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Abstract. A general method of deriving canonical functions for ray field singularities in-
volving caustics, shadow boundaries and their intersections is presented. It is shown that many
time-domain canonical functions can be expressed in terms of elementary functions and elliptic
integrals.

1. Introduction. The subject of this paper is a systematic method for constructing
local asymptotic expansions of wave fields at arbitrary ray field singularities (caustics,
shadow boundaries, critical rays etc.). The method is based on lifting the ray field or its
singularity to the cotangent bundle and deriving an asymptotic expansion in terms of
oscillatory integrals from a local representation of the resulting manifold in terms of a
generating family of functions. Existence of generating families of functions is generally
established by symplectic reduction [25, 16]. The scope of this approach exceeds the scope
of Maslov theory since it is not limited to caustic singularities. In contradistinction to
the Maslov theory, the time evolution of the field at a point x is expressed in terms of
the values of the eikonal function and ray amplitudes at x only. The asymptotic series of
oscillatory integrals thus obtained satisfies the PDEs provided the eikonal function and
the ray amplitudes satisfy the eikonal equation and the transport equations.

In a neighbourhood of a symplectic singularity the asymptotic expansion is trans-
formed to an appropriate canonical form. The result is a uniformly asymptotic series
of canonical time-domain functions and their indefinite integrals. The arguments of the
canonical functions can be expressed in terms of eikonals while their linear coefficients
are linear functions of ray amplitudes.

We emphasize practical benefits of using time-domain canonical functions in numerical
applications instead of the more familiar frequency-domain solutions. In particular we
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list the cases in which explicit analytic solutions are available in the time domain. The
literature on time-domain canonical functions is scarce. Time-domain canonical functions
for simple caustics were derived in [4, 24, 3, 15]. The canonical expressions given in [4] and
in [3] are non-uniform while the expression derived in [24] does not satisfy the radiation
condition. The method presented in this paper is an extension of [15]. A frequency-
domain theory corresponding to Sections 2–4 for C∞ functions and manifolds is discussed
at length in [6].

Two kinds of asymptotic solutions of PDEs are considered in this paper:

(i) “high-frequency” asymptotic expansions of solutions U(x, λ) of

(1) P (x,Dx,−iλ)U(x, λ) = 0

for λ→∞,
(ii) wavefront expansions of solutions V (x, t) of

(2) P (x,Dx, Dt)V (x, t) = 0

where P is a PDE or a pseudo-differential operator, x ∈ X and X is a domain in Rn.

Both kinds of expansions are constructed in terms of an eikonal function S(x) satis-
fying the Hamilton-Jacobi equation

(3) H(x, p) = 0

with

(4) p = dS(x)

and
H(x, p) = detP0(x, p)

where P0 denotes the principal symbol of P (x,Dx, Dt). The eikonal equation can be
solved by integrating the bicharacteristic equations

(5)
dx
dτ

=
∂H

∂p
,

dp
dτ

= −∂H
∂x

with appropriate initial data

(6) x(0, u) = x(0)(u), p(0, u) = p(0)(u), u ∈ U

satisfying H(x(0), p(0)) = 0, related to an initial eikonal S(0) by the equation

(7) p
(0)
i (u) dx(0)

i (u) = dS(0)(u) ∀u ∈ U

and such that the Hamiltonian vector field XH of H is nowhere tangent to
(x(0)(u), p(0)(u)). The eikonal S(x) is then obtained by integrating along the rays x(·, u)

(8)
dŠ
dτ

= pi
∂H

∂pi

with the initial condition Š(0, u) = S(0)(u) and changing the coordinates from (τ, u) to
x if possible.

The solutions of equations (3)–(4) are multi-valued. In order to overcome this difficulty
the problem is reformulated as follows. Instead of solving Eqs. (3)–(4) for the eikonal
function S we look for a Lagrangian immersion ι : Ω → Λ ⊂ T ∗X , Ω ⊂ R×U , satisfying
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I ⊂ Λ ⊂ H−1(0) , where I denotes the image of the isotropic immersion U 3 u →
(x(0)(u), p(0)(u)), cf. [2, 9]. If we assume that the vector field XH is nowhere tangent
to I, the Lagrangian immersion ι and the function Š can be constructed by integrating
equations (5) with the initial data (6) [9], but the coordinate change from (τ, u) to x is
no longer required.

Geometrical Theory of Diffraction (GTD) [18] leads to more complicated geometrical
constructions. In order to satisfy the boundary conditions at boundaries and interfaces
(discontinuity surfaces of the coefficients of the differential operator P ) reflected, trans-
mitted and diffracted ray fields have to be introduced. An interface or a diffracting edge
x = g(v), v ∈ Rν , ν = 2 or 1, acts as a secondary source of a ray field satisfying the
initial condition

x(0, v) = g(v), pi(0, v) dgi(v) = p
(I)
i (v) dgi(v)

where p(I) = dS(I) and S(I)(x) denotes the eikonal of the incident field, as well as equation
(3) with an appropriate Hamiltonian H. The eikonal is then determined from equation
(8) with the initial conditions

S(g(v)) = S(I)(g(v)).

In particular, an interface breaking off at an edge produces a reflected and an edge-
diffracted ray field generated by the secondary sources on the reflecting surface and at the
edge. The associated Lagrangian submanifolds are denoted by ΛP and ΛD. The shadow
boundary BP for reflected rays is then spanned by those reflected rays which coincide
with edge-diffracted rays. The associated reflected and edge-diffracted bicharacteristics
also coincide since the initial conditions at the edge and the Hamiltonians for both kinds
of rays are identical. Consequently the shadow boundary BP is the projection of

(9) IP = ΛP ∩ ΛD ⊂ T ∗X

on X . The reflected rays correspond to the points of ΛP on just one side of the intersection
but uniform asymptotic expansions presented in Sections 5–6 require an analytic continu-
ation of the Lagrangian submanifold beyond the intersection. The same remark applies to
the shadow boundaries of direct and transmitted rays, with appropriate diffracted rays.

Tangential or critical incidence of rays on a boundary or an interface is another source
of diffracted rays, cf. [19]. The methods described below apply to the first of these cases.
We shall however limit our considerations to edge and vertex diffraction.

The method developed below depends on the possibility of computing evanescent
wavefields in caustic shadows by tracing complex rays. This in turn implies that the
Lagrangian submanifold should be a complex analytic variety in the neighbourhood of
its caustic singularities. Consequently, we shall assume that both X and Ω is a domain
in Cn and all the mappings are holomorphic.

Notation. The following symbols are used in the paper:

〈v | w〉 − scalar product in R3

〈v | A | w〉 = 〈v | Aw〉
〈f, g, . . . 〉 − an ideal spanned by f, g, . . .
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2. Singularities of ray fields and oscillatory integrals. Broadly speaking, a
ray field singularity is a locus of points at which the amplitudes Ak(x) of the primitive
asymptotic ray expansions

U ∼
∞∑
k=0

(iλ)−k Ak(x) exp[iλS(x)]

or

V ∼
∞∑
k=0

Ak(x) fk(t− S(x))

with
f ′k+1(τ) = fk(τ)

tend to infinity. It will be shown later that ray field singularities are either projec-
tions on X of the intersections of different branches of the Lagrangian manifolds over
X (more specifically self-intersections and folds) or projections of the singularities of the
Lagrangian manifolds. In particular, caustics are projections of the folds F of Λ over X ,
i.e. singularities of the projection π : T ∗X → X restricted to Λ:

F = {q ∈ Λ | corankDπ(q) > 0}.

At the projections of the self-intersections I of Λ the amplitudes of diffracted rays are
infinite. A related phenomenon is the blow-up of head-wave amplitudes along the critically
reflected rays, which are associated with the coalescence of reflected and head-wave rays.

We now show how an asymptotic solution of equation (1) can be constructed in terms
of oscillatory integral expansions.

Theorem 1 [25]. A Lagrangian submanifold Λ can locally be expressed by the formula

(10) Λ = {(x, p) ∈ T ∗X | ∃u ∈ U : p =
∂φ

∂x
,
∂φ

∂u
= 0}

where φ : U × X → C, U ⊂ Cm, is analytic and satisfies the condition

(*) the 1-forms d
∂φ

∂ui
, i = 1, . . . ,m are linearly independent of

M = {(u, x) ∈ U × X | ∂φ
∂u

= 0}.

Condition (*) excludes Lagrangian manifolds with singularities, which appear in
smooth body diffraction.

Let prX : U × X → X denote the projection onto X . If det ∂2φ/∂u2 6= 0 at some
(u, x) ∈ M then prX |M is locally a submersion. In this case π|Λ is a submersion in a

neighbourhood of p =
∂φ

∂x
(u, x). Consequently

(11) F = {(x, p) ∈ Λ | ∃u ∈ U : p =
∂φ

∂x
,
∂φ

∂u
= 0, det

∂2φ

∂u2
= 0}

Suppose now that Λ has been constructed as described in Section 1 and ι denotes the
immersion M→ U×X . If Ω is a connected open subset of M such that det ∂2φ/∂u2 6= 0
on Ω, then a comparison of equations (4) and (10) shows that (prX |M)−1

∗ ι∗φ differs from
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the eikonal by a constant. This suggests that the asymptotic solution of equation (1) for
λ→∞ can be written in the form of a compound asymptotic [9]

(12) U(x, λ) ∼
∫
U
a(u, x, λ) exp[iλφ(u, x)] du

where

a(u, x, λ) ∼
∞∑
k=0

(iλ)−kak(x, u).

For comparison with ray expansions, the stationary phase method [7, 9] can be applied
to expression (12). The eikonals S(j)(x) and ray amplitudes A(j)(x) are obtained by
substituting the solutions u = u(j)(x) of ∂φ/∂u = 0 in φ and in

(2π/|λ|)−m/2 exp(iπ sgn φuu/4) a0(x, u)/|detφuu|1/2

respectively, where φuu := ∂2φ/∂u2. The following theorem [15] describes the necessary
conditions for expression (12) to be an asymptotic solution of equation (1):

Theorem 2. If U(x, λ) satisfies equation (1) in the asymptotic sense:

P (x,Dx, λ)U(x, λ) = O[λ−∞]

then

(i) the Lagrangian submanifold

Λ := {(x, p) | ∂φ
∂u

= 0,
∂φ

∂x
= p}

satisfies the generalized eikonal equation Λ ⊂ {(x, p) | detP0(x, p) = 0};
(ii) the function a0(u, x) satisfies the polarization equations:

a0(x) = c(x) r
(
x,
∂φ

∂x

)
+ O

[∂φ
∂u

]
where r(x, p) is a unit vector in kerP0(x, p) for (x, p) ∈ H−1(0);

(iii) the half-form ρ := c (dx1 ∧ . . .dxn)1/2 [9] satisfies the transport equation

(#) LXH
log ρ+ 〈r | iP1 −

1
2

∂2P0

∂pj ∂xj
| r〉 = 0

where XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi
is the Hamiltonian vector field associated with H.

Eq. (#) is a generalization of the scalar transport equations derived in [6, 9]. An
asymptotic solution of equation (2) can be constructed as follows:

(13) V (x, t) = (1/2π)
∫ ∞

−∞

|λ|m/2

(2π)m/2+1
exp(−im

π

4
sgnλ)U(x, λ) exp(−iλt) dλ.

The additional frequency filter in the integrand of (13) ensures that the lowest-order
contribution of a non-degenerate minimum of φ(·, x) to V (x, t) has the form of a Dirac
delta A(x) δ(t − T (x)). Substituting equation (12) in equation (13) and carrying out
integration over λ one obtains the following integral representation of V (x, t) for m = 1
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and m = 2, respectively:

(14) V (x, t) ∼
∞∑
l=0

Fl(t, x, al)

where

(15)
∂Fl+1(t, x; a)

∂t
= Fl(t, x, a), l = 0, . . .

and

(16) F0(t, x; a) = 1/(
√

2π)
∂

∂t

∫
φ<t

a(u, x) [t− φ(u, x)]−1/2 du

for m = 1 and

(17) F0(t, x, a) =
1
2π

∂

∂t

∫
U
a(u, x) δ(t− φ(u, x)) du

for m = 2.
Numerical applications of Eqs. (16) and (17) require computation of the phase func-

tion φ. This is feasible in some cases, e.g. in the case of caustic singularities [20].
In order to account for evanescent fields in caustic shadows it is necessary to introduce

complex rays joining the source to the points in the shadow. This requirement is met by
assuming that the phase and amplitude function are analytic in some neighbourhood
of every caustic. In this case the Lagrangian submanifold is an analytic variety and the
caustics appear as the projection of its locus of singular points [11].

3. Reduction of general oscillatory integrals to canonical forms. We shall
apply singularity theory [1, 22] to transform the phase function φ(u, x) to a standard
polynomial ψ(w, y) with respect to the integration variables w, with some x-dependent
coefficients y(x). The specific polynomial is related to the singularity at hand.

The transformations are local and consequently a partition of unity {ek} has to be
applied to separate the contributions of different unrelated “organizing” singularities as
well as the contributions of non-singular subdomains of U , for a given point x ∈ X and a
neighbourhood of it. The Jacobians of all the local transformations described below are
absorbed in the amplitude.

Consider a neighbourhood of a point (0, x0) ∈ M such that ρ := corankφuu > 0. By
the parametric version of the Splitting Lemma [22] the phase function φ can be locally
transformed to the form

φ̃(v, w, y) =
m∑

l=ρ+1

1
2
σl v

2
l + ψ(w, y)

where w ∈ Cρ, σl ∈ {1,−1} and rankψww = 0, by a transformation u→ (v, w) = f(u, x),
y = F (x). The “inessential” variables v are eliminated by applying the stationary phase
method to the integral over v. This leaves a factor N = (2π/λ)(m−ρ)/2 exp[iπ

∑ρ
l=1 σl/4],

which is irrelevant for the following derivations. The function ψ is chosen to be a universal
unfolding of a singularity in the Thom-Arnold list [1, 22]. The asymptotic contribution
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of the singularity to the wave field U(x, t) assumes the following form

(18) Ũ ∼ N

∫
W

dw b(w, x, λ) eiλψ(w,y(x))

where W ⊂ Rρ and b = a J ek, J = ∂(u)/∂(v, w) and we note that b|∂W = 0.
We then apply the generalized Malgrange preparation theorem to obtain an expansion

of the amplitude modulo ψw:

(19) b = P (w, x) +
µ∑
l=1

fl(w, x)
∂ψ

∂wl

where P (w, x) is a minimal polynomial in w satisfying (19) with coefficients which are
holomorphic functions of x and fl are some holomorphic functions. Integrating by parts
and noting that b|∂W = 0 we find that the contribution of the second term on the right-
hand side is O[1/(iλ)]. The O[1/(iλ)] correction is then accounted for by rearranging the
asymptotic expansion.

For each monomial cα wα in P there is a corresponding monomial yα wα in ψ. Con-
sequently

(20) Ũ ∼ N

iλ

∑
α

cα
∂

∂yα

∫
W

eiλψdw + h.o.t.

The asymptotic contribution of the singularity to the wave field V (x, t) is obtained
by the argument of Section 2:

(21) F (t, x) ∼
∞∑
r=0

∑
α

crα(x)
∂

∂yα
Gr(t, y),

∂Gr+1

∂t
= Gr

where

(22a) G0(t, y) = − 1√
2π

∫
t>ψ

dw√
t− ψ(w, y)

for µ = 1 and

(22b) G0(t, y) = −
√
|detψww|

1
2π

∫∫ ∞

−∞
δ(t− ψ(w, y)) dw1 dw2

for µ = 2.
The integral in equation (22a) can be expressed in terms of elementary functions and

complete elliptic integrals if the degree of ψ does not exceed 4. In the second case we
apply the following lemma:

Lemma. The integral in equation (22b) can be expressed in terms of elementary func-
tions and elliptic integrals if the following conditions are satisfied:

(i) ψ = aw2
1 + bw1 + c;

(ii) b2 − 4ac is a polynomial in w2 of degree ≤ 4.

P r o o f. It is easy to check that

(])
∫ ∞

y

δ(x2 − z) dx =
1
2

{
H(z − y2)z−1/2

+ if y > 0[
1 +H(y2 − z)

]
z
−1/2
+ if y < 0.
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In view of (i) ψ = a(w1+b/2a)2+c−b2/4a and Eq. (]) can be applied with z = c−b2/4a,
whence the assertion follows from (ii).

It will be seen in Sections 4 and 6 that several canonical time-domain functions sat-
isfy the above conditions. In such cases very efficient algorithms can be developed for
numerical evaluation of V (x, t).

4. Time-domain canonical solutions at caustics. Stable caustic singularities fall
into two categories:

(i) cuspoid caustics,
(ii) umbilics.

In a 3-dimensional space X ⊂ R3 the former are generated by one-dimensional focusing
of ray tubes while the latter involve focusing of a ray tube to a point.

Canonical functions G0 corresponding to cuspoid caustics are derived by substituting
the universal unfoldings of the singularities Ak, k ≥ 3 in Eq. (22a):

(23) ψ =
wk+1

k + 1
+
k−1∑
l=0

yk w
k

[1, 22]. The asymptotic contribution of an Ak-singularity is given by equation (22a). For
k = 2, 3 it can be expressed in terms of complete elliptic integrals. Detailed expressions
can be found in [15].

Canonical expressions for umbilic singularities are obtained by substituting appropri-
ate polynomials in two variables in (22b). In particular the lemma from the preceding
section applies to the elliptic and hyperbolic umbilic D∓

4 :

(24) ψ = w2
1 w2 ∓ w3

2 + y3 w
2
1 + y1 w1 + y2 w2 + y0.

5. Singularities at shadow boundaries and at intersections of shadow
boundaries. We consider the case of a principal ray field bounded by one or several
shadow boundaries. In accordance with the GTD [18] the asymptotics of the wave field
can be expressed in terms of the principal ray field and the diffracted ray fields associated
with the shadow boundaries.

A shadow boundary is the projection of the intersection of two Lagrangian submani-
folds I = Λ1 ∩ Λ2. The set I is an isotropic subvariety of T ∗X : ω|I = 0. The following
theorem describes generating families of functions of isotropic subvarieties [16]:

Theorem 3. An isotropic subvariety I ⊂ T ∗X can be locally represented in terms of
a holomorphic generating family

φ : Ũ × Ṽ × X → R
Ũ ⊂ CM1 , Ṽ ⊂ CM2 , X ⊂ Cn

by the equation

(25) I = {(x, p) ∈ T ∗X | ∃ũ ∈ Ũ : p =
∂φ(ũ, 0, x)

∂x
,
∂φ(ũ, 0, x)

∂ũ
= 0,

∂φ(ũ, 0, x)
∂ṽ

= 0}.



CANONICAL FUNCTIONS OF ASYMPTOTIC DIFFRACTION THEORY 65

R e m a r k. I is a submanifold of T ∗X if the 1-forms

d
∂φ

∂ũi
, i = 1, . . . ,M1; d

∂φ

∂ṽj
, j = 1, . . . ,M2

are linearly independent of

(26) M = {(ũ, ṽ, x) ∈ Ũ × Ṽ × X | ṽ = 0,
∂φ

∂ũ
= 0,

∂φ

∂ṽ
= 0}.

I is the intersection of the following Lagrangian submanifolds:

ΛP ={(x, p) ∈ T ∗X | ∃(ũ, ṽ) ∈ Ũ × Ṽ :

p =
∂φ(ũ, ṽ, x)

∂x
,
∂φ(ũ, ṽ, x)

∂ũ
= 0,

∂φ(ũ, ṽ, x)
∂ṽ

= 0}

(27)

and

ΛDk
={(x, p) ∈ T ∗X | ∃(ũ, ṽ) ∈ Ũ × Ṽ : ṽk = 0, p =

∂φ(ũ, ṽ, x)
∂x

,

∂φ(ũ, ṽ, x)
∂ũ

= 0,
∂φ(ũ, ṽ1, . . . , ṽk−1, 0, ṽk+1, . . . , ṽM2)

∂ṽl
= 0

for l = 1, . . . ,M2, l 6= k}

(28)

for k = 1, . . . ,M2. This observation suggests the following ansatz for asymptotic solutions
at shadow boundaries:

(29) U(x, λ) ∼
∫
Û×V̂+

dũ dṽ a(ũ, ṽ, x, λ) exp[iλφ(ũ, ṽ, x)]

where Û := Ũ ∩ RM1 , V̂+ := {ṽ ∈ Ṽ ∩ RM2 | ṽl ≥ 0 for l = 1, . . . ,M2}. The interior
stationary points of (29) correspond to the subset

Λ+
P :={(x, p) ∈ T ∗X | ∃(ũ, ṽ) ∈ Û × V̂+ :

p =
∂φ(ũ, ṽ, x)

∂x
,
∂φ(ũ, ṽ, x)

∂ũ
= 0,

∂φ(ũ, ṽ, x)
∂ṽ

= 0}

of ΛP while the points of
⋃
k ΛDk

\ΛP correspond to the boundary stationary points of
the second kind of (29).

After some modifications Theorem 2 also applies to equation (29). Indeed, assuming
that for x ∈ Ω ⊂ X all the interior stationary points lie in a subset D ⊂ Ũ × Ṽ+ which
does not intersect ∂(Ũ × Ṽ+), we can apply the partition of unity argument to split the
contributions of interior stationary points from the contributions of the boundary

U = UD + UBd + UR

where

(30) UR = O[λ−∞], P (x,Dx, λ)UR = O[λ−∞]

and UBd =
∑M2
k=1 Uk, where

(31) Uk =
1
iλ

∫
Ṽ+∩{ṽk=0}

dṽ1 . . . d̂ṽk . . .dṽM2

∫
Ũ

dũ a(ũ, ṽ, x, λ)
φṽk

φ2
ũ + φ2

ṽ

exp[iλφ(ũ, ṽ, x)]
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and φ2
ũ :=

∑
l φ

2
ũl
, φ2
ṽ :=

∑
l φ

2
ṽl

. In order to derive equations (30) and (31) it is enough to

substitute R eiλφ, with R := (iλ)−1〈φz |φz〉−1〈φz |
∂

∂z
〉, z = (ũ, ṽ), for eiλφ and repeatedly

integrate by parts. The operator R is well-defined outside D.
If we assume that the boundary stationary points of φ are isolated the diffracted wave

field UBd can be expanded in a ray series

(32) UBd ∼
∑
k,σ

(iλ)−k Bk,σ(x) eiλS(σ)(x)

with

(33) B0,σ(x) = a0(ũ, ṽ, x) |detφww|−1/2 φ−1
ṽl

∣∣∣
ṽl=0,φw=0

for some l ≤ M2 and w := (ũ, ṽ1, . . . , ̂̃vl, . . . , ṽM2). Theorem 2 can now be applied to
both UD and UBd.

The denominator of B0,σ(x), Eq. (33), involves two expressions that vanish at sym-
plectic singularities:

(1) φṽl
= 0 at the shadow boundary π(ΛDl

∩ ΛP );
(2) detφww = 0 at the diffracted-wave caustics.

The singularity of B0,σ(x) associated with the vanishing of φṽl
corresponds to the

singularity of D/r1/21 in the GTD formula for the amplitude of an edge-diffracted signal
[18]: B0 = D c1/2 |λ|−1/2 (r02/r1r2)

1/2, where D denotes the diffraction coefficient, r1, r2
denote the principal radii of the diffracted wavefront, r01 = 0, r02 denote their values at
the diffraction point on the same ray and c(x) denotes the propagation speed [13, 14].

The same method allows computation of the contribution of a corner point forM2 = 2.
For simplicity we restrict our attention to the special case

(34) U(x, λ) =
∫
ṽ1,ṽ2≥0

a eiλφ dṽ1 dṽ2.

In this case

(35) UBd = − 1
iλ

[∫ ∞

0

dv2
φṽ1
φ2
ṽ

a eiλφ

∣∣∣∣
ṽ1=0

+
∫ ∞

0

dṽ1
φṽ2
φ2
ṽ

a eiλφ

∣∣∣∣
ṽ2=0

]
+ h.o.t.

where φ2
ṽ := φ2

ṽ1
+ φ2

ṽ2
. Substituting (iλφṽk

)−1 ∂eiλφ

∂ṽk
for eiλφ in the integral over ṽk,

k = 1, 2, and integrating by parts we get the lowest-order asymptotic contribution of the
corner point in the form

(36)
1

(iλ)2
a

[
φṽ1
φṽ2

+
φṽ2
φṽ1

]
eiλφ/φ2

ṽ

∣∣∣∣
ṽ1=ṽ2=0

.

The following coalescences are possible in addition to the coalescences of interior and
boundary stationary points:

(i) an interior stationary point and two boundary stationary points coalesce with the
corner (0, 0);

(ii) one boundary stationary point coalesces with the corner.
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In case (i) both φṽ1 and φṽ2 tend to zero and the behaviour of expression (36) is quite
complex. In case (ii) one of these derivatives tends to zero while the other remains different
from zero. Case (i) corresponds to the intersection of two shadow boundaries of the
principal signal (which also lies on the shadow boundaries of the edge-diffracted signals)
while case (ii) occurs at the shadow boundary of an edge diffracted signal.

6. Canonical functions for shadow boundary singularities. We now consider
the asymptotic contribution of a boundary or corner singularity [1, 23] of the phase
function. Applying the version of the Splitting Lemma presented in [23] we get

(37) φ(ũ, ṽ, x) = ψ(u1, . . . , um1 , v1, . . . , vm2 , F (x)) +
M1∑

k=m1+1

1
2
σk u

2
k +

M2∑
l=m2+1

ρlvl

where σk, ρl ∈ {−1, 1},

(38) ψ(u, v, y) = ψ0(u, v) +
µ∑
j=1

yj hj(u, v) + y0

is a universal unfolding of a boundary or corner singularity ψ0 of boundary corankm2 > 0.
The monomials {hj , j = 1, . . . , µ} constitute a basis of

M/〈∂ψ0/∂u1, . . . , ∂ψ0/∂um1 , v1 ∂ψ0/∂v1, . . . , vm2 ∂ψ0/∂vm2〉

where M denotes the maximal ideal of C∞0 (Û × V̂). Standard asymptotic methods [7]
can be applied to the integrals over the inessential variables uk, k > m1, and vl, l > m2,
yielding a factor

N =
(

2π
|λ|

)(M1−m1)/2

exp(i
π

4

M1∑
k=m1+1

sgnλ)
M2∏

l=m2+1

1
iλρl

which is irrelevant in the following and will be disregarded.
The contribution of the singularity ψ0 to the wave field U(x, λ) assumes the form

(39) I =
∞∑
r=0

1
(iλ)r

Ir, Ir =
∫

U×V+

br(u, v, x) eiλψ(u,v,F (x))du dv

with U ⊂ Rm1 , V+ ⊂ Rm2 , br := ar ek ∂(ũ, ṽ)/∂(u, v).
The amplitude function br can now be expanded in the basis {hj} modulo

∂ψ/∂u1, . . . , ∂ψ/∂um1 , v1 ∂ψ/∂v1, . . . , vm2 ∂ψ/∂vm2 . By the generalized Malgrange
preparation theorem [8]

br(u, v, x) = cr0(x) +
µ∑
j=1

crj(x)hj(u, v) +
m1∑
k=1

fk(u, v, x)
∂ψ

∂uk

∣∣∣∣
y=F (x)

+
m2∑
l=1

vl gl(u, v, x)
∂ψ

∂vl

∣∣∣∣
y=F (x)

.

(40)

Integration by parts shows that the last two terms of Eq. (40) give a contribution
of order O[(iλ)−r−1] to I and consequently can be absorbed in Ir+1. Eq. (40) can be
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rewritten in the form

(41) Ir =
1
iλ

µ∑
j=0

crj(x)
∂

∂yj

∫
U×V+

eiλψ du dv

∣∣∣∣∣
y=F (x)

.

The asymptotic contribution F (x, t) of the singularity to the time-domain wave field
V (x, t), obtained by substitution of (40)–(41) in (13) with m := m1 +m2, is given by the
asymptotic expansion (21) with the canonical functions

(42a) G0(t, y) = − 1√
2π

∫
w>0
t>ψ

dw√
t− ψ(w, y)

for m1 = 0,m2 = 1,

(42b) G0(t, y) = −
√
|detD2ψ(0, y)|

2π

∫ ∞

−∞

∫ ∞

0

δ(t− ψ(u, v, y)) du dv

for m1 = m2 = 1,

(42c) G0(t, y) = −
√
|detD2ψ(0, y)|

2π

∫ ∞

0

∫ ∞

0

δ(t− ψ(u, v, y)) du dv

for m1 = 0,m2 = 2. D2ψ denotes the Hessian of ψ with respect to (u, v).
For the single shadow boundary we apply the universal unfoldings of the boundary

singularities listed in [1]. The following singularities have codimension ≤ 4:

(43) Bk : m1 = 0, m2 = 1, ψ(v, y) =
vk

k
+
k−1∑
l=0

yl v
l

for k ≥ 2,

(44) Ck : m1 = m2 = 1, ψ(u, v, y) = (u− yk−1)v +
uk

k
+
k−2∑
l=0

yl u
l

for k ≥ 3,

(45) F4 : m1 = m2 = 1, ψ(u, v, y) = u3 ± v2 + y3 u v + y1 u+ y2 v + y0

with v ≥ 0.
The B2 singularity represents a shadow boundary [10, 12]. The Bk series for k > 2

involves caustics of the principal signal tangent to the shadow boundary. They break off
at the shadow boundary and are called “broken caustics” in [19]. The Ck series involves
caustics of the diffracted waves (called the penumbra caustics in [19]).

In the case of the F4 singularity the principal-wave and diffracted-wave caustics inter-
sect at a common focus of the two kinds of waves. The principal wavefront breaks off at
its intersection E with the shadow boundary. The principal rays through E are simultane-
ously diffracted rays. In the isotropic case (the rays are orthogonal to the corresponding
wavefronts) the diffracted and principal rays have a common focus if a center of curvature
of the principal wavefront coincides with a center of curvature of E , i.e. if E is tangent to
a principal curvature direction of the principal wavefront.
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The canonical function for Bk are given by Eq. (42a). For B2 Eq. (42a) can be ex-
pressed in terms of arc sine, while for B3, B4 it involves incomplete elliptic functions.

The canonical functions of the Ck series are distributional limits of algebraic functions
defined in the lower half of the complex t-plane. The leading term of the asymptotic
expansion (14) for Ck is

(46) F0(x, t) = 2<
∞∫
0

dλ
iλ

4π2

∞∫
−∞

du

∞∫
0

dv eiλ[(u−yk−1) v+ζ−t]

where

(47) ζ =
uk

k
+
k−2∑
l=0

yl u
l.

Integration over v can be carried out first

(48)
∫ ∞

0

dv eiλ[(u−yk−1)v+ζ] =
i
λ

1
u− yk−1 + i0

eiλ(ζ−t)

leading to

(49) G0(t, y) =
1

2π2
<

∫ ∞

−∞

1
u− yk−1 + i0

1
t− ζ − i0

du.

The asymptotic contribution associated with ΛP is now represented by the residue while
the saddle points represent the diffracted waves. The canonical function (49) can be
evaluated in terms of algebraic functions by closing the contour in the complex u-plane
and applying the residue calculus [10, 12].

For the intersection of two shadow boundaries we apply the universal unfoldings of
the singularities listed in [23]. The first item in the list of singularities of functions in a
quarter plane R2

+ has the following form:

(50)
ψ(v,M, y) = y0 + y1 v1 + y2 v2 +M v1 v2 + ι1 v

2
1 + ι2 v

2
2 ,

ιk ∈ {+1,−1} for k = 1, 2; M 6= ±2.

It involves two kinds of parameters: the unfolding parameters yl and a module M . The
transformation of the phase function φ to the polynomial ψ assumes the following form:

(51) φ(u, x) = ψ(f(u, x),M, g(x))

with a constant M . In the case of diffraction by a sector and a convex principal wavefront
M = −2 cos θ, where θ is the angle at the vertex [14]. The canonical time-domain function
assumes the form

(52) G0(t, y) = −
√
|∆|

2π

∫ ∞

0

∫ ∞

0

dv1 dv2 δ(t− ψ(v,M, y))

with ∆ = 4ι1ι2 −M2, is expressible in terms of the arc tangent function [14].
Subsequent items on Siersma’s list of corner singularities allow for cusped sectors

as well as for intersecting shadow boundaries tangent to a caustic at their intersection.
Explicit time-domain solutions can be derived for the lowest codimensions.
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7. Concluding remarks. The eikonal function associated with a singularity Ak, Dk,
Bk, Ck, F4 of codimension µ has µ + 1 branches. The µ + 1 values of the eikonal at a
point are given by a set of polynomial functions of the µ+ 1 unfolding parameters. The
values of the eikonal at a point x can be determined by two-point ray tracing and the
unfolding parameters can subsequently be determined by solving an algebraic system of
equations [10, 12, 13]. For each r the parameters crj(x) can be calculated from the ray
amplitudes of order r by solving a linear system of equations.

The canonical function (52) involves one principal wavefront, two edge-diffracted
wavefronts and a vertex-diffracted wavefront. The vertex-diffracted wavefront is gener-
ated by the asymptotic contribution of the corner (0, 0). The 3 unfolding parameters as
well as the module M can be determined from the 4 eikonals.

Acknowledgement. I am indebted to an anonymous reviewer for reminding me of
Duistermaat’s paper [6].
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