLH7_T§7TlIk = 1/dn0r 7 6%5;,
that

_ RS |
(51) <@TF,(7?,7T),C7 TF’,('FF/,W’),C’> = X(@(F - 7)7 T, C;)X(F/ -7 7TI7 Cj )di

™
According to (4.20) each of the characteristic functionals on the right-hand side of (5.1)
are proportional to 7r§(1) and the usual trace argument shows, using the fact that y is in

571',71'“

particular invariant under ©, that

g 2
(52) Tr e~ S )
is a null vector. Therefore the physical Hilbert space is just given by H := W =
Lo (G, diig), g being the effective measure obtained from pgy by restricting integration
to gauge invariant functions (characters, that is, functions on the Cartan subgroup of G),
which thus leaves us with a positive definite sesquilinear form.
V) We prove ergodicity as follows:

y(t) := T(t)y is the horizontal loop at time ¢. Now let a(t) := ~(t) oy~!, then we

have by the representation property

(53) Xﬂ(h'y(t)) = tr(ﬂ-(ha(t))ﬂ-(h’v))

so that with respect to (, ) we have
1 1

(5.4) mmwﬂz—Lﬁinmmﬂmmwzmm—fﬁamwmm»
dﬂ— A/G 2

Therefore lim;_, o % fot dsT(s)Xr = do,n = f dpx, and the proof is complete. Meanwhile
we see from the definition of the Hamiltonian as the generator of time translations that

1 !
(X, T(t)Xx) = eXp(—i)\ngth)(Smwl = (X, exp(—tH ) xx)

and the completeness of the x, on Lo(G, dfig) allows us to conclude that
2
(5.5) H = —%OLJCA

is the coordinate representation for the Hamiltonian where A is the Casimir operator on

G. The unique vacuum vector is 2 = 1, the only vector annihilated by the Hamiltonian.
We therefore have a simple finite dimensional model in front of us for which the

proposed axioms are indeed verified, thus proving non-triviality of the axioms.

Let us now make contact with the Hamiltonian analysis:
After splitting 2-dimensional Minkowski spacetime into space and time, the action for
2-dimensional YM theory becomes [5]

2
(5.6) S = / dt/ de[A(E" - [-A'g, + B pTEY)
R P 2

where ¥ = R or S'. Here A = A, is the (pull-back to ¥ of the) G-connection and E =

g%(c’)tAz — 0, A+ [Ar, A,]) is its electric field. The Gauss constraint and the Hamiltonian
0
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are respectively given by (a prime means a derivative with respect to x)
2
(5.7) Gr=E}+[AE]; and H = / d:v%OEIEI.
b

Now, multiplying the Gauss constraint with £ we infer that the Hamiltonian density is
a constant on the constraint surface 3(ETET)" = 0 which immediately implies that the
energy is infinite on the plane unless that constant is zero. This in turn implies EY = 0
and the theory becomes trivial on the plane.

On the cylinder, however, the theory is less trivial, the Hamiltonian is just given by
H = g‘%%(EIEI) which remains finite for finite £ due to the compactness of the x
direction.

We now quantize this theory along the Dirac approach, that is, we solve the constraints
by imposing it on the states which we choose in the connection representation.

The canonical commutation relations resulting from the Poisson bracket
{Ar(z), E? (y)} = §{6(x,y) for the canonical pair A;, BT are met if we choose the follow-
ing operator representation

65 (@A) = A)u), (Ei@)A) = iz ()

Imposing the Gauss constraint on the state space then immediately tells us that they
have to be gauge invariant, that is, they have to be built from Wilson loops. But the only
loop that we have is y = ¥ = S? itself, therefore a complete set of physical states is given
by the characters x(h(A)) which form an orthonormal base on Lo(G, dfifr).

Direct evaluation reveals (g = hy(A))

gng

(5.9 H)xe(0) = 222 X1(0)X1(9)xx(9) = L7 Alg)xnle) = 022 (g)

where X1(g) = tr(gr70/0g) is the left invariant vector field on G. This demonstrates
exact agreement between both approaches.
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